首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oral squamous cell carcinoma (OSCC) is the most common malignant tumour in the oral and maxillofacial region. Numerous cancers share ten common traits (“hallmarks”) that govern the transformation of normal cells into cancer cells. Long non‐coding RNAs (lncRNAs) are important factors that contribute to tumorigenesis. However, very little is known about the cooperative relationships between lncRNAs and cancer hallmark‐associated genes in OSCC. Through integrative analysis of cancer hallmarks, somatic mutations, copy number variants (CNVs) and expression, some OSCC‐specific cancer hallmark‐associated genes and lncRNAs are identified. A computational framework to identify gene and lncRNA cooperative regulation pairs (GLCRPs) associated with different cancer hallmarks is developed based on the co‐expression and co‐occurrence of mutations. The distinct and common features of ten cancer hallmarks based on GLCRPs are characterized in OSCC. Cancer hallmark insensitivity to antigrowth signals and self‐sufficiency in growth signals are shared by most GLCRPs in OSCC. Some key GLCRPs participate in many cancer hallmarks in OSCC. Cancer hallmark‐associated GLCRP networks have complex patterns and specific functions in OSCC. Specially, some key GLCRPs are associated with the prognosis of OSCC patients. In summary, we generate a comprehensive landscape of cancer hallmark‐associated GLCRPs that can act as a starting point for future functional explorations, the identification of biomarkers and lncRNA‐based targeted therapy in OSCC.  相似文献   

2.
Oral squamous cell carcinoma (OSCC) is an oral and maxillofacial malignancy that exhibits high incidence worldwide. In diverse human cancers, the long non‐coding RNA (lncRNA) highly up‐regulated in liver cancer (HULC) is aberrantly expressed, but how HULC affects OSCC development and progression has remained mostly unknown. We report that HULC was abnormally up‐regulated in oral cancer tissues and OSCC cell lines, and that suppression of HULC expression in OSCC cells not only inhibited the proliferation, drug tolerance, migration and invasion of the cancer cells, but also increased their apoptosis rate. Notably, in a mouse xenograft model, HULC depletion reduced tumorigenicity and inhibited the epithelial‐to‐mesenchymal transition process. Collectively, our findings reveal a crucial role of the lncRNA HULC in regulating oral cancer carcinogenesis and tumour progression, and thus suggest that HULC could serve as a novel therapeutic target for OSCC.  相似文献   

3.
Oral squamous cell carcinoma (OSCC) is a pathological type of oral cancer, which accounts for over 90% of oral cancers. It has been widely shown that circRNA is involved in the regulation of multiple malignant oral diseases including OSCC. However, the mechanism underlying how circRNA regulates OSCC is still not clearly elucidated. In this article, we report circFOXO3 promotes tumor growth and invasion of OSCC by targeting miR‐214 which specifically degrades the lysine demethylase 2A (KDM2A). CircRNA sequencing was conducted in OSCC tumor and tumor‐side tissues, and the expression of circFOXO3 is found to be markedly increased in tumor tissues. CircFOXO3 is also highly expressed in several OSCC cell lines compared with human oral keratinocytes. Transwell assay and colony formation showed that knockdown of circFOXO3 prevents the invasion and proliferation of oral cancer cells. Via bioinformatic research, miR‐214 was found to be the target of circFOXO3 and correlate well with circFOXO3 both in vitro and in vivo. KDM2A was then validated by database analysis and luciferase assay to be the direct target of miR‐214. KDM2A helps to promote tumor invasiveness and proliferation of OSCC. Collectively, our results proved that circFOXO3 sponges miR‐214 to up‐regulate the expression of KDM2A, thus promotes tumor progression in OSCC.  相似文献   

4.
Oral Squamous Cell Carcinoma (OSCC) is the most common malignant cancer affecting oral cavity. Recent studies have demonstrated that Ubiquitin-specific protease 7 (USP7) was upregulated in several types of cancers. USP7 expression was associated with various proto-oncogenes and tumor suppressor genes. However, USP7 expression level and its functional role in OSCC is unclear. In the current study, we showed that USP7 expression in OSCC tissues was generally upregulated compared to normal adjacent tissues by using IHC. Furthermore, statistical analysis uncovered that USP7 expression was positively correlated with Ki-67, MMP2, VEGF in OSCC tissues. Importantly, high USP7 expression was significantly correlated with lymph node metastasis and histological differentiation in OSCC patients. So, our hypothesis is that USP7 plays a tumor-promoting role in OSCC. Knocking down of USP7 in tumor cells not only suppressed HSC3 cells proliferation, migration and invasion, but also promoted cell apoptosis. Moreover, USP7 siRNA blocked the activation of Akt/ERK signaling pathway. In conclusion, data presented here suggests that USP7 promotes the progression of OSCC. USP7 may be used as a new therapeutic target for OSCC diagnosis and treatment.Keywords: Oral Squamous Cell Carcinoma, USP7, siRNA, proliferation, invasion  相似文献   

5.
BackgroundOral squamous cell carcinoma (OSCC) is a common cancer with a high heterogeneity and few approved treatments. OSCC is one of the least explored areas for precision oncology. In this study, we aimed to test the reliability of our three established rapid cancer systemic treatment-testing assays: human tumour-derived matrix (Myogel)-coated well-plates, zebrafish xenografts, and 3D microfluidic chips.MethodsChemo-, radio- and targeted-therapy testing in Myogel-coated wells and zebrafish xenografts was conducted nine times using five samples; two primary and three metastatic lymph node samples from three OSCC patients. Peripheral blood mononuclear cells (PBMNCs) were isolated from the patients’ blood. The response of the tumour cells to radio-, chemo-, and targeted therapy was tested using Myogel-coated wells and zebrafish larvae xenografts. The tumour cells’ response to immunotherapy was tested using 3D microfluidic chips. The cells’ sensitivity to the treatments was compared with the patients’ clinical response. Primary and metastatic lymph node tissue-derived DNA samples from two patients underwent whole exome sequencing to compare the mutational profiles of the samples.ResultsTest results were in line with patients’ responses in 7/9 (77%) zebrafish xenograft assays and 5/9 (55%) Myogel-coated wells assays. Immunotherapy testing was done using one metastatic patient sample which matched the patients’ response. Differences in responses to treatments between primary and metastatic samples of the same patient were detected in 50% of the zebrafish larvae assays.ConclusionsOur results show the potential of using personalized cancer treatment testing assays – specifically zebrafish xenografts that revealed promising results – in OSCC patient samples.  相似文献   

6.
Oral cancer is one of the leading cancers in South-Asian countries. Despite the easy access of the oral cavity, the detection and five year survival rates of OSCC patients are dismal. Identification of non-invasive biomarkers to determine the progression and recurrence of OSCC could be of immense help to patients. Recent studies on oral cancer suggest the importance of non-invasive biomarker development. Micro-RNAs (miRNAs) are one of the important components of the cell-free nucleic acids available in different body fluids. Here, we have reviewed the current understanding of circulating miRNAs as non-invasive biomarkers in different body fluids of oral cancer patients. A number of circulating miRNAs are found to be common in the body fluids of OSCC patients, while many of these are study specific, the possible sources of this variability could be due to differences in sample processing, assay procedure, clinical stage of the disease, oral habit and environmental factors. The prognostic and therapeutic significance of these circulating miRNAs are suggested by several studies. Mir-371, mir-150, mir-21 and mir-7d were found to be potential prognostic markers, while mir-134, mir-146a, mir-338 and mir-371 were associated with metastases. The prognostic markers, mir-21 and mir-7d were also found to be significantly correlated with resistance to chemotherapy, while mir-375, mir-196 and mir-125b were significantly correlated with sensitivity to radiotherapy. Despite the promising roles of circulating miRNAs, challenges still remain in unravelling the exact regulation of these miRNAs before using them for targeted therapy.  相似文献   

7.
PAPAS is a recently identified long noncoding RNA (lncRNA) with inhibitory effects on ribosomal RNA synthesis. We studied the role of PAPAS in oral squamous cell carcinoma (OSCC). In the present study we showed that plasma PAPAS and transforming growth factor β1 (TGF-β1) were both upregulated in patients with OSCC, and were positively correlated only in patients with OSCC. Plasma levels of PAPAS were not significantly affected by AJCC stages and upregulation of PAPAS distinguished stage I OSCC patients from healthy controls. High plasma levels of PAPAS were followed by low overall survival rate. PAPAS overexpression led to upregulation of TGF-β1 in OSCC cells, while TGF-β1 treatment failed to significantly affect PAPAS. PAPAS overexpression and exogenous TGF-β1 treatment led to promoted invasion and migration of OSCC cells. In addition, TGF-β inhibitor attenuated the effects of PAPAS overexpression. Therefore, lncRNA PAPAS may promote OSCC by upregulating TGF-β1.  相似文献   

8.
9.
10.
11.

Background

Oral squamous cell carcinoma (OSCC) is mainly caused by smoking and alcohol abuse and shows a five-year survival rate of ~50%. We aimed to explore the variation of somatic mitochondrial DNA (mtDNA) mutations in primary oral tumors, recurrences and metastases.

Methods

We performed an in-depth validation of mtDNA next-generation sequencing (NGS) on an Illumina HiSeq 2500 platform for its application to cancer tissues, with the goal to detect low-level heteroplasmies and to avoid artifacts. Therefore we genotyped the mitochondrial genome (16.6 kb) from 85 tissue samples (tumors, recurrences, resection edges, metastases and blood) collected from 28 prospectively recruited OSCC patients applying both Sanger sequencing and high-coverage NGS (~35,000 reads per base).

Results

We observed a strong correlation between Sanger sequencing and NGS in estimating the mixture ratio of heteroplasmies (r = 0.99; p<0.001). Non-synonymous heteroplasmic variants were enriched among cancerous tissues. The proportions of somatic and inherited variants in a given gene region were strongly correlated (r = 0.85; p<0.001). Half of the patients shared mutations between benign and cancerous tissue samples. Low level heteroplasmies (<10%) were more frequent in benign samples compared to tumor samples, where heteroplasmies >10% were predominant. Four out of six patients who developed a local tumor recurrence showed mutations in the recurrence that had also been observed in the primary tumor. Three out of five patients, who had tumor metastases in the lymph nodes of their necks, shared mtDNA mutations between primary tumors and lymph node metastases. The percentage of mutation heteroplasmy increased from the primary tumor to lymph node metastases.

Conclusions

We conclude that Sanger sequencing is valid for heteroplasmy quantification for heteroplasmies ≥10% and that NGS is capable of reliably detecting and quantifying heteroplasmies down to the 1%-level. The finding of shared mutations between primary tumors, recurrences and metastasis indicates a clonal origin of malignant cells in oral cancer.  相似文献   

12.
Oral squamous cell carcinoma (OSCC) is a usual oral cancer. Therefore, it's essential to identify targets for its early diagnosis and therapy. This research aimed to explore the roles of human β-defensin-3 (hBD-3) and nuclear factor-kappa B (NF-κB) p65 in the pathogenesis and progression of OSCC. The connection between NF-κB p65 and the carcinogenesis of oral cancer was analyzed by immunohistochemical staining. The relative expressions of hBD-3 and NF-κB p65 in OSCC cells were evaluated by qRT-PCR and Western blot. Afterward, hBD-3 was knocked down, and NF-κB p65 was overexpressed. The cell viability and invasion were tested via CCK-8 and Transwell experiment, and the expression of hBD-3, NF-κB p65, and its downstream molecules was evaluated by Western blot. The expression of NF-κB p65 was increased with the aggravation of the oral submucosal fibrosis. HBD-3 and NF-κB p65 were high-expressed in OSCC cells. The viability and invasion abilities of OSCC cells that knocked down hBD-3 were markedly decreased, while they were restored by the overexpression of NF-κB p65. The expressions of NF-κB p65 and c-myc were diminished while IκB and p21 were raised with the knockdown of hBD-3. After overexpression of NF-κB p65, the expression of hBD-3 and IκB did not change markedly, while c-myc was increased and p21 was decreased dramatically. HBD-3 and NF-κB p65 facilitate the proliferation and invasion of OSCC cells, and hBD-3 may promote this process by governing the expression of NF-κB p65 and its downstream c-myc and p21.  相似文献   

13.
《Translational oncology》2022,15(12):101236
Cancer-associated fibroblasts (CAFs) have important roles in promoting cancer development and progression. We previously reported that high expression of sex-determining region Y (SRY)-box9 (SOX9) in oral squamous cell carcinoma (OSCC) cells was positively correlated with poor prognosis. This study developed three-dimensional (3D) in vitro models co-cultured with OSCC cells and CAFs to examine CAF-mediated cancer migration and invasion in vitro and in vivo. Moreover, we performed an immunohistochemical analysis of alpha-smooth muscle actin and SOX9 expression in surgical specimens from 65 OSCC patients. The results indicated that CAFs promote cancer migration and invasion in migration assays and 3D in vitro models. The invading OSCC cells exhibited significant SOX9 expression and changes in the expression of epithelial–mesenchymal transition (EMT) markers, suggesting that SOX9 promotes EMT. TGF-β1 signalling inhibition reduced SOX9 expression and cancer invasion in vitro and in vivo, indicating that TGF-β1-mediated invasion is dependent on SOX9. In surgical specimens, the presence of CAFs was correlated with SOX9 expression in the invasive cancer nests and had a significant impact on regional recurrence. These findings demonstrate that CAFs promote cancer migration and invasion via the TGF-β/SOX9 axis.  相似文献   

14.
Cancer stem-like cell (CSC; also known as tumor initiating cell) is defined as a small subpopulation of cancer cells within a tumor and isolated from various primary tumors and cancer cell lines. CSCs are highly tumorigenic and resistant to anticancer treatments. In this study, we found that prolonged exposure to tumor necrosis factor alpha (TNFα), a major proinflammatory cytokine, enhances CSC phenotype of oral squamous cell carcinoma (OSCC) cells, such as an increase in tumor sphere-forming ability, stem cell-associated genes expression, chemo-radioresistance, and tumorigenicity. Moreover, activation of Notch1 signaling was detected in the TNFα-exposed cells, and suppression of Notch1 signaling inhibited CSC phenotype. Furthermore, we demonstrated that inhibition of a Notch downstream target, Hes1, led to suppression of CSC phenotype in the TNFα-exposed cells. We also found that Hes1 expression is commonly upregulated in OSCC lesions compared to precancerous dysplastic lesions, suggesting the possible involvement of Hes1 in OSCC progression and CSC in vivo. In conclusion, inflammatory cytokine exposure may enhance CSC phenotype of OSCC, in part by activating the Notch-Hes1 pathway.  相似文献   

15.
《Translational oncology》2021,14(12):101236
Cancer-associated fibroblasts (CAFs) have important roles in promoting cancer development and progression. We previously reported that high expression of sex-determining region Y (SRY)-box9 (SOX9) in oral squamous cell carcinoma (OSCC) cells was positively correlated with poor prognosis. This study developed three-dimensional (3D) in vitro models co-cultured with OSCC cells and CAFs to examine CAF-mediated cancer migration and invasion in vitro and in vivo. Moreover, we performed an immunohistochemical analysis of alpha-smooth muscle actin and SOX9 expression in surgical specimens from 65 OSCC patients. The results indicated that CAFs promote cancer migration and invasion in migration assays and 3D in vitro models. The invading OSCC cells exhibited significant SOX9 expression and changes in the expression of epithelial–mesenchymal transition (EMT) markers, suggesting that SOX9 promotes EMT. TGF-β1 signalling inhibition reduced SOX9 expression and cancer invasion in vitro and in vivo, indicating that TGF-β1-mediated invasion is dependent on SOX9. In surgical specimens, the presence of CAFs was correlated with SOX9 expression in the invasive cancer nests and had a significant impact on regional recurrence. These findings demonstrate that CAFs promote cancer migration and invasion via the TGF-β/SOX9 axis.  相似文献   

16.
Oral squamous cell carcinoma (OSCC), the most common pathological type of oral cancer, is still a frequent malignancy with unsatisfactory prognosis. Accumulating studies have proven some microRNAs (miRNAs) can function as oncogenes in OSCC by targeting tumor suppressors. In this study, we first investigated the expression and role of tumor suppressor bridging integrator-1 (BIN1) in OSCC tissues and cells. Our results indicated that BIN1 was low expressed in the OSCC tissues and cell lines (SCC6, SCC9, SCC25, HN4, and HN6) along with miR-211 was highly expressed in OSCC tissues and cell lines, and BIN1 overexpression could evidently inhibit their proliferation, migration, and invasion abilities. Next, we used bioinformation algorithms to predict the potential miRNA targeting BIN1 and chose miR-211 for further study. miR-211, a highly expressed miRNA in OSCC cells, could specifically bind with the 3′-untranslated region (3′-UTR) of BIN1 to trigger its degradation. Addition of miR-211 inhibitor could evidently suppress the malignant behaviors of OSCC cells by upregulating BIN1 expression and inhibit the activation of the EGFR/MAPK pathway. Taken together the findings of the study indicated that miR-211 mediated BIN1 downregulation had crucial significances in OSCC, suggesting the miR-211 might be a novel potential therapeutic target for the OSCC treatment.  相似文献   

17.
Autophagy is an evolutionally conserved catabolic process that degrades cells to maintain homeostasis. Cisplatin-activated autophagy promotes the expression of circ-PKD2, which plays a role as a tumor suppressor gene in the proliferation, migration, and invasion in oral squamous cell carcinoma (OSCC). However, the role of circ-PKD2 in regulating the sensitivity of OSCC patients to cisplatin remains to be elucidated. Overexpression of circ-PKD2 increased the formation of autophagosomes in OSCC cells and activation of proteins, such as LC3 II/I. Its activation effect on autophagy was, however, alleviated by 3-MA. Bioinformatics analyses and double luciferases reporter assays conducted in this study confirmed the existence of targeted relationships between circ-PKD2 and miR-646 and miR-646 and Atg13. Functional experiments further revealed that miR-646 reversed the autophagy and apoptosis effects of circ-PKD2 in OSCC cells treated with cisplatin. In addition, circ-PKD2 promoted the expression of ATG13 by adsorption of miR-646. Its interference with Atg13 alleviated the activation effects of circ-PKD2 on autophagy and apoptosis of miR-646. Notably, the in vivo animal experiments also confirmed that circ-PKD2 inhibited tumor proliferation and activated autophagy in OSCC cells. This study provides a theoretical basis for using circ-PKD2 as a target to regulate the sensitivity of OSCC patients to cisplatin, thus increasing its chemotherapeutic effects.Subject terms: Diagnostic markers, Oral cancer  相似文献   

18.
Oral squamous cell carcinoma (OSCC) is the 11th most common cancer worldwide, and is associated with a high death rate. At present, there are no suitable markers for detecting and/or monitoring OSCC in body fluids/tissues. Here, we used 1D SDS-PAGE and MALDI-TOF MS to systematically analyze the secretomes of two OSCC cell lines (OEC-M1 and SCC4). The putative OSCC-related proteins identified in this analysis included the Mac-2 binding protein (Mac-2 BP), which was further found to be overexpressed in OSCC specimens and significantly elevated in the sera of OSCC patients compared to healthy controls. Finally, RNA interference-based knock-down of Mac-2 BP expression in OSCC cells revealed for the first time that Mac-2 BP is involved in regulating growth and motility of OSCC cells.  相似文献   

19.
《Translational oncology》2020,13(10):100807
Lipid metabolic reprogramming is one hallmark of cancer. Lipid metabolism is regulated by numerous enzymes, many of which are targeted by several drugs on the market. We aimed to characterize the lipid alterations in oral squamous cell carcinoma (OSCC) as a basis for understanding its lipid metabolism, thus identifying potential therapeutic targets. We compared lipid species, classes, and glycerophospholipid (GPL) fatty acid species between paired tumor tissue and healthy oral tongue mucosa samples from 10 OSCC patients using a QExactive mass spectrometer. After filtering the 1370 lipid species identified, we analyzed 349 species: 71 were significantly increased in OSCC. The GPL metabolism pathway was most represented by the lipids differing in OSCC (P = .005). Cholesterol and the GPLs phosphatidylcholines, phosphatidylethanolamines, and phosphatidylinositols were most significantly increased in OSCC tissue (FC 1.8, 2.0, 2.1, and 2.3 and, P = .003, P = .005, P = .002, P = .007). In conclusion, we have demonstrated a shift in the lipid metabolism in these OSCC samples by characterizing the detailed landscape. Predominantly, cholesterol and GPL metabolism were altered, suggesting that interactions with sterol regulatory binding proteins may be involved. The FA composition changes of the GPLs suggest increased de novo lipogenesis.  相似文献   

20.
Cancer-associated fibroblasts (CAFs) have important roles in promoting cancer development and progression. We previously reported that high expression of sex-determining region Y (SRY)-box9 (SOX9) in oral squamous cell carcinoma (OSCC) cells was positively correlated with poor prognosis. This study developed three-dimensional (3D) in vitro models co-cultured with OSCC cells and CAFs to examine CAF-mediated cancer migration and invasion in vitro and in vivo. Moreover, we performed an immunohistochemical analysis of alpha-smooth muscle actin and SOX9 expression in surgical specimens from 65 OSCC patients. The results indicated that CAFs promote cancer migration and invasion in migration assays and 3D in vitro models. The invading OSCC cells exhibited significant SOX9 expression and changes in the expression of epithelial–mesenchymal transition (EMT) markers, suggesting that SOX9 promotes EMT. TGF-β1 signalling inhibition reduced SOX9 expression and cancer invasion in vitro and in vivo, indicating that TGF-β1-mediated invasion is dependent on SOX9. In surgical specimens, the presence of CAFs was correlated with SOX9 expression in the invasive cancer nests and had a significant impact on regional recurrence. These findings demonstrate that CAFs promote cancer migration and invasion via the TGF-β/SOX9 axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号