首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During protein synthesis, mRNA and tRNA are moved through the ribosome by the process of translocation. The small diameter of the mRNA entrance tunnel only permits unstructured mRNA to pass through. However, there are structured elements within mRNA that present a barrier for translocation that must be unwound. The ribosome has been shown to unwind RNA in the absence of additional factors, but the mechanism remains unclear. Here, we show using single molecule Förster resonance energy transfer and small angle X‐ray scattering experiments a new global conformational state of the ribosome. In the presence of the frameshift inducing dnaX hairpin, the ribosomal subunits are driven into a hyper‐rotated state and the L1 stalk is predominantly in an open conformation. This previously unobserved conformational state provides structural insight into the helicase activity of the ribosome and may have important implications for understanding the mechanism of reading frame maintenance.  相似文献   

2.
Aminoglycosides are widely used antibiotics that cause messenger RNA decoding errors, block mRNA and transfer RNA translocation, and inhibit ribosome recycling. Ribosome recycling follows the termination of protein synthesis and is aided by ribosome recycling factor (RRF) in bacteria. The molecular mechanism by which aminoglycosides inhibit ribosome recycling is unknown. Here we show in X-ray crystal structures of the Escherichia coli 70S ribosome that RRF binding causes RNA helix H69 of the large ribosomal subunit, which is crucial for subunit association, to swing away from the subunit interface. Aminoglycosides bind to H69 and completely restore the contacts between ribosomal subunits that are disrupted by RRF. These results provide a structural explanation for aminoglycoside inhibition of ribosome recycling.  相似文献   

3.
Translocation, the directional movement of transfer RNA (tRNA) and messenger RNA (mRNA) substrates on the ribosome during protein synthesis, is regulated by dynamic processes intrinsic to the translating particle. Using single-molecule fluorescence resonance energy transfer (smFRET) imaging, in combination with site-directed mutagenesis of the ribosome and tRNA substrates, we show that peptidyl-tRNA within the aminoacyl site of the bacterial pretranslocation complex can adopt distinct hybrid tRNA configurations resulting from uncoupled motions of the 3'-CCA terminus and the tRNA body. As expected for an on-path translocation intermediate, the hybrid configuration where both the 3'-CCA end and body of peptidyl-tRNA have moved in the direction of translocation exhibits dramatically enhanced puromycin reactivity, an increase in the rate at which EF-G engages the ribosome, and accelerated rates of translocation. These findings provide compelling evidence that the substrate for EF-G catalyzed translocation is an intermediate wherein the bodies of both tRNA substrates adopt hybrid positions within the translating ribosome.  相似文献   

4.
5.
6.
7.
Ribosome is a molecular machine that polymerizes a protein where the sequence of the amino acid residues, the monomers of the protein, is dictated by the sequence of codons (triplets of nucleotides) on a messenger RNA (mRNA) that serves as the template. The ribosome is a molecular motor that utilizes the template mRNA strand also as the track. Thus, in each step the ribosome moves forward by one codon and, simultaneously, elongates the protein by one amino acid. We present a theoretical model that captures most of the main steps in the mechanochemical cycle of a ribosome. The stochastic movement of the ribosome consists of an alternating sequence of pause and translocation; the sum of the durations of a pause and the following translocation is the time of dwell of the ribosome at the corresponding codon. We derive the analytical expression for the distribution of the dwell times of a ribosome in our model. Wherever experimental data are available, our theoretical predictions are consistent with those results. We suggest appropriate experiments to test the new predictions of our model, particularly the effects of the quality control mechanism of the ribosome and that of their crowding on the mRNA track.  相似文献   

8.
The behavior of ribosomes derived from EmtR X EmtS hybrid cells in in vitro protein synthesis is similar to that observed with a 1:1 mixture of ribosomes from EmtR and EmtS cells. When mRNA (BM virus RNA) is present in limiting amounts (RNA/ribosome molar ratio = 0.1), protein synthesis in either mixture is sensitive to emetine. In contrast, when mRNA is present in excess (RNA/ribosome molar ratio = 2), the emetine resistant as well as the sensitive components are both expressed in the mixtures. These results strongly indicate that emetine resistant and sensitive ribosomes are present in the hybrid cells in about equal amounts and that the dominance of emetine sensitivity is best explained by assuming that emetine acts by blocking ribosome movement along mRNA by inhibiting the translocation step. The observed time lag in the expression of EmtRI and EmtRII mutations following mutagenesis is consistent with the above hypothesis for the mechanism of action of emetine.  相似文献   

9.
Messenger RNAs lacking a stop codon trap ribosomes at their 3′ ends, depleting the pool of ribosomes available for protein synthesis. In bacteria, a remarkable quality control system rescues and recycles stalled ribosomes in a process known as trans-translation. Acting as a tRNA, transfer-messenger RNA (tmRNA) is aminoacylated, delivered by EF-Tu to the ribosomal A site, and accepts the nascent polypeptide. Translation then resumes on a reading frame within tmRNA, encoding a short peptide tag that targets the nascent peptide for degradation by proteases. One unsolved issue in trans-translation is how tmRNA and its protein partner SmpB preferentially recognize stalled ribosomes and not actively translating ones. Here, we examine the effect of the length of the 3′ extension of mRNA on each step of trans-translation by pre-steady-state kinetic methods and fluorescence polarization binding assays. Unexpectedly, EF-Tu activation and GTP hydrolysis occur rapidly regardless of the length of the mRNA, although the peptidyl transfer to tmRNA decreases as the mRNA 3′ extension increases and the tmRNA·SmpB binds less tightly to the ribosome with an mRNA having a long 3′ extension. From these results, we conclude that the tmRNA·SmpB complex dissociates during accommodation due to competition between the downstream mRNA and the C-terminal tail for the mRNA channel. Rejection of the tmRNA·SmpB complex during accommodation is reminiscent of the rejection of near-cognate tRNA from the ribosome in canonical translation.  相似文献   

10.
How aminoglycoside antibiotics limit bacterial growth and viability is not clearly understood. Here we employ fast kinetics to reveal the molecular mechanism of action of a clinically used, new-generation, semisynthetic aminoglycoside Arbekacin (ABK), which is designed to avoid enzyme-mediated deactivation common to other aminoglycosides. Our results portray complete picture of ABK inhibition of bacterial translation with precise quantitative characterizations. We find that ABK inhibits different steps of translation in nanomolar to micromolar concentrations by imparting pleotropic effects. ABK binding stalls elongating ribosomes to a state, which is unfavorable for EF-G binding. This prolongs individual translocation step from ∼50 ms to at least 2 s; the mean time of translocation increases inversely with EF-G concentration. ABK also inhibits translation termination by obstructing RF1/RF2 binding to the ribosome. Furthermore, ABK decreases accuracy of mRNA decoding (UUC vs. CUC) by ∼80 000 fold, causing aberrant protein production. Importantly, translocation and termination events cannot be completely stopped even with high ABK concentration. Extrapolating our kinetic model of ABK action, we postulate that aminoglycosides impose bacteriostatic effect mainly by inhibiting translocation, while they become bactericidal in combination with decoding errors.  相似文献   

11.
Inducing tRNA +1 frameshifting to read a quadruplet codon has the potential to incorporate a non-natural amino acid into the polypeptide chain. While this strategy is being considered for genome expansion in biotechnology and bioengineering endeavors, a major limitation is a lack of understanding of where the shift occurs in an elongation cycle of protein synthesis. Here, we use the high-efficiency +1-frameshifting SufB2 tRNA, containing an extra nucleotide in the anticodon loop, to address this question. Physical and kinetic measurements of the ribosome reading frame of SufB2 identify twice exploration of +1 frameshifting in one elongation cycle, with the major fraction making the shift during translocation from the aminoacyl-tRNA binding (A) site to the peptidyl-tRNA binding (P) site and the remaining fraction making the shift within the P site upon occupancy of the A site in the +1-frame. We demonstrate that the twice exploration of +1 frameshifting occurs during active protein synthesis and that each exploration is consistent with ribosomal conformational dynamics that permits changes of the reading frame. This work indicates that the ribosome itself is a determinant of changes of the reading frame and reveals a mechanistic parallel of +1 frameshifting with –1 frameshifting.  相似文献   

12.
Ribotoxins are potent inhibitors of protein biosynthesis and inactivate ribosomes from a variety of organisms. The ribotoxin α-sarcin cleaves the large 23S ribosomal RNA (rRNA) at the universally conserved sarcin–ricin loop (SRL) leading to complete inactivation of the ribosome and cellular death. The SRL interacts with translation factors that hydrolyze GTP, and it is important for their binding to the ribosome, but its precise role is not yet understood. We studied the effect of α-sarcin on defined steps of translation by the bacterial ribosome. α-Sarcin-treated ribosomes showed no defects in mRNA and tRNA binding, peptide-bond formation and sparsomycin-dependent translocation. Cleavage of SRL slightly affected binding of elongation factor Tu ternary complex (EF-Tu•GTP•tRNA) to the ribosome. In contrast, the activity of elongation factor G (EF-G) was strongly impaired in α-sarcin-treated ribosomes. Importantly, cleavage of SRL inhibited EF-G binding, and consequently GTP hydrolysis and mRNA–tRNA translocation. These results suggest that the SRL is more critical in EF-G than ternary complex binding to the ribosome implicating different requirements in this region of the ribosome during protein elongation.  相似文献   

13.
In eubacteria, translation of defective messenger RNAs (mRNAs) produces truncated polypeptides that stall on the ribosome. A quality control mechanism referred to as trans-translation is performed by transfer-messenger RNA (tmRNA), a specialized RNA acting as both a tRNA and an mRNA, associated with small protein B (SmpB). So far, a clear view of the structural movements of both the protein and RNA necessary to perform accommodation is still lacking. By using a construct containing the tRNA-like domain as well as the extended helix H2 of tmRNA, we present a cryo-electron microscopy study of the process of accommodation. The structure suggests how tmRNA and SmpB move into the ribosome decoding site after the release of EF-Tu·GDP. While two SmpB molecules are bound per ribosome in a preaccommodated state, our results show that during accommodation the SmpB protein interacting with the small subunit decoding site stays in place while the one interacting with the large subunit moves away. Relative to canonical translation, an additional movement is observed due to the rotation of H2. This suggests that the larger movement required to resume translation on a tmRNA internal open reading frame starts during accommodation.  相似文献   

14.
The translocation of tRNA coupled with mRNA in the ribosome is one of important steps during protein synthesis. Despite extensive experimental studies, the detailed mechanism of the translocation remains undetermined. Here, based on previous biochemical, cryo-electron microscopic and X-ray crystallographic studies, a thermal ratchet model is presented for this translocation. In the model, during one elongation cycle of the protein synthesis, two large conformational transitions of the ribosome are involved, with one being the relative rotation between the two ribosomal subunits following the peptide transfer, which is facilitated by the EF-G.GTP binding, and the other one being the reverse relative rotation between the two ribosomal subunits upon EF-G.GTP hydrolysis. The former conformational change plays an important role in ensuring the completion of the release of the deacylated tRNA from the ribosome before tRNA–mRNA translocation. The latter reverse conformational change upon GTP hydrolysis is followed by rapid tRNA–mRNA translocation and Pi release, both of which take place independently of each other. This is consistent with the previous biochemical experimental data. Also, the model is consistent with other available experimental results such as the suppression of EF-G-dependent translocation in cross-linked ribosomes and frameshifting under some conditions.  相似文献   

15.
The ribosome is a macromolecular assembly that is responsible for protein biosynthesis in all organisms. It is composed of two-subunit, ribonucleoprotein particles that translate the genetic material into an encoded polypeptides. The small subunit is the site of codon-anticodon interaction between the messenger RNA (mRNA) and transfer RNA (tRNA) substrates, and the large subunit catalyses peptide bond formation. The peptidyltransferase activity is fulfilled by 23S rRNA, which means that ribosome is a ribozyme. 5S rRNA is a conserved component of the large ribosomal subunit that is thought to enhance protein synthesis by stabilizing ribosome structure. This paper shortly summarises new results obtained on the structure and function of 5S rRNA.  相似文献   

16.
The nucleolus is a subnuclear membraneless compartment intimately involved in ribosomal RNA synthesis, ribosome biogenesis and stress response. Multiple optogenetic devices have been developed to manipulate nuclear protein import and export, but molecular tools tailored for remote control over selective targeting or partitioning of cargo proteins into subnuclear compartments capable of phase separation are still limited. Here, we report a set of single-component photoinducible nucleolus-targeting tools, designated pNUTs, to enable rapid and reversible nucleoplasm-to-nucleolus shuttling, with the half-lives ranging from milliseconds to minutes. pNUTs allow both global protein infiltration into nucleoli and local delivery of cargoes into the outermost layer of the nucleolus, the granular component. When coupled with the amyotrophic lateral sclerosis (ALS)-associated C9ORF72 proline/arginine-rich dipeptide repeats, pNUTs allow us to photomanipulate poly-proline–arginine nucleolar localization, perturb nucleolar protein nucleophosmin 1 and suppress nascent protein synthesis. pNUTs thus expand the optogenetic toolbox by permitting light-controllable interrogation of nucleolar functions and precise induction of ALS-associated toxicity in cellular models.  相似文献   

17.
In efforts to clarify the role of the nucleolus and substructures thereof in the assembly or synthesis of protein associated with formation of the complete ribosome, the effect of variation of some conditions of aldehyde fixation on the intranuclear distribution of lysine-3H, arginine-3H, and uridine-3H was studied by differential grain count in radioautographs of PPLO-free HeLa cells. It was found that the nucleolus is a site of rapid assembly or synthesis of a protein, the synthesis of which is inhibited equally by puromycin (200 µg/ml) and by actinomycin D under conditions inhibitory for ribosomal precursor RNA synthesis (P < 0.01). This protein is fixed by phosphate-buffered formalin or glutaraldehyde at pH 7.3, but the label is diminished by fixation in customarily employed acetic ethanol or in formalin at acid pH. Elevation of temperature of formalin or glutaraldehyde fixatives to 37°C consistently reduces the nucleolar protein label, but not the RNA label, by a proportion identical with that incurred by puromycin or actinomycin inhibition. This proportional reduction of nucleolar protein label occurs without evident loss of total grain count and is independent of length of fixation between 30 min and 4 hr, but it is not observed at 23°C. The data support the interpretation that the proportion of nucleolar protein not fixed at 37°C is associated with nucleolar ribosomal RNA but that it is dissociated at 37°C in formalin or glutaraldehyde fixatives, probably on the basis of ionic dissociation of a conjugated ribonucleoprotein.  相似文献   

18.
19.
1. The optical rotatory dispersion and ultraviolet-absorption spectrum of ribosomal RNA in situ appear to be unchanged when the ribosome is dissociated into its RNA and protein moieties. 2. Reaction with 0·05% formaldehyde at 20° for 2hr. `fixes' ribosomes so that they remain intact in 1% sodium dodecyl sulphate. 3. The RNA moiety of the ribosome undergoes a conformational change when ribosomes in 8% formaldehyde are heated at 70° for 10min. and cooled to 20°. After this treatment no double-helical character can be detected, but neither the sedimentation coefficient nor the morphology of the ribosome determined by electron microscopy is altered. 4. It is concluded that the RNA moiety of reticulocyte ribosomes is freely accessible to formaldehyde.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号