共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Meng Zhang Yi Liu Junyi Chen Lei Chen Jialin Meng Cheng Yang Shuiping Yin Xiansheng Zhang Li Zhang Zongyao Hao Xianguo Chen Chaozhao Liang 《Journal of cellular and molecular medicine》2020,24(23):14099
Cumulative evidence suggests that abnormal differentiation of T lymphocytes influences the pathogenesis of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). Thus, understanding the immune activation landscape of CP/CPPS would be helpful for improving therapeutic strategies. Here, we utilized BD™ AbSeq to digitally quantify both the protein and mRNA expression levels in single peripheral blood T cells from two CP/CPPS patients and two healthy controls. We utilized an integrated strategy based on canonical correlation analysis of 10 000+ AbSeq profiles and identified fifteen unique T‐cell subpopulations. Notably, we found that the proportion of cluster 0 in the CP/CPPS group (30.35%) was significantly increased compared with the proportion in the healthy control group (9.38%); cluster 0 was defined as effector T cells based on differentially expressed genes/proteins. Flow cytometry assays confirmed that the proportions of effector T‐cell subpopulations, particularly central memory T cells, T helper (Th)1, Th17 and Th22 cells, in the peripheral blood mononuclear cell populations of patients with CP/CPPS were significantly increased compared with those of healthy controls (P < 0.05), further confirming that aberration of effector T cells possibly leads to or intensifies CP/CPPS. Our results provide novel insights into the underlying mechanisms of CP/CPPS, which will be beneficial for its treatment. 相似文献
3.
YanMei Chen Yuanting Zheng Ying Yu Yunzhi Wang Qingxia Huang Feng Qian Lei Sun ZhiGang Song Ziyin Chen Jinwen Feng Yanpeng An Jingcheng Yang Zhenqiang Su Shanyue Sun Fahui Dai Qinsheng Chen Qinwei Lu Pengcheng Li Yun Ling Zhong Yang Huiru Tang Leming Shi Li Jin Edward C Holmes Chen Ding TongYu Zhu YongZhen Zhang 《The EMBO journal》2020,39(24)
4.
Yongxiang Zhang Jingkai Wang Chao Yu Kaishun Xia Biao Yang Yuang Zhang Liwei Ying Chenggui Wang Xianpeng Huang Qixin Chen Li Shen Fangcai Li Chengzhen Liang 《Cell proliferation》2022,55(1)
In recent years, single‐cell sequencing (SCS) technologies have continued to advance with improved operating procedures and reduced cost, leading to increasing practical adoption among researchers. These emerging technologies have superior abilities to analyse cell heterogeneity at a single‐cell level, which have elevated multi‐omics research to a higher level. In some fields of research, application of SCS has enabled many valuable discoveries, and musculoskeletal system offers typical examples. This article reviews some major scientific issues and recent advances in musculoskeletal system. In addition, combined with SCS technologies, the research of cell or tissue heterogeneity in limb development and various musculoskeletal system clinical diseases also provides new possibilities for treatment strategies. Finally, this article discusses the challenges and future development potential of SCS and recommends the direction of future applications of SCS to musculoskeletal medicine. 相似文献
5.
6.
Kai Mi Fuhui Chen Zhipeng Qian Jing Chen Dongxu Lv Chunlong Zhang Yanjun Xu Hongguang Wang Yuepeng Zhang Yanan Jiang Desi Shang 《Journal of cellular and molecular medicine》2020,24(24):14608
Growing evidence has highlighted the immune response as an important feature of carcinogenesis and therapeutic efficacy in non‐small cell lung cancer (NSCLC). This study focused on the characterization of immune infiltration profiling in patients with NSCLC and its correlation with survival outcome. All TCGA samples were divided into three heterogeneous clusters based on immune cell profiles: cluster 1 (''low infiltration'' cluster), cluster 2 (''heterogeneous infiltration'' cluster) and cluster 3 (''high infiltration'' cluster). The immune cells were responsible for a significantly favourable prognosis for the ''high infiltration'' community. Cluster 1 had the lowest cytotoxic activity, tumour‐infiltrating lymphocytes and interferon‐gamma (IFN‐γ), as well as immune checkpoint molecules expressions. In addition, MHC‐I and immune co‐stimulator were also found to have lower cluster 1 expressions, indicating a possible immune escape mechanism. A total of 43 differentially expressed genes (DEGs) that overlapped among the groups were determined based on three clusters. Finally, based on a univariate Cox regression model, prognostic immune‐related genes were identified and combined to construct a risk score model able to predict overall survival (OS) rates in the validation datasets. 相似文献
7.
Alok Jaiswal Prson Gautam Elina A Pietil Sanna Timonen Nora Nordstrm Yevhen Akimov Nina Sipari Ziaurrehman Tanoli Thomas Fleischer Kaisa Lehti Krister Wennerberg Tero Aittokallio 《Molecular systems biology》2021,17(3)
Molecular and functional profiling of cancer cell lines is subject to laboratory‐specific experimental practices and data analysis protocols. The current challenge therefore is how to make an integrated use of the omics profiles of cancer cell lines for reliable biological discoveries. Here, we carried out a systematic analysis of nine types of data modalities using meta‐analysis of 53 omics studies across 12 research laboratories for 2,018 cell lines. To account for a relatively low consistency observed for certain data modalities, we developed a robust data integration approach that identifies reproducible signals shared among multiple data modalities and studies. We demonstrated the power of the integrative analyses by identifying a novel driver gene, ECHDC1, with tumor suppressive role validated both in breast cancer cells and patient tumors. The multi‐modal meta‐analysis approach also identified synthetic lethal partners of cancer drivers, including a co‐dependency of PTEN deficient endometrial cancer cells on RNA helicases. 相似文献
8.
Aurelien Dugourd Christoph Kuppe Marco Sciacovelli Enio Gjerga Attila Gabor Kristina B. Emdal Vitor Vieira Dorte B. BekkerJensen Jennifer Kranz Eric.M.J. Bindels Ana S.H. Costa Abel Sousa Pedro Beltrao Miguel Rocha Jesper V. Olsen Christian Frezza Rafael Kramann Julio SaezRodriguez 《Molecular systems biology》2021,17(1)
9.
Dimitrios Konstantinidis Filipa Pereira EvaMaria Geissen Kristina Grkovska Eleni Kafkia Paula Jouhten Yongkyu Kim Saravanan Devendran Michael Zimmermann Kiran Raosaheb Patil 《Molecular systems biology》2021,17(8)
Adaptive laboratory evolution has proven highly effective for obtaining microorganisms with enhanced capabilities. Yet, this method is inherently restricted to the traits that are positively linked to cell fitness, such as nutrient utilization. Here, we introduce coevolution of obligatory mutualistic communities for improving secretion of fitness‐costly metabolites through natural selection. In this strategy, metabolic cross‐feeding connects secretion of the target metabolite, despite its cost to the secretor, to the survival and proliferation of the entire community. We thus co‐evolved wild‐type lactic acid bacteria and engineered auxotrophic Saccharomyces cerevisiae in a synthetic growth medium leading to bacterial isolates with enhanced secretion of two B‐group vitamins, viz., riboflavin and folate. The increased production was specific to the targeted vitamin, and evident also in milk, a more complex nutrient environment that naturally contains vitamins. Genomic, proteomic and metabolomic analyses of the evolved lactic acid bacteria, in combination with flux balance analysis, showed altered metabolic regulation towards increased supply of the vitamin precursors. Together, our findings demonstrate how microbial metabolism adapts to mutualistic lifestyle through enhanced metabolite exchange. 相似文献
10.
Necroptosis is a programmed necrosis in a caspase‐independent fashion. The role of necroptosis‐related genes (NRGs) in lung cancer remains unknow. Herein, we classified TCGA‐LUAD cohort into two necroptosis‐related subtypes (C1 and C2) by consensus clustering analysis. The result showed that subtype C1 had a favourable prognosis and higher infiltration levels of immune cells. Moreover, subtype C1 was more activated in immune‐associated pathways. Then, we established an NRG prognosis model (NRG score) composed of six NRGs (RIPK3, MLKL, TLR2, TLR4, TNFRSF1A, NDRG2) and divided the cohort into low‐ and high‐risk group. We found that the NRG score was associated with prognosis, tumour immune microenvironment and tumour mutation burden. We also constructed an accurate nomogram model to improve the clinical applicability of NRG score. The result indicated that NRG score may be an independent prognostic marker for lung cancer patients. Taken together, we established a prognosis model that may deepen the understanding of NRGs in lung cancer and provide a basis for developing more effective immunotherapy strategies. 相似文献
11.
Growing evidence has shown that Transmembrane Serine Protease 2 (TMPRSS2) not only contributes to the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection, but is also closely associated with the incidence and progression of tumours. However, the correlation of coronavirus disease (COVID‐19) and cancers, and the prognostic value and molecular function of TMPRSS2 in various cancers have not been fully understood. In this study, the expression, genetic variations, correlated genes, immune infiltration and prognostic value of TMPRSS2 were analysed in many cancers using different bioinformatics platforms. The observed findings revealed that the expression of TMPRSS2 was considerably decreased in many tumour tissues. In the prognostic analysis, the expression of TMPRSS2 was considerably linked with the clinical consequences of the brain, blood, colorectal, breast, ovarian, lung and soft tissue cancer. In protein network analysis, we determined 27 proteins as protein partners of TMPRSS2, which can regulate the progression and prognosis of cancer mediated by TMPRSS2. Besides, a high level of TMPRSS2 was linked with immune cell infiltration in various cancers. Furthermore, according to the pathway analysis of differently expressed genes (DEGs) with TMPRSS2 in lung, breast, ovarian and colorectal cancer, 160 DEGs genes were found and were significantly enriched in respiratory system infection and tumour progression pathways. In conclusion, the findings of this study demonstrate that TMPRSS2 may be an effective biomarker and therapeutic target in various cancers in humans, and may also provide new directions for specific tumour patients to prevent SARS‐CoV‐2 infection during the COVID‐19 outbreak. 相似文献
12.
Ran Wang Zhikang Chen Yi Zhang Shihan Xiao Wuming Zhang Xianqin Hu Qun Xiao Qing Liu Xiangyu Wang 《Journal of cellular and molecular medicine》2023,27(3):392
Flotillin‐1(FLOT1) has long been recognized as a tumour‐promoting gene in several types of cancer. However, the expression and function of FLOT1 in glioblastomas (GBM) has not been elucidated. Here, in this study, we find that the expression level of FLOT1 in GBM tissue was much higher than that in normal brain, and the expression was even higher in the more aggressive subtypes and IDH status of glioma. Kaplan–Meier survival revealed that high FLOT1 expression is closely associated with poor outcome in GBM patients. FLOT1 knockdown markedly reduced the proliferation, migration and invasiveness of GBM cells, while FLOT1 overexpression significantly increases GBM cell proliferation, migration and invasiveness. Mechanistically, FLOT1 expression may play a potential role in the microenvironment of GBM. Therefore, FLOT1 promotes GBM proliferation and invasion in vitro and in vivo and may serve as a biomarker of prognosis and therapeutic potential in the fight against GBM. 相似文献
13.
Jos R. Jaramillo Ponce Anne ThobaldDietrich Philippe Bnas Caroline Paulus Claude Sauter Magali Frugier 《Protein science : a publication of the Protein Society》2023,32(2)
tRip is a tRNA import protein specific to Plasmodium, the causative agent of malaria. In addition to its membrane localization and tRNA trafficking properties, tRip has the capacity to associate with three aminoacyl‐tRNA synthetases (aaRS), the glutamyl‐ (ERS), glutaminyl‐ (QRS), and methionyl‐ (MRS) tRNA synthetases. In eukaryotes, such multi‐aaRSs complexes (MSC) regulate the moonlighting activities of aaRSs. In Plasmodium, tRip and the three aaRSs all contain an N‐terminal GST‐like domain involved in the assembly of two independent complexes: the Q‐complex (tRip:ERS:QRS) and the M‐complex (tRip:ERS:MRS) with a 2:2:2 stoichiometry and in which the association of the GST‐like domains of tRip and ERS (tRip‐N:ERS‐N) is central. In this study, the crystal structure of the N‐terminal GST‐like domain of ERS was solved and made possible further investigation of the solution architecture of the Q‐ and M‐complexes by small‐angle x‐ray scattering (SAXS). This strategy relied on the engineering of a tRip‐N‐ERS‐N chimeric protein to study the structural scaffold of both Plasmodium MSCs and confirm the unique homodimerization pattern of tRip in solution. The biological impact of these structural arrangements is discussed. 相似文献
14.
Hypertension (high blood pressure) is a major risk factor for cardiovascular disease, which is the leading cause of death worldwide. The somatic isoform of angiotensin I‐converting enzyme (sACE) plays a critical role in blood pressure regulation, and ACE inhibitors are thus widely used to treat hypertension and cardiovascular disease. Our current understanding of sACE structure, dynamics, function, and inhibition has been limited because truncated, minimally glycosylated forms of sACE are typically used for X‐ray crystallography and molecular dynamics simulations. Here, we report the first cryo‐EM structures of full‐length, glycosylated, soluble sACE (sACES1211). Both monomeric and dimeric forms of the highly flexible apo enzyme were reconstructed from a single dataset. The N‐ and C‐terminal domains of monomeric sACES1211 were resolved at 3.7 and 4.1 Å, respectively, while the interacting N‐terminal domains responsible for dimer formation were resolved at 3.8 Å. Mechanisms are proposed for intradomain hinging, cooperativity, and homodimerization. Furthermore, the observation that both domains were in the open conformation has implications for the design of sACE modulators. 相似文献
15.
16.
17.
Shihui Wang Huizhi Zhao Huan Zhang Chengjie Gao Xinhua Guo Lixiang Chen Cheryl Lobo Karina Yazdanbakhsh Shijie Zhang Xiuli An 《Journal of cellular and molecular medicine》2022,26(8):2404
Red blood cells (RBCs) generated ex vivo have the potential to be used for transfusion. Human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) possess unlimited self‐renewal capacity and are the preferred cell sources to be used for ex vivo RBC generation. However, their applications are hindered by the facts that the expansion of ES/iPS‐derived erythroid cells is limited and the enucleation of ES/iPS‐derived erythroblasts is low compared to that derived from cord blood (CB) or peripheral blood (PB). To address this, we sought to investigate the underlying mechanisms by comparing the in vitro erythropoiesis profiles of CB CD34+ and ES CD34+ cells. We found that the limited expansion of ES CD34+ cell‐derived erythroid cells was associated with defective cell cycle of erythroid progenitors. In exploring the cellular and molecular mechanisms for the impaired enucleation of ES CD34+ cell‐derived orthochromatic erythroblasts (ES‐ortho), we found the chromatin of ES‐ortho was less condensed than that of CB CD34+ cell‐derived orthochromatic erythroblasts (CB‐ortho). At the molecular level, both RNA‐seq and ATAC‐seq analyses revealed that pathways involved in chromatin modification were down‐regulated in ES‐ortho. Additionally, the expression levels of molecules known to play important role in chromatin condensation or/and enucleation were significantly lower in ES‐ortho compared to that in CB‐ortho. Together, our findings have uncovered mechanisms for the limited expansion and impaired enucleation of ES CD34+ cell‐derived erythroid cells and may help to improve ex vivo RBC production from stem cells. 相似文献
18.
19.
Low frequency of durable responses in patients treated with immune checkpoint inhibitors (ICIs) demands for taking complementary strategies in order to boost immune responses against cancer. Transforming growth factor‐β (TGF‐β) is a multi‐tasking cytokine that is frequently expressed in tumours and acts as a critical promoter of tumour hallmarks. TGF‐β promotes an immunosuppressive tumour microenvironment (TME) and defines a bypass mechanism to the ICI therapy. A number of cells within the stroma of tumour are influenced from TGF‐β activity. There is also evidence of a relation between TGF‐β with programmed death‐ligand 1 (PD‐L1) expression within TME, and it influences the efficacy of anti‐programmed death‐1 receptor (PD‐1) or anti‐PD‐L1 therapy. Combination of TGF‐β inhibitors with anti‐PD(L)1 has come to the promising outcomes, and clinical trials are under way in order to use agents with bifunctional capacity and fusion proteins for bonding TGF‐β traps with anti‐PD‐L1 antibodies aiming at reinvigorating immune responses and promoting persistent responses against advanced stage cancers, especially tumours with immunologically cold ecosystem. 相似文献
20.
Zhen Chen Chao Wang Xu Feng Litong Nie Mengfan Tang Huimin Zhang Yun Xiong Samuel K Swisher Mrinal Srivastava Junjie Chen 《The EMBO journal》2021,40(17)
Host–virus protein–protein interactions play key roles in the life cycle of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). We conducted a comprehensive interactome study between the virus and host cells using tandem affinity purification and proximity‐labeling strategies and identified 437 human proteins as the high‐confidence interacting proteins. Further characterization of these interactions and comparison to other large‐scale study of cellular responses to SARS‐CoV‐2 infection elucidated how distinct SARS‐CoV‐2 viral proteins participate in its life cycle. With these data mining, we discovered potential drug targets for the treatment of COVID‐19. The interactomes of two key SARS‐CoV‐2‐encoded viral proteins, NSP1 and N, were compared with the interactomes of their counterparts in other human coronaviruses. These comparisons not only revealed common host pathways these viruses manipulate for their survival, but also showed divergent protein–protein interactions that may explain differences in disease pathology. This comprehensive interactome of SARS‐CoV‐2 provides valuable resources for the understanding and treating of this disease. 相似文献