首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundBovine tuberculosis (bTB), caused by members of the Mycobacterium tuberculosis complex bacteria, mainly Mycobacterium bovis (M. bovis), is a major threat to public health and economic development. There has been no systematic epidemiological assessment concerning bTB in dairy cattle in China.Methodology/principal findingsLiterature related to bTB in China was retrieved from China National Knowledge Infrastructure (CNKI), PubMed, ScienceDirect, VIP Chinese Journals Database, and Wan Fang Database to build the first meta-analysis for estimating the prevalence and infection moderators of bTB in dairy cattle in China. A total of 100 relevant studies published from 2010 to 2019 were included. We estimated the overall prevalence of bTB was 2.4% (95% CI: 2.1–2.8) during this decade. In the sampling year subgroup, the prevalence was lowest in 2017 or later at 0.8% (95% CI: 0.3–1.5). The lowest prevalence was 0.7% (95% CI: 0.5–1.0) in Northwestern China. The lowest prevalence was 2.1% (95% CI: 1.8–2.5) using SIT test. Heifer cows had the highest prevalence, which was 27.1% (95% CI: 9.7–49.2). The prevalence in scale farming was 3.7% (95% CI: 3.1–4.3), significantly higher than that in free-range farming (1.7%, 95% CI: 1.1–2.4). The prevalence of bTB was highest in summer at 4.0% (95% CI: 1.7–7.0). In addition, the influence of different geographical factors (altitude, longitude, latitude, precipitation, temperature, humidity) on the prevalence was analyzed.Conclusions/significanceThe results showed that bTB was widespread in China but has been gradually reduced through concerted national intervention. It is suggested that different countries should formulate corresponding prevention and control measures according to the epidemic situation in its cattle industry. Enhanced monitoring of warm and humid areas may play an important role in reducing the incidence of bTB. In addition, when large-scale breeding is promoted, attention should be paid to standardizing breeding management and improving animal welfare to reduce the prevalence of bTB in cattle.  相似文献   

2.
Mycobacterium tuberculosis complex (MTBC) comprises closely related species responsible for human and animal tuberculosis (TB). Efficient species determination is useful for epidemiological purposes, especially for the elucidation of the zoonotic contribution. In Algeria, data on MTBC genotypes are largely unknown. In this study, we aimed to investigate the occurrence and diversity of MTBC genotypes causing human and bovine TB in Northern Algeria. During a two-year sampling period (2017–2019) in two regions of Northern Algeria, we observed an overall prevalence of 6.5% of tuberculosis (TB) among slaughtered cattle, which is higher than previous Algerian data yet comparable to neighboring countries. A total of 296 Mycobacterium tuberculosis complex (MTBC) isolates were genotyped by spoligotyping: 181 from tissues with TB-like lesions collected from 181 cattle carcasses and 115 from TB patients. In human isolates, we identified 107 M. tuberculosis, seven M. bovis and one “M. pinnipedii-like”, while for bovine samples, 174 isolates were identified as M. bovis, three as M. caprae, three as “M. pinnipedii-like” and one as “M. microti-like”. The majority of isolates (89.2%) belonged to 72 different known Shared International Types (SIT) or M. bovis spoligotypes (SB), while we also identified seven new SB profiles (SB2695 to SB2701). Twenty-eight of the SB profiles were new to Algeria. Our data suggest zoonotic transmission in Sétif, where significantly more TB was observed among cattle (20%) compared to the slaughterhouses from the three other regions (5.4%–7.3%) (p < 0.0001), with the isolation of the same M. bovis genotypes from TB patients. The present study showed a high genetic diversity of MTBC isolated from human and cattle in Northern Algeria. Even though relatively small in terms of numbers, our data suggest the zoonotic transmission of TB from cattle to humans, suggesting the need for stronger eradication strategies for bovine TB.  相似文献   

3.
In France, several surveillance programmes have been carried out to monitor the presence of bovine tuberculosis (bTB) in badgers in regions where cattle or wildlife show high bTB prevalence (Seine-Maritime, Côte d’Or, Dordogne/Charente). Diagnostic methods include post-mortem examination, polymerase chain reaction (PCR) and/or microbiological culture. The frequency of visible lesions was significantly higher in Dordogne/Charente (14/283, 4.9 %) than in Côte d’Or (19/1146, 1.7 %) and Seine-Maritime (2/160, 1.25 %) (Fisher’s exact test, p?<?0.001). Lesions were mainly located in cephalic and thoracic lymph nodes with one badger showing generalised tuberculosis. Near infected cattle farms or pastures, Mycobacterium bovis was detected using the culture method in roughly 1 % (1/103) of the badgers sampled in Seine-Maritime and in 5.6 % (49/878) of the badgers sampled in Côte d’Or. In Dordogne/Charente, the prevalence determined by PCR was 13.3 % (29/218). M. bovis was not found in badgers trapped in areas where there are no infected cattle. Spoligotyping and multiple locus variable number tandem repeat analysis showed that all M. bovis strains isolated from badgers were of the same genotype as those isolated from cattle in the vicinity, demonstrating an epidemiological link between both species. These are the first cases of bTB in badgers reported in France. Further surveys and research are needed to investigate the role badgers play in the epidemiology of bTB.  相似文献   

4.
The incidence of bovine tuberculosis (bTB) in the GB has been increasing since the 1980s. Immunisation, alongside current control measures, has been proposed as a sustainable measure to control bTB. Immunisation with Mycobacterium bovis bacillus Calmette-Guerin (BCG) has been shown to protect against bTB. Furthermore, much experimental data indicates that pulmonary local immunity is important for protection against respiratory infections including Mycobacterium tuberculosis and that pulmonary immunisation is highly effective. Here, we evaluated protection against M. bovis, the main causative agent of bTB, conferred by BCG delivered subcutaneously, endobronchially or by the new strategy of simultaneous immunisation by both routes. We also tested simultaneous subcutaneous immunisation with BCG and endobronchial delivery of a recombinant type 5 adenovirus expressing mycobacterial antigen 85A. There was significantly reduced visible pathology in animals receiving the simultaneous BCG/BCG or BCG/Ad85 treatment compared to naïve controls. Furthermore, there were significantly fewer advanced microscopic granulomata in animals receiving BCG/Ad85A compared to naive controls. Thus, combining local and systemic immunisation limits the development of pathology, which in turn could decrease bTB transmission.  相似文献   

5.
Background Mycobacterium tuberculosis causes the majority of tuberculosis (TB) cases in humans; however, in developing countries, human TB caused by M. bovis may be frequent but undetected. Human TB caused by M. bovis is considered a zoonosis; transmission is mainly through consumption of unpasteurized dairy products, and it is less frequently attributed to animal-to-human or human-to-human contact. We describe the trends of M. bovis isolation from human samples and first-line drug susceptibility during a 15-year period in a referral laboratory located in a tertiary care hospital in Mexico City.Conclusions/SignificanceThere is a high prevalence and a rising trend of M. bovis isolates in our region. The proportion of pulmonary M. bovis isolates is higher than in previous reports. Additionally, we report high rates of primary anti-tuberculosis resistance and secondary MDR in both M. tuberculosis and M. bovis. This is one of the largest reports on drug susceptibility of M. bovis from human samples and shows a significant proportion of first-line anti-tuberculosis drug resistance.  相似文献   

6.
ObjectiveWe conducted an abattoir-based cross-sectional study in the five administrative regions of Northern Ghana to determine the distribution of bovine tuberculosis (BTB) among slaughtered carcasses and identify the possibility of zoonotic transmission.MethodsDirect smear microscopy was done on 438 tuberculosis-like lesions from selected cattle organs and cultured on Lowenstein-Jensen media. Acid-fast bacilli (AFB) isolates were confirmed as members of the Mycobacterium tuberculosis complex (MTBC) by PCR amplification of IS6110 and rpoß. Characterization and assignment into MTBC lineage and sub-lineage were done by spoligotyping, with the aid of the SITVIT2, miruvntrplus and mbovis.org databases. Spoligotype data was compared to that of clinical M. bovis isolates from the same regions to identify similarities.ResultsA total of 319/438 (72.8%) lesion homogenates were smear positive out of which, 84.6% (270/319) had microscopic grade of at least 1+ for AFB. Two hundred and sixty-five samples (265/438; 60.5%) were culture positive, of which 212 (80.0%) were MTBC. Approximately 16.7% (34/203) of the isolates with correctly defined spoligotypes were negative for IS6110 PCR but were confirmed by rpoß. Spoligotyping characterized 203 isolates as M. bovis (198, 97.5%), M. caprae (3, 1.5%), M. tuberculosis (Mtbss) lineage (L) 4 Cameroon sub-lineage, (1, 0.5%), and M. africanum (Maf) L6 (1, 0.5%). A total of 53 unique spoligotype patterns were identified across the five administrative regions (33 and 28 were identified as orphan respectively by the SITVIT2 and mbovis.org databases), with the most dominant spoligotype being SIT1037/ SB0944 (77/203, 37.93%). Analysis of the bovine and human M. bovis isolates showed 75% (3/4) human M. bovis isolates sharing the same spoligotype pattern with the bovine isolates.ConclusionOur study identified that approximately 29% of M. bovis strains causing BTB in Northern Ghana are caused by uncharacterized spoligotypes. Our findings suggest possible zoonotic transmission and highlight the need for BTB disease control in Northern Ghana.  相似文献   

7.

Background

Bovine tuberculosis, bTB, is classified by the WHO as one of the seven neglected zoonontic diseases that cause animal health problems and has high potential to infect humans. In the West Bank, bTB was not studied among animals and the prevalence of human tuberculosis caused by M. bovis is unknown. Therefore, the aim of this study was to estimate the prevalence of bTB among cattle and goats and identify the molecular characteristics of bTB in our area.

Methodology/principal findings

A total of 208 tissue samples, representing 104 animals, and 150 raw milk samples, obtained from cows and goats were examined for the presence of mycobacteria. The tissue samples were collected during routine meat inspection from the Jericho abattoir. DNA was extracted from all samples, milk and tissue biopsies (n = 358), and screened for presence of TB DNA by amplifying a 123-bp segment of the insertion sequence IS6110. Eight out of 254 animals (3.1%) were found to be TB positive based on the IS6110-PCR. Identification of M. bovis among the positive TB samples was carried out via real time PCR followed by high resolution melt curve analysis, targeting the A/G transition along the oxyR gene. Spoligotyping analysis revealed a new genotype of M. bovis that was revealed from one tissue sample.

Significance

Detection of M. bovis in tissue and milk of livestock suggests that apparently healthy cattle and goats are a potential source of infection of bTB and may pose a risk to public health. Hence, appropriate measures including meat inspection at abattoirs in the region are required together with promotion of a health campaign emphasizing the importance of drinking pasteurized milk. In addition, further studies are essential at the farm level to determine the exact prevalence of bTB in goats and cattle herds in the West Bank and Israel.  相似文献   

8.
Mycobacterium bovis and Mycobacterium tuberculosis infect both animals and humans. The disease epidemiology by these agents differs in developed and developing countries due to the differences in the implementation of the prevention and control strategies. The present study describes the detection of M. bovis and M. tuberculosis from specimens of lungs and pulmonary lymph nodes of four cattle died in an organized herd of 183 cattle in the state of Himachal Pradesh, India, with inconclusive skin test results. Identification and distinction of these closely related mycobacterial species was done by PCR-RFLP targeting hsp65 gene followed by spacer oligonucleotide typing. Mixed infection of M. bovis and M. tuberculosis was detected in one cattle.  相似文献   

9.
Bovine tuberculosis (TB) caused by Mycobacterium bovis is a significant health threat to cattle and a zoonotic threat for humans in many developing countries. Rapid and accurate detection of M. bovis is fundamental for controlling the disease in animals and humans, and for the proper treatment of patients as one of the first-line anti-TB drug, pyrazinamide, is ineffective against M. bovis. Currently, there are no rapid, simplified and low-cost diagnostic methods that can be easily integrated for use in many developing countries. Here, we report the development of a loop-mediated isothermal amplification (LAMP) assay for specific identification of M. bovis by targeting the region of difference 4 (RD4), a 12.7 kb genomic region that is deleted solely in M. bovis. The assay''s specificity was evaluated using 139 isolates comprising 65 M. bovis isolates, 40 M. tuberculosis isolates, seven M. tuberculosis complex reference strains, 22 non-tuberculous mycobacteria and five other bacteria. The established LAMP detected only M. bovis isolates as positive and no false positives were observed using the other mycobacteria and non-mycobacteria tested. Our LAMP assay detected as low as 10 copies of M. bovis genomic DNA within 40 minutes. The procedure of LAMP is simple with an incubation at a constant temperature. Results are observed with the naked eye by a color change, and there is no need for expensive equipment. The established LAMP can be used for the detection of M. bovis infections in cattle and humans in resource-limited areas.  相似文献   

10.
IL-36 cytokines are members of the IL-1 family of cytokines that stimulate dendritic cells and T cells leading to enhanced T helper 1 responses in vitro and in vivo; however, their role in host defense has not been fully addressed thus far. The objective of this study was to examine the role of IL-36R signaling in the control of mycobacterial infection, using models of systemic attenuated M. bovis BCG infection and virulent aerogenic M. tuberculosis infection. IL-36γ expression was increased in the lung of M. bovis BCG infected mice. However, IL-36R deficient mice infected with M. bovis BCG showed similar survival and control of the infection as compared to wild-type mice, although their lung pathology and CXCL1 response were transiently different. While highly susceptible TNF-α deficient mice succumbed with overwhelming M. tuberculosis infection, and IL-1RI deficient mice showed intermediate susceptibility, IL-36R-deficient mice controlled the infection, with bacterial burden, lung inflammation and pathology, similar to wild-type controls. Therefore, IL-36R signaling has only limited influence in the control of mycobacterial infection.  相似文献   

11.
Doñana National Park (DNP) in southern Spain is a UNESCO Biosphere Reserve where commercial hunting and wildlife artificial feeding do not take place and traditional cattle husbandry still exists. Herein, we hypothesized that Mycobacterium bovis infection prevalence in wild ungulates will depend on host ecology and that variation in prevalence will reflect variation in the interaction between hosts and environmental risk factors. Cattle bTB reactor rates increased in DNP despite compulsory testing and culling of infected animals. In this study, 124 European wild boar, 95 red deer, and 97 fallow deer were sampled from April 2006 to April 2007 and analyzed for M. bovis infection. Modelling and GIS were used to identify risk factors and intra and inter-species relationships. Infection with M. bovis was confirmed in 65 (52.4%) wild boar, 26 (27.4%) red deer and 18 (18.5%) fallow deer. In the absence of cattle, wild boar M. bovis prevalence reached 92.3% in the northern third of DNP. Wild boar showed more than twice prevalence than that in deer (p<0.001). Modelling revealed that M. bovis prevalence decreased from North to South in wild boar (p<0.001) and red deer (p<0.01), whereas no spatial pattern was evidenced for fallow deer. Infection risk in wild boar was dependent on wild boar M. bovis prevalence in the buffer area containing interacting individuals (p<0.01). The prevalence recorded in this study is among the highest reported in wildlife. Remarkably, this high prevalence occurs in the absence of wildlife artificial feeding, suggesting that a feeding ban alone would have a limited effect on wildlife M. bovis prevalence. In DNP, M. bovis transmission may occur predominantly at the intra-species level due to ecological, behavioural and epidemiological factors. The results of this study allow inferring conclusions on epidemiological bTB risk factors in Mediterranean habitats that are not managed for hunting purposes. Our results support the need to consider wildlife species for the control of bTB in cattle and strongly suggest that bTB may affect animal welfare and conservation.  相似文献   

12.

Background

Transmission of Mycobacterium tuberculosis (M. tuberculosis) complex could be possible between farmers and their cattle in Ethiopia.

Methodology/Principal Findings

A study was conducted in mixed type multi-purposes cattle raising region of Ethiopia on 287 households (146 households with case of pulmonary tuberculosis (TB) and 141 free of TB) and 287 herds consisting of 2,033 cattle belonging to these households to evaluate transmission of TB between cattle and farmers. Interview, bacteriological examinations and molecular typing were used for human subjects while comparative intradermal tuberculin (CIDT) test, post mortem and bacteriological examinations, and molecular typing were used for animal studies. Herd prevalence of CIDT reactors was 9.4% and was higher (p<0.01) in herds owned by households with TB than in herds owned by TB free households. Animal prevalence was 1.8% and also higher (p<0.01) in cattle owned by households with TB case than in those owned by TB free households. All mycobacteria (141) isolated from farmers were M. tuberculosis, while only five of the 16 isolates from cattle were members of the M. tuberculosis complex (MTC) while the remaining 11 were members of non-tuberculosis mycobacteria (NTM). Further speciation of the five MTC isolates showed that three of the isolates were M. bovis (strain SB1176), while the remaining two were M. tuberculosis strains (SIT149 and SIT53). Pathology scoring method described by “Vordermeier et al. (2002)” was applied and the average severity of pathology in two cattle infected with M. bovis, in 11 infected with NTM and two infected with M. tuberculosis were 5.5, 2.1 and 0.5, respectively.

Conclusions/Significance

The results showed that transmission of TB from farmers to cattle by the airborne route sensitizes the cows but rarely leads to TB. Similarly, low transmission of M. bovis between farmers and their cattle was found, suggesting requirement of ingestion of contaminated milk from cows with tuberculous mastitis.  相似文献   

13.
Species belonging to the Mycobacterium tuberculosis Complex (MTBC) show more than 99% genetic identity but exhibit distinct host preference and virulence. The molecular genetic changes that underly host specificity and infection phenotype within MTBC members have not been fully elucidated. Here, we analysed RD900 genomic region across MTBC members using whole genome sequences from 60 different MTBC strains so as to determine its role in the context of MTBC evolutionary history. The RD900 region comprises two homologous genes, pknH1 and pknH2, encoding a serine/threonine protein kinase PknH flanking the tbd2 gene. Our analysis revealed that RD900 has been independently lost in different MTBC lineages and different strains, resulting in the generation of a single pknH gene. Importantly, all the analysed M. bovis and M. caprae strains carry a conserved deletion within a proline rich-region of pknH, independent of the presence or absence of RD900. We hypothesized that deletion of pknH proline rich-region in M. bovis may affect PknH function, having a potential role in its virulence and evolutionary adaptation. To explore this hypothesis, we constructed two M. bovis ‘knock-in’ strains containing the M. tuberculosis pknH gene. Evaluation of their virulence phenotype in mice revealed a reduced virulence of both M. bovis knock-in strains compared to the wild type, suggesting that PknH plays an important role in the differential virulence phenotype of M. bovis vs M. tuberculosis.  相似文献   

14.
Experiments in the late 19th century sought to define the host specificity of the causative agents of tuberculosis in mammals. Mycobacterium tuberculosis, the human tubercle bacillus, was independently shown by Smith, Koch, and von Behring to be avirulent in cattle. This finding was erroneously used by Koch to argue the converse, namely that Mycobacterium bovis, the agent of bovine tuberculosis, was avirulent for man, a view that was subsequently discredited. However, reports in the literature of M. tuberculosis isolation from cattle with tuberculoid lesions suggests that the virulence of M. tuberculosis for cattle needs to be readdressed. We used an experimental bovine infection model to test the virulence of well-characterized strains of M. tuberculosis and M. bovis in cattle, choosing the genome-sequenced strains M. tuberculosis H37Rv and M. bovis 2122/97. Cattle were infected with approximately 106 CFU of M. tuberculosis H37Rv or M. bovis 2122/97, and sacrificed 17 weeks post-infection. IFN-γ and tuberculin skin tests indicated that both M. bovis 2122 and M. tuberculosis H37Rv were equally infective and triggered strong cell-mediated immune responses, albeit with some indication of differential antigen-specific responses. Postmortem examination revealed that while M. bovis 2122/97–infected animals all showed clear pathology indicative of bovine tuberculosis, the M. tuberculosis–infected animals showed no pathology. Culturing of infected tissues revealed that M. tuberculosis was able to persist in the majority of animals, albeit at relatively low bacillary loads. In revisiting the early work on host preference across the M. tuberculosis complex, we have shown M. tuberculosis H37Rv is avirulent for cattle, and propose that the immune status of the animal, or genotype of the infecting bacillus, may have significant bearing on the virulence of a strain for cattle. This work will serve as a baseline for future studies into the genetic basis of host preference, and in particular the molecular basis of virulence in M. bovis.  相似文献   

15.
Co-infection with Mycobacterium tuberculosis accelerates progression from HIV to AIDS. Our previous studies showed that M. tuberculosis complex, unlike M. smegmatis, enhances TLR2-dependent susceptibility of CD4+ T cells to HIV. The M. tuberculosis complex produces multiple TLR2-stimulating lipoproteins, which are absent in M. smegmatis. M. tuberculosis production of mature lipoproteins and TLR2 stimulation is dependent on cleavage by lipoprotein signal peptidase A (LspA). In order to determine the role of potential TLR2-stimulating lipoproteins on mycobacterial-mediated HIV infectivity of CD4+ T cells, we generated M. smegmatis recombinant strains overexpressing genes encoding various M. bovis BCG lipoproteins, as well as a Mycobacterium bovis BCG strain deficient in LspA (ΔlspA). Exposure of human peripheral blood mononuclear cells (PBMC) to M. smegmatis strains overexpressing the BCG lipoproteins, LprF (p<0.01), LprH (p<0.05), LprI (p<0.05), LprP (p<0.001), LprQ (p<0.005), MPT83 (p<0.005), or PhoS1 (p<0.05), resulted in increased HIV infectivity of CD4+ T cells isolated from these PBMC. Conversely, infection of PBMC with ΔlspA reduced HIV infectivity of CD4+ T cells by 40% relative to BCG-infected cells (p<0.05). These results may have important implications for TB vaccination programs in areas with high mother-to-child HIV transmission.  相似文献   

16.
Bovine tuberculosis (bTB) is a chronic disease of cattle caused by Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex group of bacteria. Vaccination of cattle might offer a long-term solution for controlling the disease and priority has been given to the development of a cattle vaccine against bTB. Identification of biomarkers in tuberculosis research remains elusive and the goal is to identify host correlates of protection. We hypothesized that by studying global gene expression we could identify in vitro predictors of protection that could help to facilitate vaccine development. Calves were vaccinated with BCG or with a heterologous BCG prime adenovirally vectored subunit boosting protocol. Protective efficacy was determined after M. bovis challenge. RNA was prepared from PPD-stimulated PBMC prepared from vaccinated-protected, vaccinated-unprotected and unvaccinated control cattle prior to M. bovis challenge and global gene expression determined by RNA-seq. 668 genes were differentially expressed in vaccinated-protected cattle compared with vaccinated-unprotected and unvaccinated control cattle. Cytokine-cytokine receptor interaction was the most significant pathway related to this dataset with IL-22 expression identified as the dominant surrogate of protection besides INF-γ. Finally, the expression of these candidate genes identified by RNA-seq was evaluated by RT-qPCR in an independent set of PBMC samples from BCG vaccinated and unvaccinated calves. This experiment confirmed the importance of IL-22 as predictor of vaccine efficacy.  相似文献   

17.
Rarely found infected, roe deer (Capreolus capreolus) are not considered a bovine tuberculosis (bTB) reservoir. However, serial cases discovered between 2010 and 2014 in one of the bTB endemic regions in France threw doubt on the epidemiological role played by this small wild cervid in ecosystems where cattle and other wild animals are both infected. Our objective was to analyse the bTB host status of roe deer as regards infection prevalence within the population and Mycobacterium bovis-induced pathology in this species. From November 2001 to March 2016, 668 roe deer were analysed (culture and/or PCR) through active surveillance implemented in three bTB endemic areas in France (Brotonne forest, Dordogne and Côte d’Or) and 132 through passive surveillance (presence of macroscopic lesions) in the whole country. Only seven roe deer were found infected by M. bovis, exclusively in bTB endemic areas, one through active surveillance (Brotonne forest; n = 203, apparent prevalence 0.49%). On the basis of these results, observed pathological patterns (mainly pulmonary lesions), species social behaviour (less gregarious than other ungulates) and food behaviour (mainly a selective browser), roe deer does not appear to be a true reservoir of bTB. However, once infected, it develops lesions reflecting a clear ability for bacterial excretion and therefore transmission to other species, most likely by indirect contact. It could thus be a spillover host included in a multi-host component reservoir in endemic areas. Consequently, passive surveillance is essential to detect infection and to implement specific management to limit interactions with cattle, where infected roe deer are found.  相似文献   

18.
Bovine tuberculosis (bTB) caused by Mycobacterium bovis (Mycobacterium tuberculosis complex) is a zoonotic disease that affects cattle and wildlife worldwide. European wild boar (Sus scrofa) is a major reservoir host of M. bovis in south-central Spain. The identification of biomarkers to predict bTB in wild boars by dependable methods that do not require killing the host would greatly contribute to the implementation of effective control programs for bTB in this region. In this study, we have characterized serum biochemical values in European wild boars in Spain to determine whether biochemical parameters in the serum varied significantly with the presence of bTB in this species. Although apolipoprotein A1 and IgG levels were higher in uninfected boars, the results did not support good predictive value for serum biochemical parameters studied for European wild boars in relation to bTB in Spain.  相似文献   

19.
Live animal movements are a major transmission route for the spread of infectious agents such as Mycobacterium bovis, the main agent of bovine Tuberculosis (bTB). France became officially bTB-free in 2001, but M. bovis is still circulating in the cattle population, with about a hundred of outbreaks per year, most located in a few geographic areas. The aim of this study was to analyse the role of cattle movements in bTB spread in France between 2005 and 2014, using social network analysis and logistic regression models. At a global scale, the trade network was studied to assess the association between several centrality measures and bTB infection though a case-control analysis. The bTB infection status was associated with a higher in-degree (odds-ratio [OR] = 2.4 [1.1–5.4]) and with a higher ingoing contact chain (OR = 2.2 [1.0–4.7]). At a more local scale, a second case-control analysis was conducted to estimate the relative importance of cattle movements and spatial neighbourhood. Only direct purchase from infected herds was shown to be associated with bTB infection (OR = 2.9 [1.7–5.2]), spatial proximity to infected herds being the predominant risk factor, with decreasing ORs when distance increases. Indeed, the population attributable fraction was 12% [5%–18%] for cattle movements and 73% [68%–78%] for spatial neighbourhood. Based on these results, networks of potential effective contacts between herds were built and analysed for the three major spoligotypes reported in France. In these networks, the links representing cattle movements were associated with higher edge betweenness than those representing the spatial proximity between infected herds. They were often links connecting distinct communities and sometimes distinct geographical areas. Therefore, although their role was quantitatively lower than the one of spatial neighbourhood, cattle movements appear to have been essential in the French bTB dynamics between 2005 and 2014.  相似文献   

20.
Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly affect humans and animals worldwide. The life cycle of mycobacteria is complex and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Recently, comparative genomics analyses have provided new insights into the evolution and adaptation of the MTBC to survive inside the host. However, most of this information has been obtained using M. tuberculosis but not other members of the MTBC such as M. bovis and M. caprae. In this study, the genome of three M. bovis (MB1, MB3, MB4) and one M. caprae (MB2) field isolates with different lesion score, prevalence and host distribution phenotypes were sequenced. Genome sequence information was used for whole-genome and protein-targeted comparative genomics analysis with the aim of finding correlates with phenotypic variation with potential implications for tuberculosis (TB) disease risk assessment and control. At the whole-genome level the results of the first comparative genomics study of field isolates of M. bovis including M. caprae showed that as previously reported for M. tuberculosis, sequential chromosomal nucleotide substitutions were the main driver of the M. bovis genome evolution. The phylogenetic analysis provided a strong support for the M. bovis/M. caprae clade, but supported M. caprae as a separate species. The comparison of the MB1 and MB4 isolates revealed differences in genome sequence, including gene families that are important for bacterial infection and transmission, thus highlighting differences with functional implications between isolates otherwise classified with the same spoligotype. Strategic protein-targeted analysis using the ESX or type VII secretion system, proteins linking stress response with lipid metabolism, host T cell epitopes of mycobacteria, antigens and peptidoglycan assembly protein identified new genetic markers and candidate vaccine antigens that warrant further study to develop tools to evaluate risks for TB disease caused by M. bovis/M.caprae and for TB control in humans and animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号