首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Cellular respiration is the process by which cells obtain energy from glucose and is a very important biological process in living cell. As cells do cellular respiration, they need a pathway to store and transport electrons, the electron transport chain. The function of the electron transport chain is to produce a trans-membrane proton electrochemical gradient as a result of oxidation–reduction reactions. In these oxidation–reduction reactions in electron transport chains, metal ions play very important role as electron donor and acceptor. For example, Fe ions are in complex I and complex II, and Cu ions are in complex IV. Therefore, to identify metal-binding sites in electron transporters is an important issue in helping biologists better understand the workings of the electron transport chain.

Methods

We propose a method based on Position Specific Scoring Matrix (PSSM) profiles and significant amino acid pairs to identify metal-binding residues in electron transport proteins.

Results

We have selected a non-redundant set of 55 metal-binding electron transport proteins as our dataset. The proposed method can predict metal-binding sites in electron transport proteins with an average 10-fold cross-validation accuracy of 93.2% and 93.1% for metal-binding cysteine and histidine, respectively. Compared with the general metal-binding predictor from A. Passerini et al., the proposed method can improve over 9% of sensitivity, and 14% specificity on the independent dataset in identifying metal-binding cysteines. The proposed method can also improve almost 76% sensitivity with same specificity in metal-binding histidine, and MCC is also improved from 0.28 to 0.88.

Conclusions

We have developed a novel approach based on PSSM profiles and significant amino acid pairs for identifying metal-binding sites from electron transport proteins. The proposed approach achieved a significant improvement with independent test set of metal-binding electron transport proteins.  相似文献   

2.
Selected biochemical features of sulfonate assimilation in Escherichia coli K-12 were studied in detail. Competition between sulfonate-sulfur and sulfur sources with different oxidation states, such as cysteine, sulfite and sulfate, was examined. The ability of the enzyme sulfite reductase to attack the C-S linkage of sulfonates was directly examined. Intact cells formed sulfite from sulfonate-sulfur. In cysteine-grown cells, when cysteine was present with either cysteate or sulfate, assimilation of both of the more oxidized sulfur sources was substantially inhibited. In contrast, none of three sulfonates had a competitive effect on sulfate assimilation. In studies of competition between different sulfonates, the presence of taurine resulted in a decrease in cysteate uptake by one-half, while in the presence of isethionate, cysteate uptake was almost completely inhibited. In sulfite-grown cells, sulfonates had no competitive effect on sulfite utilization. An E. coli mutant lacking sulfite reductase and unable to utilize isethionate as the sole source of sulfur formed significant amounts of sulfite from isethionate. In cell extracts, sulfite reductase itself did not utilize sulfonate-sulfur as an electron acceptor. These findings indicate that sulfonate utilization may share some intermediates (e.g. sulfite) and regulatory features (repression by cysteine) of the assimilatory sulfate reductive pathway, but sulfonates do not exert regulatory effects on sulfate utilization. Other results suggest that unrecognized aspects of sulfonate metabolism, such as specific transport mechanisms for sulfonates and different regulatory features, may exist.  相似文献   

3.
Green sulfur bacteria and heliobacteria are strictly anaerobic phototrophs that have homodimeric type 1 reaction center complexes. Within these complexes, highly reducing substances are produced through an initial charge separation followed by electron transfer reactions driven by light energy absorption. In order to attain efficient energy conversion, it is important for the photooxidized reaction center to be rapidly rereduced. Green sulfur bacteria utilize reduced inorganic sulfur compounds (sulfide, thiosulfate, and/or sulfur) as electron sources for their anoxygenic photosynthetic growth. Membrane-bound and soluble cytochromes c play essential roles in the supply of electrons from sulfur oxidation pathways to the P840 reaction center. In the case of gram-positive heliobacteria, the photooxidized P800 reaction center is rereduced by cytochrome c-553 (PetJ) whose N-terminal cysteine residue is modified with fatty acid chains anchored to the cytoplasmic membrane.  相似文献   

4.
The de novo design of a rubredoxin-like Fe site.   总被引:1,自引:0,他引:1       下载免费PDF全文
A redox center similar to that of rubredoxin was designed into the 56 amino acid immunoglobulin binding B1 domain of Streptococcals protein G. The redox center in rubredoxin contains an iron ion tetrahedrally coordinated by four cysteine residues, [Fe(S-Cys)4](-1),(-2). The design criteria for the target site included taking backbone movements into account, tetrahedral metal-binding, and maintaining the structure and stability of the wild-type protein. The optical absorption spectrum of the Co(II) complex of the metal-binding variant is characteristic of tetrahedral chelation by four cysteine residues. Circular dichroism and nuclear magnetic resonance measurements reveal that the metal-free and Cd(II)-bound forms of the variant are folded correctly and are stable. The Fe(III) complex of the metal-binding mutant reproduces the optical and the electron paramagnetic resonance spectra of oxidized rubredoxin. This demonstrates that the engineered protein chelates Fe(III) in a tetrahedral array, and the resulting center is similar to that of oxidized rubredoxin.  相似文献   

5.
Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme   总被引:2,自引:0,他引:2  
Reduced inorganic sulfur compounds are utilized by many bacteria as electron donors to photosynthetic or respiratory electron transport chains. This metabolism is a key component of the biogeochemical sulfur cycle. The SoxAX protein is a heterodimeric c-type cytochrome involved in thiosulfate oxidation. The crystal structures of SoxAX from the photosynthetic bacterium Rhodovulum sulfidophilum have been solved at 1.75 A resolution in the oxidized state and at 1.5 A resolution in the dithionite-reduced state, providing the first structural insights into the enzymatic oxidation of thiosulfate. The SoxAX active site contains a haem with unprecedented cysteine persulfide (cysteine sulfane) coordination. This unusual post-translational modification is also seen in sulfurtransferases such as rhodanese. Intriguingly, this enzyme shares further active site characteristics with SoxAX such as an adjacent conserved arginine residue and a strongly positive electrostatic potential. These similarities have allowed us to suggest a catalytic mechanism for enzymatic thiosulfate oxidation. The atomic coordinates and experimental structure factors have been deposited in the PDB with the accession codes 1H31, 1H32 and 1H33.  相似文献   

6.
In Escherichia coli, three cysteine desulfurases (IscS, SufS, and CsdA) initiate the delivery of sulfur for various biological processes such as the biogenesis of Fe-S clusters. The sulfur generated as persulfide on a cysteine residue of cysteine desulfurases is further transferred to Fe-S scaffolds (e.g. IscU) or to intermediate cysteine-containing sulfur acceptors (e.g. TusA, SufE, and CsdE) prior to its utilization. Here, we report the structures of CsdA and the CsdA-CsdE complex, which provide insight into the sulfur transfer mediated by the trans-persulfuration reaction. Analysis of the structures indicates that the conformational flexibility of the active cysteine loop in CsdE is essential for accepting the persulfide from the cysteine of CsdA. Additionally, CsdA and CsdE invoke a different binding mode than those of previously reported cysteine desulfurase (IscS) and sulfur acceptors (TusA and IscU). Moreover, the conservation of interaction-mediating residues between CsdA/SufS and CsdE/SufE further suggests that the SufS-SufE interface likely resembles that of CsdA and CsdE.  相似文献   

7.
The identification of metal-binding ligands in metalloproteins is an important step in gaining detailed information regarding the environment of the active site. Traditionally, techniques such as 13Cd-substitution for the active metal followed by isotope-filtered NMR techniques have been used to this end. However, for medium to high molecular weight proteins (>20 kDa), these experiments may not be beneficial due to extensive 1H spectral overlap. Here, we describe an alternative approach, where metal-binding ligands such as histidine and cysteine are specifically 15N backbone labeled, excess EDTA is added and changes to (1H-15N) HSQC spectra are followed. Under these conditions, the amide groups of all 15N labeled histidine and cysteine residues, which were either ligands or residues close to the active site, were identified unambiguously for metallo-beta-lactamase from Bacteroides fragilis.  相似文献   

8.
9.
活性巯基在浸矿微生物硫代谢的过程中起着重要的作用,半胱氨酸残基作为蛋白质中活性巯基的提供者,为筛选硫代谢相关蛋白质基因提供了依据。本研究以极端嗜酸热古菌万座嗜酸两面菌Acidianus manzaensis为研究对象,基于其全基因组注释信息,筛选出编码富半胱氨酸残基的潜在硫代谢相关膜蛋白基因,并通过RT-qPCR实验对筛选出来的基因进行表达水平验证,同时利用生物信息学方法对其进一步分析。研究表明,与在亚铁中生长的细胞相比,单质硫培养下的细菌中与能量代谢相关的β-葡糖苷酶,与电子传递相关的ATP合成酶、NADH-辅酶Q氧化还原酶基因均表达上调,说明硫代谢途径可能与能量代谢和电子传递有着重要的联系。此外,还有三个假定蛋白基因表达上调,这三个假定膜蛋白中,ARM75161.1、ARM75436.1中的半胱氨酸都位于保守区域,且均有一个半胱氨酸残基暴露于膜外,而ARM75580.1中的半光氨酸不位于保守区域。其中ARM75436.1具有CXXXC结构域,且该结构域中半胱氨酸残基处于同一个β-折叠中。这些假定蛋白可能参与A. manzaensis中硫代谢途径。  相似文献   

10.
ThiI has been identified as an essential enzyme involved in the biosynthesis of thiamine and the tRNA thionucleoside modification, 4-thiouridine. In Escherichia coli and Salmonella enterica, ThiI acts as a sulfurtransferase, receiving the sulfur donated from the cysteine desulfurase IscS and transferring it to the target molecule or additional sulfur carrier proteins. However, in Bacillus subtilis and most species from the Firmicutes phylum, ThiI lacks the rhodanese domain that contains the site responsible for the sulfurtransferase activity. The lack of the gene encoding for a canonical IscS cysteine desulfurase and the presence of a short sequence of ThiI in these bacteria pointed to mechanistic differences involving sulfur trafficking reactions in both biosynthetic pathways. Here, we have carried out functional analysis of B. subtilis thiI and the adjacent gene, nifZ, encoding for a cysteine desulfurase. Gene inactivation experiments in B. subtilis indicate the requirement of ThiI and NifZ for the biosynthesis of 4-thiouridine, but not thiamine. In vitro synthesis of 4-thiouridine by ThiI and NifZ, along with labeling experiments, suggests the occurrence of an alternate transient site for sulfur transfer, thus obviating the need for a rhodanese domain. In vivo complementation studies in E. coli IscS- or ThiI-deficient strains provide further support for specific interactions between NifZ and ThiI. These results are compatible with the proposal that B. subtilis NifZ and ThiI utilize mechanistically distinct and mutually specific sulfur transfer reactions.  相似文献   

11.
Xu XM  Møller SG 《The EMBO journal》2006,25(4):900-909
Iron-sulfur (Fe-S) clusters are vital prosthetic groups for Fe-S proteins involved in fundamental processes such as electron transfer, metabolism, sensing and signaling. In plants, sulfur (SUF) protein-mediated Fe-S cluster biogenesis involves iron acquisition and sulfur mobilization, processes suggested to be plastidic. Here we have shown that AtSufE in Arabidopsis rescues growth defects in SufE-deficient Escherichia coli. In contrast to other SUF proteins, AtSufE localizes to plastids and mitochondria interacting with the plastidic AtSufS and mitochondrial AtNifS1 cysteine desulfurases. AtSufE activates AtSufS and AtNifS1 cysteine desulfurization, and AtSufE activity restoration in either plastids or mitochondria is not sufficient to rescue embryo lethality in AtSufE loss-of-function mutants. AtSufE overexpression induces AtSufS and AtNifS1 expression, which in turn leads to elevated cysteine desulfurization activity, chlorosis and retarded development. Our data demonstrate that plastidic and mitochondrial Fe-S cluster biogenesis shares a common, essential component, and that AtSufE acts as an activator of plastidic and mitochondrial desulfurases in Arabidopsis.  相似文献   

12.
In most bacteria, inorganic sulfur is assimilated into cysteine, which provides sulfur for methionine biosynthesis via transsulfurylation. Here, cysteine is transferred to the terminal carbon of homoserine via its sulfhydryl group to form cystathionine, which is cleaved to yield homocysteine. In the enteric bacteria Escherichia coli and Salmonella enterica, these reactions are catalyzed by irreversible cystathionine-gamma-synthase and cystathionine-beta-lyase enzymes. Alternatively, yeast and some bacteria assimilate sulfur into homocysteine, which serves as a sulfhydryl group donor in the synthesis of cysteine by reverse transsulfurylation with a cystathionine-beta-synthase and cystathionine-gamma-lyase. Herein we report that the related enteric bacterium Klebsiella pneumoniae encodes genes for both transsulfurylation pathways; genetic and biochemical analyses show that they are coordinately regulated to prevent futile cycling. Klebsiella uses reverse transsulfurylation to recycle methionine to cysteine during periods of sulfate starvation. This methionine-to-cysteine (mtc) transsulfurylation pathway is activated by cysteine starvation via the CysB protein, by adenosyl-phosphosulfate starvation via the Cbl protein, and by methionine excess via the MetJ protein. While mtc mutants cannot use methionine as a sulfur source on solid medium, they will utilize methionine in liquid medium via a sulfide intermediate, suggesting that an additional nontranssulfurylation methionine-to-cysteine recycling pathway(s) operates under these conditions.  相似文献   

13.
Methionine can be used as the sole sulfur source by the Mycobacterium tuberculosis complex although it is not obvious from examination of the genome annotation how these bacteria utilize methionine. Given that genome annotation is a largely predictive process, key challenges are to validate these predictions and to fill in gaps for known functions for which genes have not been annotated. We have addressed these issues by functional analysis of methionine metabolism. Transport, followed by metabolism of (35)S methionine into the cysteine adduct mycothiol, demonstrated the conversion of exogenous methionine to cysteine. Mutational analysis and cloning of the Rv1079 gene showed it to encode the key enzyme required for this conversion, cystathionine gamma-lyase (CGL). Rv1079, annotated metB, was predicted to encode cystathionine gamma-synthase (CGS), but demonstration of a gamma-elimination reaction with cystathionine as well as the gamma-replacement reaction yielding cystathionine showed it encodes a bifunctional CGL/CGS enzyme. Consistent with this, a Rv1079 mutant could not incorporate sulfur from methionine into cysteine, while a cysA mutant lacking sulfate transport and a methionine auxotroph was hypersensitive to the CGL inhibitor propargylglycine. Thus, reverse transsulfuration alone, without any sulfur recycling reactions, allows M. tuberculosis to use methionine as the sole sulfur source. Intracellular cysteine was undetectable so only the CGL reaction occurs in intact mycobacteria. Cysteine desulfhydrase, an activity we showed to be separable from CGL/CGS, may have a role in removing excess cysteine and could explain the ability of M. tuberculosis to recycle sulfur from cysteine, but not methionine.  相似文献   

14.
【目的】探究丙酮丁醇梭菌半胱氨酸合成代谢途径上铁氧还蛋白和胱硫醚-γ-裂解酶基因的功能。【方法】使用ClosTron系统对半胱氨酸合成途径上的铁氧还蛋白基因(fer)和胱硫醚-γ-裂解酶基因(mccB)进行失活,得到突变株;在不同硫源的培养基中进行分批发酵,分析突变株的生长特点;通过pH控制,使用限磷的连续发酵方法将丙酮丁醇梭菌维持在产酸期和产溶剂期,分析野生型菌株和突变株在连续发酵中的生长情况。【结果】成功构建Δfer和ΔmccB突变株。在分批发酵中,敲除fer基因的突变株无法利用硫酸盐作为硫源,但添加亚硫酸盐或半胱氨酸可以使其恢复生长;在以半胱氨酸为唯一硫源进行分批发酵时,其终浓度1 mmol/L时不会影响野生型与Δfer突变株的生长,但高于1 mmol/L时生长均会受到抑制。在连续发酵中,Δfer突变株不能在产溶剂阶段生长,添加过量的半胱氨酸也不能恢复生长;敲除mccB基因的突变株仍能在添加甲硫氨酸的培养基中生长,但最大OD仅为野生型的57%;相较于野生型,ΔmccB突变株在产酸期和产溶剂期的生长均受到抑制。【结论】fer基因为半胱氨酸合成途径中硫酸盐还原为亚硫酸盐的关键基因,其控制合成的半胱氨酸不能完全由外源的半胱氨酸替代,敲除后对生长的抑制主要表现在连续发酵中的产溶剂阶段。mccB基因参与调控甲硫氨酸转化为半胱氨酸的过程,其敲除会影响甲硫氨酸到半胱氨酸的转化,但不会阻断该生物反应过程。  相似文献   

15.
The cDNA of mouse metallothionein, a small metal-binding protein rich in cysteine, has been cloned downstream from a bacterial inducible promoter and expressed in Escherichia coli. Upon induction, E. coli harboring this cDNA clone contained a protein species readily labelled by [35S]cysteine in vivo and incorporated 10-times as much 109Cd from the medium than would otherwise be the case. We show that expression of metallothionein endows resistance in E. coli to heavy metal ions such as mercury, silver, copper, cadmium and zinc by sequestering rather than exclusion or conversion, common mechanisms of metal resistance in bacteria.  相似文献   

16.
The components of the active molybdenum cofactor in xanthine oxidase was found. The molybdenum cofactor is responsible for the enzymatic activity of the methyl viologen-nitrate reduction. The inactivation of the methyl viologen-nitrate reductase by cyanide is accompanied by the extraction of sulfur from the enzyme. Cyanide inactivated enzyme can be reactivated by incubation with Na2S. The results suggest that the active site of the methyl viologen-nitrate reductase contains an atom of active sulfur which does not originate from the acid labile sulfur of the Fe/S cluster, neither originate from the organic sulfur of the cysteine residue, nor from the sulfur of persulfide. It is probably another type of inorganic sulfur near the molybdenum atoms, The flavin-free xanthine oxidase may be loss entirely its oxidation activity of xanthine to uric acid. In contrast, the activity of the methyl viologen-nitrate reductase is nearly completly insensitive to the flavinfree treatment. Studies on the Fe-free xanthine oxidase, obtained by metal-binding agent phenanthroline and by acid treatment, revealed Fe (in xanthine oxidase it is the Fe of the Fe/S cluster) is also one of the active conponents, functioning in the methyl viologen-nitrate reductase, besides molybdenum.  相似文献   

17.
The polarizable sulfur atom in cysteine is subject to numerous post-translational oxidative modifications in the cellular milieu, which regulates a wide variety of biological phenomena such as catalysis, metal binding, protein turnover, and signal transduction. The application of chemical rationale to describe the features of different cysteine oxoforms affords a unique perspective on this rapidly expanding field. Moreover, a chemical framework broadens our understanding of the functional roles that specific cysteine oxidation states can play and facilitates the development of mechanistic proposals, which can be tested in both biochemical and cellular studies.  相似文献   

18.
Cysteine desulfurases are pyridoxal 5′-phosphate-dependent homodimeric enzymes that catalyze the conversion of L-cysteine to L-alanine and sulfane sulfur via the formation of a protein-bound cysteine persulfide intermediate on a conserved cysteine residue. The enzymes are capable of donating the persulfide sulfur atoms to a variety of biosynthetic pathways for sulfur-containing biofactors, such as iron–sulfur clusters, thiamin, transfer RNA thionucleosides, biotin, and lipoic acid. The enormous advances in biochemical and structural studies of these biosynthetic pathways over the past decades provide an opportunity for detailed understanding of the nature of the excellent sulfur transfer mechanism of cysteine desulfurases.  相似文献   

19.
Biological redox reactions of inorganic sulfur compounds are important for the proper maintenance of environmental sulfur balance. These reactions are mediated by phylogeneticaly diverse set of microorganisms. The protein complex that is involved in such redox reactions of sulfur compounds is the complex encoded by dsr operon. The ecological and industrial importance of these microorganisms led us to investigate the structural details of the mechanism of the process of electron transport during such redox reactions performed by the dsr operon. Among the gene products of the operon, the proteins DsrE, DsrF, and DsrH are small soluble cytoplasmic proteins acting as alpha2beta2gamma2 heterohexamer and are involved in the process of electron transport in these ecologically as well as industrially important microorganisms. Since no structural details of the proteins were available we employed homology modeling to construct the three-dimensional structures of the DsrE, DsrF, and DsrH from Chlorobium tepidum. The putative three dimensional structures of the proteins were predicted from the models. Since DsrE, DsrF, and DsrH proteins act as a hetero-hexameric complex, the modeled proteins were subjected to molecular docking analyses to generate the model of the biochemically active complex. This allowed us to predict the probable binding modes of the proteins as well as the biochemical and the structural basis of the mechanism of the electron transport process by this complex. The hexamerization of the proteins would help to bring the Cys residues in close proximity, which enables the complex to actively take part electron transport process.  相似文献   

20.
A cyclic sulfur compound, identified as cysteine thiolactone by several chemical and enzymatic tests, is formed from cysteine during in vitro tRNA(Cys) aminoacylation catalyzed by Escherichia coli cysteinyl-tRNA synthetase. The mechanism of cysteine thiolactone formation involves enzymatic deacylation of Cys-tRNA(Cys) (k = 0.017 s-1) in which nucleophilic sulfur of the side chain of cysteine in Cys-tRNA(Cys) attacks its carboxyl carbon to yield cysteine thiolactone. Nonenzymatic deacylation of Cys-tRNA(Cys) (k = 0.0006 s-1) yields cysteine, as expected. Inhibition of enzymatic deacylation of Cys-tRNA(Cys) by cysteine and Cys-AMP, but not by ATP, indicates that both synthesis of Cys-tRNA(Cys) and cyclization of cysteine to the thiolactone occur in a single active site of the enzyme. The cyclization of cysteine is mechanistically similar to the editing reactions of methionyl-tRNA synthetase. However, in contrast to methionyl-tRNA synthetase which needs the editing function to reject misactivated homocysteine, cysteinyl-tRNA synthetase is highly selective and is not faced with a problem in rejecting noncognate amino acids. Despite this, the present day cysteinyl-tRNA synthetase, like methionyl-tRNA synthetase, still retains an editing activity toward the cognate product, the charged tRNA. This function may be a remnant of a chemistry used by an ancestral cysteinyl-tRNA synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号