首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Manganese-porphyrin reactions with lipids and lipoproteins   总被引:2,自引:0,他引:2  
Manganese porphyrin complexes serve to catalytically scavenge superoxide, hydrogen peroxide, and peroxynitrite. Herein, reactions of manganese 5,10,15,20-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)) with lipids and lipid hydroperoxides (LOOH) are examined. In linoleic acid and human low-density lipoprotein (LDL), MnTE-2-PyP(5+) promotes oxidative reactions when biological reductants are not present. By redox cycling between Mn(+3) and Mn(+4) forms, MnTE-2-PyP(5+) initiates lipid peroxidation via decomposition of 13(S)hydroperoxyoctadecadienoic acid [13(S)HPODE], with a second-order rate constant of 8.9 x 10(3) M(-1)s(-1)and k(cat) = 0.32 s(-1). Studies of LDL oxidation demonstrate that: (i) MnTE-2-PyP(5+) can directly oxidize LDL, (ii) MnTE-2-PyP(5+) does not inhibit Cu-induced LDL oxidation, and (iii) MnTE-2-PyP(5+) plus a reductant partially inhibit lipid peroxidation. MnTE-2-PyP(5+) (1-5 microM) also significantly inhibits FeCl(3) plus ascorbate-induced lipid peroxidation of rat brain homogenate. In summary, MnTE-2-PyP(5+) initiates membrane lipid and lipoprotein oxidation in the absence of biological reductants, while MnTE-2-PyP(5+) inhibits lipid oxidation reactions initiated by other oxidants when reductants are present. It is proposed that, as the Mn(+3) resting redox state of MnTE-2-PyP(5+) becomes oxidized to the Mn(+4) redox state, LOOH is decomposed to byproducts that propagate lipid oxidation reactions. When the manganese of MnTE-2-PyP(5+) is reduced to the +2 state by biological reductants, antioxidant reactions of the metalloporphyrin are favored.  相似文献   

2.
Mn porphyrins are among the most efficient SOD mimics with potency approaching that of SOD enzymes. The most potent ones, Mn(III) N-alkylpyridylporphyrins bear positive charges in a close proximity to the metal site, affording thermodynamic and kinetic facilitation for the reaction with negatively charged superoxide. The addition of electron-withdrawing bromines onto beta-pyrrolic positions dramatically improves thermodynamic facilitation for the O2*- dismutation. We have previously characterized the para isomer, Mn(II)Br(8)TM-4-PyP(4+) [Mn(II) beta-octabromo-meso-tetrakis(N-methylpyridinium-4-yl)porphyrin]. Herein we fully characterized its meta analogue, Mn(II)Br(8)TM-3-PyP(4+) with respect to UV/vis spectroscopy, electron spray mass spectrometry, electrochemistry, O2*- dismutation, metal-ligand stability, and the ability to protect SOD-deficient Escherichia coli in comparison with its para analogue. The increased electron-deficiency of the metal center stabilizes Mn in its +2 oxidation state. The metal-centered Mn(III)/Mn(II) reduction potential, E((1/2))=+468 mV vs NHE, is increased by 416 mV with respect to non-brominated analogue, Mn(III)TM-3-PyP(5+) and is only 12 mV less positive than for para isomer. Yet, the complex is significantly more stable towards the loss of metal than its para analogue. As expected, based on the structure-activity relationships, an increase in E((1/2)) results in a higher catalytic rate constant for the O2*- dismutation, log k(cat)> or =8.85; 1.5-fold increase with respect to the para isomer. The IC(50) was calculated to be < or =3.7 nM. Manipulation of the electron-deficiency of a cationic porphyrin resulted, therefore, in the highest k(cat) ever reported for a metalloporphyrin, being essentially identical to the k(cat) of superoxide dismutases (log k(cat)=8.84-9.30). The positive kinetic salt effect points to the unexpected, unique and first time recorded behavior of Mn beta-octabrominated porphyrins when compared to other Mn porphyrins studied thus far. When species of opposing charges react, the increase in ionic strength invariably results in the decreased rate constant; with brominated porphyrins the opposite was found to be true. The effect is 3.5-fold greater with meta than with para isomer, which is discussed with respect to the closer proximity of the quaternary nitrogens of the meta isomer to the metal center than that of the para isomer. The potency of Mn(II)Br(8)TM-3-PyP(4+) was corroborated by in vivo studies, where 500 nM allows SOD-deficient E. coli to grow >60% of the growth of wild type; at concentrations > or =5 microM it exhibits toxicity. Our work shows that exceptionally high k(cat) for the O2*- disproportionation can be achieved not only with an N(5)-type coordination motif, as rationalized previously for aza crown ether (cyclic polyamines) complexes, but also with a N(4)-type motif as in the Mn porphyrin case; both motifs sharing "up-down-up-down" steric arrangement.  相似文献   

3.
Understanding the factors that determine the ability of Mn porphyrins to scavenge reactive species is essential for tuning their in vivo efficacy. We present herein the revised structure-activity relationships accounting for the critical importance of electrostatics in the Mn porphyrin-based redox modulation systems and show that the design of effective SOD mimics (per se) based on anionic porphyrins is greatly hindered by inappropriate electrostatics. A new strategy for the beta-octabromination of the prototypical anionic Mn porphyrins Mn(III) meso-tetrakis(p-carboxylatophenyl)porphyrin ([Mn(III)TCPP](3-) or MnTBAP(3-)) and Mn(III) meso-tetrakis(p-sulfonatophenyl)porphyrin ([Mn(III)TSPP](3-)), to yield the corresponding anionic analogues [Mn(III)Br(8)TCPP](3-) and [Mn(III)Br(8)TSPP](3-), respectively, is described along with characterization data, stability studies, and their ability to substitute for SOD in SOD-deficient Escherichia coli. Despite the Mn(III)/Mn(II) reduction potential of [Mn(III)Br(8)TCPP](3-) and [Mn(III)Br(8)TSPP](3-) being close to the SOD-enzyme optimum and nearly identical to that of the cationic Mn(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin (Mn(III)TM-2-PyP(5+)), the SOD activity of both anionic brominated porphyrins ([Mn(III)Br(8)TCPP](3-), E(1/2)=+213 mV vs NHE, log k(cat)=5.07; [Mn(III)Br(8)TSPP](3-), E(1/2)=+209 mV, log k(cat)=5.56) is considerably lower than that of Mn(III)TM-2-PyP(5+) (E(1/2)=+220 mV, log k(cat)=7.79). This illustrates the impact of electrostatic guidance of O(2)(-) toward the metal center of the mimic. With low k(cat), the [Mn(III)TCPP](3-), [Mn(III)TSPP](3-), and [Mn(III)Br(8)TCPP](3-) did not rescue SOD-deficient E. coli. The striking ability of [Mn(III)Br(8)TSPP](3-) to substitute for the SOD enzymes in the E. coli model does not correlate with its log k(cat). In fact, the protectiveness of [Mn(III)Br(8)TSPP](3-) is comparable to or better than that of the potent SOD mimic Mn(III)TM-2-PyP(5+), even though the dismutation rate constant of the anionic complex is 170-fold smaller. Analyses of the medium and E. coli cell extract revealed that the major species in the [Mn(III)Br(8)TSPP](3-) system is not the Mn complex, but the free-base porphyrin [H(2)Br(8)TSPP](4-) instead. Control experiments with extracellular MnCl(2) showed the lack of E. coli protection, indicating that "free" Mn(2+) cannot enter the cell to a significant extent. We proposed herein the alternative mechanism where a labile Mn porphyrin [Mn(III)Br(8)TSPP](3-) is not an SOD mimic per se but carries Mn into the E. coli cell.  相似文献   

4.
Reaction between NO(*) and manganese tetrakis(N-ethylpyridinium-2-yl)porphyrin (Mn(III)TE-2-PyP(5+)) was investigated at 25 degrees C. At high excess of NO(*) (1.5 mM) the reaction with the oxidized, air-stable form Mn(III)TE-2-PyP(5+) (5 microM), proceeds very slowly (t(1/2) congruent with 60 min). The presence of excess ascorbate (1 mM) produces the reduced form, Mn(II)TE-2-PyP(4+), which reacts with NO(*) stoichiometrically and in the time of mixing (k congruent with 1 x 10(6) M(-1) s(-1)). The high rate of formation and the stability of the product, Mn(II)TE-2-PyP(NO)(4+) (?Mn(NO)?(6)), make the reaction outcompete the reaction of NO(*) with O(2). Our in vitro measurements show a linear absorbance response upon addition of NO to a PBS, pH 7.4, solution containing an excess of ascorbate over Mn(III)TE-2-PyP(5+). Thus, the observed interactions can be the basis of a convenient and sensitive spectrophotometric assay for NO(*). Also, it may have important implications for the in vivo behavior of Mn(III)TE-2-PyP(5+) which is currently exploited as a possible therapeutic agent for various oxygen-radical related disorders.  相似文献   

5.
The Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (Mn(III)TE-2-PyP(5+)) is a potent superoxide dismutase (SOD) mimic in vitro and was beneficial in rodent models of oxidative stress pathologies. Its high activity has been ascribed to both the favorable redox potential of its metal center and to the electrostatic facilitation assured by the four positive charges encircling the metal center. Its comparison with the non-alkylated, singly charged analogue Mn(III) beta-octabromo meso-tetrakis(2-pyridyl)porphyrin (Mn(III)Br(8)T-2-PyP(+)) enabled us to evaluate the electrostatic contribution to the catalysis of O(2)() dismutation. Both compounds exhibit nearly identical metal-centered redox potential for Mn(III)/Mn(II) redox couple: +228 mV for Mn(III)TE-2-PyP(5+) and +219 mV versus NHE for Mn(III)Br(8)T-2-PyP(+). The eight electron-withdrawing beta pyrrolic bromines contribute equally to the redox properties of the parent Mn(III)T-2-PyP(+) as do four quaternized cationic meso ortho pyridyl nitrogens. However, the SOD-like activity of the highly charged Mn(III)TE-2-PyP(5+) is >100-fold higher (log k(cat) = 7.76) than that of the singly charged Mn(III)Br(8)T-2-PyP(+) (log k(cat) = 5.63). The kinetic salt effect showed that the catalytic rate constants of the Mn(III)TE-2-PyP(5+) and of its methyl analogue, Mn(III)TM-2-PyP(5+), are exactly 5-fold more sensitive to ionic strength than is the k(cat) of Mn(III)Br(8)T-2-PyP(+), which parallels the charge ratio of these compounds. Interestingly, only a small effect of ionic strength on the rate constant was found in the case of penta-charged para (Mn(III)TM-4-PyP(5+)) and meta isomers (Mn(III)TM-3-PyP(5+)), indicating that the placement of the positive charges in the close proximity of the metal center (ortho position) is essential for the electrostatic facilitation of O(2)() dismutation.  相似文献   

6.
Severe pain syndromes reduce the quality of life of patients with inflammatory and neoplastic diseases, partly because reduced analgesic effectiveness with chronic opiate therapy (i.e., tolerance) leads to escalating doses and distressing side effects. Peroxynitrite-mediated nitroxidative stress in the dorsal horn of the spinal cord plays a critical role in the induction and development of antinociceptive tolerance to morphine. This provides a valid pharmacological basis for developing peroxynitrite scavengers as potent adjuncts to opiates in the management of pain. The cationic Mn(III) ortho-N-alkylpyridylporphyrins MnTE-2-PyP(5+) and MnTnHex-2-PyP(5+) are among the most potent peroxynitrite scavengers, with nearly identical scavenging rate constants (approximately 10(7) M(-1) s(-1)). Yet, MnTnHex-2-PyP(5+) is significantly more lipophilic and more bioavailable and, in turn, was 30-fold more effective in blocking the development of morphine antinociceptive tolerance than MnTE-2-PyP(5+) using the hot-plate test in a well-characterized murine model. The hydrophilic MnTE-2-PyP(5+) and the lipophilic MnTnHex-2-PyP(5+) were 10- and 300-fold, respectively, more effective in inhibiting morphine tolerance than the hydrophilic Fe(III) porphyrin FeTM-4-PyP(5+). Both Mn porphyrins decreased levels of TNF-alpha, IL-1 beta, and IL-6 to normal values. Neither of them affected acute morphine antinociceptive effects nor caused motor function impairment. Also neither was able to reverse already established morphine tolerance. We have recently shown that the anionic porphyrin Mn(III) tetrakis(4-carboxylatophenyl)porphyrin is selective in removing ONOO(-) over O(2)(-), but at approximately 2 orders of magnitude lower efficacy than MnTE-2-PyP(5+) and MnTnHex-2-PyP(5+), which in turn parallels up to 100-fold lower ability to reverse morphine tolerance. These data (1) support the role of peroxynitrite rather than superoxide as a major mechanism in blocking the development of morphine tolerance and (2) show that lipophilicity is a critical parameter in enhancing the potency of such novel peroxynitrite scavengers.  相似文献   

7.
Mn(III) ortho-tetrakis(N-ethylpyridinium-2-yl)porphyrin (Mn(III)TE-2-PyP(5+)) effectively scavenges reactive oxygen and nitrogen species in vitro, and protects in vivo, in different rodent models of oxidative stress injuries. Further, Mn(III)TE-2-PyP(5+) was shown to be readily reduced by cellular reductants such as ascorbic acid and glutathione. We now show that tetrahydrobiopterin (BH(4)) is also able to reduce the metal center. Under anaerobic conditions, in phosphate-buffered saline (pH 7.4) at 25 +/- 0.1 degrees C, reduction of Mn(III)TE-2-PyP(5+) occurs through two reaction steps with rate constants k(1) = 1.0 x 10(4) M(-1) s(-1) and k(2) = 1.5 x 10(3) M(-1) s(-1). We ascribe these steps to the formation of tetrahydrobiopterin radical (BH(4)(.+)) (k(1)) that then undergoes oxidation to 6,7-dihydro-8H-biopterin (k(2)), which upon rearrangement gives rise to 7,8-dihydrobiopterin (7,8-BH(2)). Under aerobic conditions, Mn(III)TE-2-PyP(5+) catalytically oxidizes BH(4). This is also true for its longer chain alkyl analog, Mn(III) ortho-tetrakis(N-n-octylpyridinium-2-yl)porphyrin. The reduced Mn(II) porphyrin cannot be oxidized by 7,8-BH(2) or by l-sepiapterin. The data are discussed with regard to the possible impact of the interaction of Mn(III)TE-2-PyP(5+) with BH(4) on endothelial cell proliferation and hence on tumor antiangiogenesis via inhibition of nitric oxide synthase.  相似文献   

8.
The Mn porphyrins of k(cat)(O(2)(.-)) as high as that of a superoxide dismutase enzyme and of optimized lipophilicity have already been synthesized. Their exceptional in vivo potency is at least in part due to their ability to mimic the site and location of mitochondrial superoxide dismutase, MnSOD. MnTnHex-2-PyP(5+) is the most studied among lipophilic Mn porphyrins. It is of remarkable efficacy in animal models of oxidative stress injuries and particularly in central nervous system diseases. However, when used at high single and multiple doses it becomes toxic. The toxicity of MnTnHex-2-PyP(5+) has been in part attributed to its micellar properties, i.e., the presence of polar cationic nitrogens and hydrophobic alkyl chains. The replacement of a CH(2) group by an oxygen atom in each of the four alkyl chains was meant to disrupt the porphyrin micellar character. When such modification occurs at the end of long alkyl chains, the oxygens become heavily solvated, which leads to a significant drop in the lipophilicity of porphyrin. However, when the oxygen atoms are buried deeper within the long heptyl chains, their excessive solvation is precluded and the lipophilicity preserved. The presence of oxygens and the high lipophilicity bestow the exceptional chemical and physical properties to Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP(5+). The high SOD-like activity is preserved and even enhanced: log k(cat)(O(2)(.-))=7.83 vs 7.48 and 7.65 for MnTnHex-2-PyP(5+) and MnTnHep-2-PyP(5+), respectively. MnTnBuOE-2-PyP(5+) was tested in an O(2)(.-) -specific in vivo assay, aerobic growth of SOD-deficient yeast, Saccharomyces cerevisiae, where it was fully protective in the range of 5-30 μM. MnTnHep-2-PyP(5+) was already toxic at 5 μM, and MnTnHex-2-PyP(5+) became toxic at 30 μM. In a mouse toxicity study, MnTnBuOE-2-PyP(5+) was several-fold less toxic than either MnTnHex-2-PyP(5+) or MnTnHep-2-PyP(5+).  相似文献   

9.
Due to the ability to easily accept and donate electrons Mn(III)N-alkylpyridylporphyrins (MnPs) can dismute O(2)(·-), reduce peroxynitrite, but also generate reactive species and behave as pro-oxidants if conditions favour such action. Herein two ortho isomers, MnTE-2-PyP(5+), MnTnHex-2-PyP(5+), and a meta isomer MnTnHex-3-PyP(5+), which differ greatly with regard to their metal-centered reduction potential, E(1/2) (Mn(III)P/Mn(II)P) and lipophilicity, were explored. Employing Mn(III)P/Mn(II)P redox system for coupling with ascorbate, these MnPs catalyze ascorbate oxidation and thus peroxide production. Consequently, cancer oxidative burden may be enhanced, which in turn would suppress its growth. Cytotoxic effects on Caco-2, Hela, 4T1, HCT116 and SUM149 were studied. When combined with ascorbate, MnPs killed cancer cells via peroxide produced outside of the cell. MnTE-2-PyP(5+) was the most efficacious catalyst for peroxide production, while MnTnHex-3-PyP(5+) is most prone to oxidative degradation with H(2) , and thus the least efficacious. A 4T1 breast cancer mouse study of limited scope and success was conducted. The tumour oxidative stress was enhanced and its microvessel density reduced when mice were treated either with ascorbate or MnP/ascorbate; the trend towards tumour growth suppression was detected.  相似文献   

10.
The Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnIIITE-2-PyP5+ (AEOL-10113) has proven effective in treating oxidative stress-induced conditions including cancer, radiation damage, diabetes, and central nervous system trauma. The ortho cationic pyridyl nitrogens of MnTE-2-PyP5+ are essential for its high antioxidant potency. The exceptional ability of MnIIITE-2-PyP5+ to dismute O2.- parallels its ability to reduce ONOO- and CO3-. Decreasing levels of these species are considered its predominant mode of action, which may also involve redox regulation of signaling pathways. Recently, Ferrer-Sueta at al. (Free Radic. Biol. Med. 41:503-512; 2006) showed, with submitochondrial particles, that>or=3 microM MnIIITE-2-PyP5+ was able to protect components of the mitochondrial electron transport chain from peroxynitrite-mediated damage. Our study complements their data in showing, for the first time that micromolar mitochondrial concentrations of MnIIITE-2-PyP5+ are obtainable in vivo. For this study we have developed a new and sensitive method for MnIIITE-2-PyP5+ determination in tissues. The method is based on the exchange of porphyrin Mn2+ with Zn2+, followed by the HPLC/fluorescence detection of ZnIITE-2-PyP4+. At 4 and 7 h after a single 10 mg/kg intraperitoneal administration of MnIIITE-2-PyP5+, the mice (8 in total) were anesthetized and perfused with saline. Mitochondria were then isolated by the method of Mela and Seitz (Methods Enzymol.55:39-46; 1979). We found MnIIITE-2-PyP5+ localized in heart mitochondria to 2.95 ng/mg protein. Given the average value of mitochondrial volume of 0.6 microL/mg protein, the calculated MnIIITE-2-PyP5+ concentration is 5.1 microM, which is sufficient to protect mitochondria from oxidative damage. This study establishes, for the first time, that MnIIITE-2-PyP5+, a highly charged metalloporphyrin, is capable of entering mitochondria in vivo at levels sufficient to exert there its antioxidant action; such a result encourages its development as a prospective therapeutic agent.  相似文献   

11.
We have investigated the protective effects of water-soluble cationic Mn(III) porphyrins against peroxynitrite (ONOO-)-induced DNA damage in the cells of Salmonella typhimurium TA4107/pSK1002 and lipid peroxidation of red blood cell membranes. Mn(III) tetrakis (N-methylpyridinium-4-yl) porphine (TMPyP) and the brominated form, Mn(III) octabromo-tetrakis (N-methylpyridinium-4-yl) porphine (OBTMPyP) effectively reduced the damage and peroxidation induced by N-morpholino sydnonimine (SIN-1), which gradually generates ONOO- from O2*- and *NO produced through hydrolysis. Mn(III)OBTMPyP became 10-fold more active than the non-brominated form. In the presence of authentic ONOO-, the Mn(III) porphyrins were ineffective against damage and strongly enhanced lipid peroxidation, while the coexistence of ascorbic acid inhibited peroxidation. Using a diode array spectrophotometry, the reactions of Mn(III)TMPyP with authentic ONOO- and SIN-1 were measured. Mn(III)TMPyP is known to be catalytic for ONOO- decomposition in the presence of antioxidants. OxoMn(IV)TMPyP with SIN-1 was rapidly reduced back to Mn(III) without adding any oxidants. Further, in the SIN-1 system, the concentration of NO2- and NO3- were colorimetrically determined by Griess reaction based on the two-step diazotization. NO2- increased by addition of Mn(III) porphyrin and the ratio of NO2- to NO3- was 4-7 times higher than that (1.05) of SIN-1 alone. This result suggests that O2*- from SIN-1 acts as a reductant and *NO cogenerated is oxidized to NO2-, a primarily decomposition product of *NO. Under the pathological conditions where biological antioxidants are depleted and ONOO- and O2*- are extensively generated, the Mn(III) porphyrins will effectively cycle ONOO- decomposition using O2*-.  相似文献   

12.
Solution properties of three manganese porphyrins, in monomeric form, were investigated. These were the 'picket-fence-like' porphyrin Mn(III)-alpha,alpha,alpha,beta- tetra-ortho(N-methylisonicotinamidophenyl)porphyrin (Mn(III)PFP) and two 'planar unhindered' porphyrins, the Mn(III)TMPyP (tetrakis (4-N-methylpyridyl)porphyrin) and Mn(III)TAP (tetra(4-N,N,N-trimethylanilinium)porphyrin). The porphyrin properties studied were: the absorption spectra in their manganic and manganous forms; acid/base properties of the aquo complexes; the effect of potential axial ligands (up to a concentration of 0.1 mol dm-3) and their one electron reduction potentials. Knowing these properties, the reaction of the Mn(III) porphyrins with the superoxide radical and other reducing radicals were studied using the pulse radiolysis technique. The second-order reaction rate constant of O2- with the Mn(III) porphyrins, which governs the catalytic efficiency of the metalloporphyrins upon the disproportionation of the superoxide radical, was 5.1 X 10(7) to 4.0 X 10(5) dm3 mol-1 s-1, depending on the pH and the nature of the metalloporphyrin. These values are at least one order of magnitude lower than found for Fe(III)TMPyP. One electron reduction of the three Mn(III) porphyrins by eaq-, CO2-, CH2OH and (CH3)2COH had similar second-order rate constants (10(9)-10(10) dm3 mol-1 s-1). That for (CH3)2(CH2)COH was about 10(5) dm3 mol-1 s-1. Reduction in all cases produced the corresponding Mn(II) porphyrin and no intermediate was found. The oxidation reaction of the Mn(II) porphyrins by O2- was approximately two orders of magnitude faster when compared to the reduction of Mn(III) porphyrins with the same radical. Since the reactivities of O2- towards the three manganese (III) compounds follow their reduction potentials, it is suggested that these reactions are governed by an outer-sphere mechanism. This suggestion is corroborated by the finding that water molecules acting as axial ligands, in these aqueous solution systems, are not replaced by another potential ligand when the latter is in the concentration range of 100 mM or less.  相似文献   

13.
Jiang W  Xie J  Nørgaard H  Bollinger JM  Krebs C 《Biochemistry》2008,47(15):4477-4483
We recently showed that the class Ic ribonucleotide reductase (RNR) from the human pathogen Chlamydia trachomatis ( Ct) uses a Mn (IV)/Fe (III) cofactor in its R2 subunit to initiate catalysis [Jiang, W., Yun, D., Saleh, L., Barr, E. W., Xing, G., Hoffart, L. M., Maslak, M.-A., Krebs, C., and Bollinger, J. M., Jr. (2007) Science 316, 1188-1191]. The Mn (IV) site of the novel cofactor functionally replaces the tyrosyl radical used by conventional class I RNRs to initiate substrate radical production. As a first step in evaluating the hypothesis that the use of the alternative cofactor could make the RNR more robust to reactive oxygen and nitrogen species [RO(N)S] produced by the host's immune system [H?gbom, M., Stenmark, P., Voevodskaya, N., McClarty, G., Gr?slund, A., and Nordlund, P. (2004) Science 305, 245-248], we have examined the reactivities of three stable redox states of the Mn/Fe cluster (Mn (II)/Fe (II), Mn (III)/Fe (III), and Mn (IV)/Fe (III)) toward hydrogen peroxide. Not only is the activity of the Mn (IV)/Fe (III)-R2 intermediate stable to prolonged (>1 h) incubations with as much as 5 mM H 2O 2, but both the fully reduced (Mn (II)/Fe (II)) and one-electron-reduced (Mn (III)/Fe (III)) forms of the protein are also efficiently activated by H 2O 2. The Mn (III)/Fe (III)-R2 species reacts with a second-order rate constant of 8 +/- 1 M (-1) s (-1) to yield the Mn (IV)/Fe (IV)-R2 intermediate previously observed in the reaction of Mn (II)/Fe (II)-R2 with O 2 [Jiang, W., Hoffart, L. M., Krebs, C., and Bollinger, J. M., Jr. (2007) Biochemistry 46, 8709-8716]. As previously observed, the intermediate decays by reduction of the Fe site to the active Mn (IV)/Fe (III)-R2 complex. The reaction of the Mn (II)/Fe (II)-R2 species with H 2O 2 proceeds in three resolved steps: sequential oxidation to Mn (III)/Fe (III)-R2 ( k = 1.7 +/- 0.3 mM (-1) s (-1)) and Mn (IV)/Fe (IV)-R2, followed by decay of the intermediate to the active Mn (IV)/Fe (III)-R2 product. The efficient reaction of both reduced forms with H 2O 2 contrasts with previous observations on the conventional class I RNR from Escherichia coli, which is efficiently converted from the fully reduced (Fe 2 (II/II)) to the "met" (Fe 2 (III/III)) form [Gerez, C., and Fontecave, M. (1992) Biochemistry 31, 780-786] but is then only very inefficiently converted from the met to the active (Fe 2 (III/III)-Y (*)) form [Sahlin, M., Sj?berg, B.-M., Backes, G., Loehr, T., and Sanders-Loehr, J. (1990) Biochem. Biophys. Res. Commun. 167, 813-818].  相似文献   

14.
The reduction of manganese(III) meso-tetrakis((N-ethyl)pyridinium-2-yl)porphyrin (MnTE-2-PyP) to manganese(II) was catalyzed by flavoenzymes such as xanthine oxidase and glucose oxidase, and by Complex I and Complex II of the mitochondrial electron transport chain. The reduced manganese porphyrin has been previously shown to react rapidly with superoxide and carbonate radical anion. Herein, we describe the reaction of a reduced manganese porphyrin with peroxynitrite that proceeds as a two-electron process, has a rate constant greater than 7 x 10(6) M(-1) s(-1) (at pH 7.25 and 37 degrees C), and produces nitrite and the Mn(IV)Porphyrin. The Mn(II)/Mn(IV) redox cycle was used to divert peroxynitrite from the inactivation of succinate dehydrogenase. In a typical experiment, 5 microM MnTE-2-PyP in the presence of excess succinate was able to protect the succinate dehydrogenase and succinate oxidase activities of submitochondrial particles challenged with a cumulative dose of 140 microM peroxynitrite infused in the course of 2 h. Other MnPorphyrins that are reduced more slowly do not provide as much protection underscoring the rate limiting character of the reduction step. The data presented here serve to rationalize the pharmacological action of MnPorphyrins as peroxynitrite reduction catalysts in vivo and opens avenues for the development of MnPorphyrins to protect mitochondria from oxidative damage.  相似文献   

15.
Metalloporphyrins are potent inhibitors of lipid peroxidation   总被引:4,自引:0,他引:4  
The objectives of these studies were to determine whether metalloporphyrins could inhibit lipid peroxidation, characterize factors that influence their potency and compare their potency to prototypical antioxidants. Lipid peroxidation was initiated with iron and ascorbate in rat brain homogenates and the formation of thiobarbituric acid reactive species was used as an index of lipid peroxidation. Metalloporphyrins were found to be a novel and potent class of lipid peroxidation inhibitors. Inhibition of lipid peroxidation by metalloporphyrins was dependent on the transition metal ligated to the porphyrin, indicating that metal centered redox chemistry was important to the mechanism of their antioxidant activities. Manganese porphyrins with the highest superoxide dismutase (SOD) activities, MnOBTM-4-PyP and MnTM-2-PyP (charges are omitted throughout text for clarity), were the most potent inhibitors of lipid peroxidation with calculated IC50s of 1.3 and 1.0 microM, respectively. These manganese porphyrins were 2 orders of magnitude more potent than either trolox (IC50 = 204 microM) or rutin (IC50 = 112 microM). The potencies of the manganese porphyrins were related not only to their redox potentials and SOD activities, but also to other factors that may contribute to their ability to act as electron acceptors. The broad array of antioxidant activities possessed by metalloporphyrins make them attractive therapeutic agents in disease states that involve the overproduction of reactive oxygen species.  相似文献   

16.
Peroxynitrite (PN), the product of the diffusion-limited reaction between nitric oxide (*NO) and superoxide (O*-(2)), represents a relevant mediator of oxidative modifications in low-density lipoprotein (LDL). This work shows for the first time the simultaneous action of low-controlled fluxes of PN and *NO on LDL oxidation in terms of lipid and protein modifications as well as oxidized lipid-protein adduct formation. Fluxes of PN (e.g., 1 microM min(-1)) initiated lipid oxidation in LDL as measured by conjugated dienes and cholesteryl ester hydroperoxides formation. Oxidized-LDL exhibited a characteristic fluorescent emission spectra (lambda(exc) = 365 nm, lambda(max) = 417 nm) in parallel with changes in both the free amino groups content and the relative electrophoretic mobility of the particle. Physiologically relevant fluxes of *NO (80-300 nM min(-1)) potently inhibited these PN-dependent oxidative processes. These results are consistent with PN-induced adduct formation between lipid oxidation products and free amino groups of LDL in a process prevented by the simultaneous presence of *NO. The balance between rates of PN and *NO production in the vascular wall will critically determine the final extent of LDL oxidative modifications leading or not to scavenger receptor-mediated LDL uptake and foam cell formation.  相似文献   

17.
Mn(III) tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+), a potent catalytic superoxide and peroxynitrite scavenger, has been beneficial in several oxidative stress-related diseases thus far examined. Pharmacokinetic studies are essential for the better assessment of the therapeutic potential of MnTE-2-PyP(5+) and similar compounds, as well as for the modulation of their bioavailability and toxicity. Despite high hydrophilicity, this drug entered mitochondria after a single 10 mg/kg intraperitoneal injection at levels high enough (5.1 muM; 2.95 ng/mg protein) to protect against superoxide/peroxynitrite damage. Utilizing the same analytical approach, which involves the reduction of MnTE-2-PyP(5+) followed by the exchange of Mn(2+) with Zn(2+) and HPLC/fluorescence detection of ZnTE-2-PyP(4+), we measured levels of MnTE-2-PyP(5+) in mouse plasma, liver, kidney, lung, heart, spleen, and brain over a period of 7 days after a single intraperitoneal injection of 10 mg/kg. Two B6C3F1 female mice per time point were used. The pharmacokinetic profile in plasma and organs was complex; thus a noncompartmental approach was utilized to calculate the area under the curve, c(max), t(max), and drug elimination half-time (t(1/2)). In terms of levels of MnTE-2-PyP(5+) found, the organs can be classified into three distinct groups: (1) high levels (kidney, liver, and spleen), (2) moderate levels (lung and heart), and (3) low levels (brain). The maximal levels in plasma, kidney, spleen, lung, and heart are reached within 45 min, whereas in the case of liver a prolonged absorption phase was observed, with the maximal concentration reached at 8 h. Moreover, accumulation of the drug in brain continued beyond the time of the experiment (7 days) and is likely to be driven by the presence of negatively charged phospholipids. For tissues other than brain, a slow elimination phase (single exponential decay, t(1/2)=60 to 135 h) was observed. The calculated pharmacokinetic parameters will be used to design optimal dosing regimens in future preclinical studies utilizing this and similar compounds.  相似文献   

18.
The oxidation of ibuprofen with H2O2 catalysed by Horseradish peroxidase (HRP), Cl8TPPS4Fe(III)(OH2)2 and Cl8TPPS4Mn(III)(OH2)2 in AOT reverse micelles gives 2-(4'-isobutyl-phenyl)ethanol (5) and p-isobutyl acetophenone (6) in moderate yields. The reaction of ibuprofen (2) with H2O2 catalysed by HRP form carbon radicals by the oxidative decarboxylation, which on reaction with molecular oxygen to form hydroperoxy intermediate, responsible for the formation of the products 5 and 6. The yields of different oxidation products depend on the pH, the water to surfactant ratio (Wo), concentration of Cl8TPPS4Fe(III)(OH2)2 and Cl8TPPS4Mn(III)(OH2)2 and amount of molecular oxygen present in AOT reverse micelles. The formation of 2-(4'-isobutyl phenyl)ethanol (5) may be explained by the hydrogen abstraction from ibuprofen by high valent oxo-manganese(IV) radical cation, followed by decarboxylation and subsequent recombination of either free hydroxy radical or hydroxy iron(III)/manganese(III) porphyrins. The over-oxidation of 5 with high valent oxo-manganese, Mn(IV)radical cation intermediate form 6 in AOT reverse micelles by abstraction and recombination mechanism.  相似文献   

19.
We have studied the reaction kinetics of ten manganese porphyrins, differing in their meso substituents, with peroxynitrite (ONOO-) and carbonate radical anion (CO3.) using stopped-flow and pulse radiolysis, respectively. Rate constants for the reactions of Mn(III) porphyrins with ONOO- ranged from 1 x 10(5) to 3.4 x 10(7) m(-1) s(-1) and correlated well with previously reported kinetic and thermodynamic data that reflect the resonance and inductive effects of the substituents on the porphyrin ring. Rate constants for the reactions of Mn(III) porphyrins with CO3. ranged from 2 x 10(8) to 1.2 x 10(9) m(-1)s(-1) at pH 相似文献   

20.
Using current chemotherapy protocols, over 55% of lymphoma patients fail treatment. Novel agents are needed to improve lymphoma survival. The manganese porphyrin, MnTE-2-PyP(5+), augments glucocorticoid-induced apoptosis in WEHI7.2 murine thymic lymphoma cells, suggesting that it may have potential as a lymphoma therapeutic. However, the mechanism by which MnTE-2-PyP(5+) potentiates glucocorticoid-induced apoptosis is unknown. Previously, we showed that glucocorticoid treatment increases the steady state levels of hydrogen peroxide ([H(2)O(2)](ss)) and oxidizes the redox environment in WEHI7.2 cells. In the current study, we found that when MnTE-2-PyP(5+) is combined with glucocorticoids, it augments dexamethasone-induced oxidative stress however, it does not augment the [H(2)O(2)](ss) levels. The combined treatment depletes GSH, oxidizes the 2GSH:GSSG ratio, and causes protein glutathionylation to a greater extent than glucocorticoid treatment alone. Removal of the glucocorticoid-generated H(2)O(2) or depletion of glutathione by BSO prevents MnTE-2-PyP(5+) from augmenting glucocorticoid-induced apoptosis. In combination with glucocorticoids, MnTE-2-PyP(5+) glutathionylates p65 NF-κB and inhibits NF-κB activity. Inhibition of NF-κB with SN50, an NF- κB inhibitor, enhances glucocorticoid-induced apoptosis to the same extent as MnTE-2-PyP(5+). Taken together, these findings indicate that: 1) H(2)O(2) is important for MnTE-2-PyP(5+) activity; 2) Mn-TE-2-PyP(5+) cycles with GSH; and 3) MnTE-2-PyP(5+) potentiates glucocorticoid-induced apoptosis by glutathionylating and inhibiting critical survival proteins, including NF-κB. In the clinic, over-expression of NF-κB is associated with a poor prognosis in lymphoma. MnTE-2-PyP(5+) may therefore, synergize with glucocorticoids to inhibit NF-κB and improve current treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号