首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yuan, Huichin, Edward P. Ingenito, and Béla Suki.Dynamic properties of lung parenchyma: mechanical contributions offiber network and interstitial cells. J. Appl.Physiol. 83(5): 1420-1431, 1997.We investigatedthe contributions of the connective tissue fiber network andinterstitial cells to parenchymal mechanics in a surfactant-freesystem. In eight strips of uniform dimension from guinea pig lung, weassessed the storage (G) and loss (G") moduli by usingpseudorandom length oscillations containing a specially designed set ofseven frequencies from 0.07 to 2.4 Hz at baseline, during methacholine(MCh) challenge, and after death of the interstitial cells.Measurements were made at mean forces of 0.5 and 1 g and strainamplitudes of 5, 10, and 15% and were repeated 12 h later in the same,but nonviable samples. The results were interpreted using a linearviscoelastic model incorporating both tissue damping (G) and stiffness(H). The G and G" increased linearly with the logarithmof frequency, and both G and H showed negative strain amplitude andpositive mean force dependence. After MCh challenge, the G andG" spectra were elevated uniformly, and G and H increased by<15%. Tissue stiffness, strain amplitude, and mean force dependencewere virtually identical in the viable and nonviable samples. The G andhence energy dissipation were ~10% smaller in the nonviable samplesdue to absence of actin-myosin cross-bridge cycling. We conclude thatthe connective tissue network may also dominate parenchymal mechanicsin the intact lung, which can be influenced by the tone or contractionof interstitial cells.

  相似文献   

2.
Shen, X., V. Bhargava, G. R. Wodicka, C. M. Doerschuk, S. J. Gunst, and R. S. Tepper. Greater airway narrowing in immature thanin mature rabbits during methacholine challenge. J. Appl. Physiol. 81(6): 2637-2643, 1996.It hasbeen demonstrated that methacholine (MCh) challenge produces a greaterincrease in lung resistance in immature than in mature rabbits (R. S. Tepper, X. Shen, E. Bakan, and S. J. Gunst.J. Appl. Physiol. 79: 1190-1198, 1995). To determine whether this maturational difference in the response to MCh was primarily related to changes in airway resistance (Raw) or changes in tissue resistance, we assessed airway narrowing in1-, 2-, and 6-mo-old rabbits during intravenous MCh challenge (0.01-5.0 mg/kg). Airway narrowing was determined frommeasurements of Raw in vivo and from morphometric measurements on lungsections obtained after rapidly freezing the lung after the MChchallenge. The fold increase in Raw was significantly greater for 1- and 2-mo-old animals than for 6-mo-old animals. Similarly, the degree of airway narrowing assessed morphometrically was significantly greaterfor 1- and 2-mo-old animals than for 6-mo-old animals. The foldincrease in Raw was highly correlated with the degree of airwaynarrowing assessed morphometrically(r2 = 0.82, P < 0.001). We conclude that thematurational difference in the effect of MCh on lung resistance isprimarily caused by greater airway narrowing in the immature rabbits.

  相似文献   

3.
Wang, C. G., J. J. Almirall, C. S. Dolman, R. J. Dandurand,and D. H. Eidelman. In vitro bronchial responsiveness in twohighly inbred rat strains. J. Appl.Physiol. 82(5): 1445-1452, 1997.We investigatedmethacholine (MCh)-induced bronchoconstriction in explanted airwaysfrom Fischer and Lewis rats. Lung explants, 0.5- to 1.0-mm thick, wereprepared from agarose-inflated lungs of anesthetized 8- to 12-wk-oldmale rats. After overnight culture, videomicroscopy was used to recordbaseline images of the individual airways. Dose-response curves to MChwere then constructed by repeated administration of MCh; airways werereimaged 10 min after each MCh administration. Airway internal luminalarea(Ai)was measured at successive MCh concentrations from109 to101 M. Inaddition to the effective concentration leading to 50% of the achievedmaximal response, we also determined the effective concentrationleading to a 40% reduction inAi.Both the effective concentration leading to 50% of the achievedmaximal response and the concentration leading to a 40% reduction inAiwere significantly lower among Fischer rat airways(P < 0.05). Airway closure was morecommon among Fischer rat airways (17%) than among those of Lewis rats(7.5%). Responsiveness of Fischer rat airways was more heterogeneousthan among Lewis airways; a larger number of Fischer rat airwaysexhibited high sensitivity to MCh. There was no relationship betweenresponsiveness and baselineAiin either strain. In a second experiment, we measured the rate ofcontraction of explanted airways from lungs inflated to 50, 75, and100% of total lung capacity. The average rate of contraction in thefirst 15 s was higher in Fischer rat airways at each inflation volume.These data indicate that the hyperresponsiveness of the Fischer rat reflects the responsiveness of individual airways throughout the airwaytree and are consistent with the notion that in this model hyperresponsiveness is an intrinsic property of airway smooth muscle.

  相似文献   

4.
Kaczka, David W., Edward P. Ingenito, Bela Suki, and KennethR. Lutchen. Partitioning airway and lung tissue resistances inhumans: effects of bronchoconstriction. J. Appl.Physiol. 82(5): 1531-1541, 1997.The contributionof airway resistance(Raw) and tissue resistance(Rti) to totallung resistance(RL)during breathing in humans is poorly understood. We have recentlydeveloped a method for separating Rawand Rti from measurements ofRLand lung elastance (EL)alone. In nine healthy, awake subjects, we applied a broad-band optimalventilator waveform (OVW) with energy between 0.156 and 8.1 Hz thatsimultaneously provides tidal ventilation. In four of the subjects,data were acquired before and during a methacholine (MCh)-bronchoconstricted challenge. TheRLandELdata were first analyzed by using a model with a homogeneous airwaycompartment leading to a viscoelastic tissue compartment consisting oftissue damping and elastance parameters. Our OVW-based estimates ofRaw correlated well with estimatesobtained by using standard plethysmography and were responsive toMCh-induced bronchoconstriction. Our data suggest thatRti comprises ~40% of totalRLat typical breathing frequencies, which corresponds to ~60% ofintrathoracic RL. During mildMCh-induced bronchoconstriction, Rawaccounts for most of the increase inRL. At high doses of MCh, therewas a substantial increase in RLat all frequencies and inEL athigher frequencies. Our analysis showed that bothRaw andRti increase, but most of the increaseis due to Raw. The data also suggestthat widespread peripheral constriction causes airway wall shunting toproduce additional frequency dependence inEL.

  相似文献   

5.
Peták, Ferenc, Zoltán Hantos, ÁgnesAdamicza, Tibor Asztalos, and Peter D. Sly. Methacholine-inducedbronchoconstriction in rats: effects of intravenous vs. aerosoldelivery. J. Appl. Physiol. 82(5):1479-1487, 1997.To determine the predominant site of action ofmethacholine (MCh) on lung mechanics, two groups of open-chestSprague-Dawley rats were studied. Five rats were measured duringintravenous infusion of MCh (iv group), with doubling of concentrationsfrom 1 to 16 µg · kg1 · min1.Seven rats were measured after aerosol administration of MCh with dosesdoubled from 1 to 16 mg/ml (ae group). Pulmonary input impedance(ZL) between 0.5 and 21 Hz wasdetermined by using a wave-tube technique. A model containing airwayresistance (Raw) and inertance (Iaw) and parenchymal damping (G) andelastance (H) was fitted to theZL spectra. In the iv group, MChinduced dose-dependent increases in Raw [peak response 270 ± 9 (SE) % of the control level; P < 0.05] and in G (340 ± 150%;P < 0.05), with no increase inIaw (30 ± 59%) orH (111 ± 9%). In the ae group, thedose-dependent increases in Raw (191 ± 14%;P < 0.05) andG (385 ± 35%; P < 0.05) were associated with a significant increase in H (202 ± 8%; P < 0.05).Measurements with different resident gases [air vs. neon-oxygenmixture, as suggested (K. R. Lutchen, Z. Hantos, F. Peták,Á. Adamicza, and B. Suki. J. Appl.Physiol. 80: 1841-1849, 1996)] in thecontrol and constricted states in another group of rats suggested thatthe entire increase seen in G during the ivchallenge was due to ventilation inhomogeneity, whereas the aechallenge might also have involved real tissue contractions viaselective stimulation of the muscarinic receptors.

  相似文献   

6.
Shen, X., S. J. Gunst, and R. S. Tepper. Effect oftidal volume and frequency on airway responsiveness in mechanically ventilated rabbits. J. Appl. Physiol.83(4): 1202-1208, 1997.We evaluated the effects of the rate andvolume of tidal ventilation on airway resistance (Raw) duringintravenous methacholine (MCh) challenge in mechanically ventilatedrabbits. Five rabbits were challenged at tidal volumes of 5, 10, and 20 ml/kg at a frequency of 15 breaths/min and also under static conditions(0 ml/kg tidal volume). Four rabbits were subjected to MCh challenge atfrequencies of 6 and 30 breaths/min with a tidal volume of 10 ml/kg andalso under static conditions. In both groups, the increase in Raw with MCh challenge was significantly greater under static conditions thanduring tidal ventilation at any frequency or volume. Increases in thevolume or frequency of tidal ventilation resulted in significant decreases in Raw in response to MCh. We conclude that tidal breathing suppresses airway responsiveness in rabbits in vivo. The suppression ofnarrowing in response to MCh increases as the magnitude of the volumeor the frequency of the tidal oscillations is increased. Our findingssuggest that the effect of lung volume changes on airway responsivenessin vivo is primarily related to the stretch of airway smooth muscle.

  相似文献   

7.
Brown, Robert H., Wayne Mitzner, and Elizabeth M. Wagner.Interaction between airway edema and lung inflation onresponsiveness of individual airways in vivo. J. Appl.Physiol. 83(2): 366-370, 1997.Inflammatorychanges and airway wall thickening are suggested to cause increasedairway responsiveness in patients with asthma. In fivesheep, the dose-response relationships of individual airways weremeasured at different lung volumes to methacholine (MCh) before andafter wall thickening caused by the inflammatory mediator bradykininvia the bronchial artery. At 4 cmH2O transpulmonary pressure(Ptp), 5 µg/ml MCh constricted the airways to a maximum of 18 ± 3%. At 30 cmH2O Ptp, MCh resultedin less constriction (to 31 ± 5%). Bradykinin increased airwaywall area at 4 and 30 cmH2O Ptp(159 ± 6 and 152 ± 4%, respectively;P < 0.0001). At 4 cmH2O Ptp, bradykinin decreasedairway luminal area (13 ± 2%; P < 0.01), and the dose-response curve was significantly lower (P = 0.02). At 30 cmH2O, postbradykinin, the maximalairway narrowing was not significantly different (26 ± 5%;P = 0.76). Bradykinin produced substantial airway wall thickening and slight potentiation ofthe MCh-induced airway constriction at low lung volume. At high lung volume, bradykinin increased wall thickness but had no effecton the MCh-induced airway constriction. We conclude that inflammatoryfluid leakage in the airways cannot be a primary cause of airwayhyperresponsiveness.

  相似文献   

8.
Nagase, Takahide, Hirotoshi Matsui, Tomoko Aoki, YasuyoshiOuchi, and Yoshinosuke Fukuchi. Lung tissue behavior in the mouseduring constriction induced by methacholine and endothelin-1. J. Appl. Physiol. 81(6):2373-2378, 1996.Recently, mice have been extensively used toinvestigate the pathogenesis of pulmonary disease because appropriatemurine models, including transgenic mice, are being increasinglydeveloped. However, little information about the lung mechanics of miceis currently available. We questioned whether lung tissue behavior andthe coupling between dissipative and elastic processes, hysteresivity(), in mice would be different from those in the other species. Toaddress this question, we investigated whether tissue resistance (Rti)and  in mice would be affected by varying lung volume, constrictioninduced by methacholine (MCh) and endothelin-1 (ET-1), andhigh-lung-volume challenge during induced constriction. From measuredtracheal flow and tracheal and alveolar pressures in open-chest ICRmice during mechanical ventilation [tidal volume = 8 ml/kg,frequency (f) = 2.5 Hz], we calculated lung resistance(RL), Rti, airway resistance(Raw), lung elastance (EL),and  (=2fRti/EL). Underbaseline conditions, increasing levels of end-expiratory transpulmonarypressure decreased Raw and increased Rti. The administration ofaerosolized MCh and intravenous ET-1 increasedRL, Rti, Raw, andEL in a dose-dependent manner.Rti increased from 0.207 ± 0.010 to 0.570 ± 0.058 cmH2O · ml1 · safter 107 mol/kg ET-1(P < 0.01). After inducedconstriction, increasing end-expiratory transpulmonary pressuredecreased Raw. However,  was not affected by changing lung volume,constriction induced by MCh and ET-1, or high-lung-volume challengeduring induced constriction. These observations suggest that1)  is stable in mice regardlessof various conditions, 2) Rti is animportant fraction of RL andincreases after induced constriction, and3) mechanical interdependence mayaffect airway smooth muscle shortening in this species. In mammalianspecies, including mice, analysis of  may indicate that both Rti andEL essentially respond to asimilar degree.

  相似文献   

9.
Verbanck, Sylvia, Hans Larsson, Dag Linnarsson, G. KimPrisk, John B. West, and Manuel Paiva. Pulmonary tissue volume, cardiac output and diffusing capacity in sustained microgravity. J. Appl. Physiol. 83(3): 810-816, 1997.In microgravity (µG) humans have marked changes in bodyfluids, with a combination of an overall fluid loss and aredistribution of fluids in the cranial direction. We investigatedwhether interstitial pulmonary edema develops as a result of a headwardfluid shift or whether pulmonary tissue fluid volume is reduced as aresult of the overall loss of body fluid. We measured pulmonary tissuevolume (Vti), capillary blood flow, and diffusing capacity in foursubjects before, during, and after 10 days of exposure to µG duringspaceflight. Measurements were made by rebreathing a gas mixturecontaining small amounts of acetylene, carbon monoxide, and argon.Measurements made early in flight in two subjects showed no change inVti despite large increases in stroke volume (40%) and diffusingcapacity (13%) consistent with increased pulmonary capillary bloodvolume. Late in-flight measurements in four subjects showed a 25%reduction in Vti compared with preflight controls(P < 0.001). There was aconcomittant reduction in stroke volume, to the extent that it was nolonger significantly different from preflight control. Diffusingcapacity remained elevated (11%; P < 0.05) late in flight. These findings suggest that, despiteincreased pulmonary perfusion and pulmonary capillary blood volume,interstitial pulmonary edema does not result from exposure to µG.

  相似文献   

10.
Zhang, Shaoping, Vicki Garbutt, and John T. McBride.Strain-induced growth of the immature lung. J. Appl. Physiol. 81(4): 1471-1476, 1996.Toinvestigate the relationship between strain and postnatal lung growth,two groups of weanling ferrets were tracheotomized: the study group wasexposed for 2 wk to a continuous positive airway pressure (CPAP) of 6 cmH2O and the other group wasexposed to atmospheric pressure (control). Total lung capacity after 2 wk was ~40% higher in the CPAP-exposed animals than in the controlanimals (n = 19 for the control groupand 18 for the study group; P < 0.01). CPAP exposure was also associated with increases in lung weightand total lung protein and DNA contents. Lung recoil, measured in asubgroup of animals, was characterized by air-filled and saline-filledstatic expiratory pressure-volume curves. Neither in the air-filledlungs nor in the saline-filled lungs was there a significant differencebetween CPAP-exposed and control animals in lung recoil at equalfractions of total lung capacity. These data indicate that mechanicalstrain was associated with an acceleration of lung growth in immatureferrets. The preservation of volume-corrected lung recoil and theexpected contribution of surface forces and tissue forces to lungrecoil in CPAP-exposed animals suggest that this response did notinvolve simple lung distension but included a remodeling of the lungparenchyma.

  相似文献   

11.
Effects of edema on small airway narrowing   总被引:1,自引:0,他引:1  
Wagner, Elizabeth M. Effects of edema on small airwaynarrowing. J. Appl. Physiol. 83(3):784-791, 1997.Numerous mediators of inflammation have beendemonstrated to cause airway microvascular fluid and proteinextravasation. That fluid extravasation results in airway wall edemaleading to airway narrowing and enhanced reactivity has not beenconfirmed. In anesthetized, ventilated sheep(n = 30), airway vascularfluid extravasation was induced by infusing bradykinin(106 M) through acannulated, blood-perfused bronchial artery. Airway wall edema andluminal narrowing were determined morphometrically. Airway reactivityto methacholine (MCh; 10 µg/ml, intrabronchial artery) was determinedby measuring conducting airway resistance (Raw) by forced oscillation.Raw measurements were made and lung lobes were excised and quick frozenbefore or after a 1-h bradykinin infusion. In 10 airways per lobe(range 0.2- to 2.0-mm relaxed diameter), wall area occupied 32 ± 2% (SE) of the total normalized airway area(n = 9). Bradykinin infusion increasedwall area to 42 ± 5% (P = 0.02);luminal area decreased by <5%; and smooth muscle perimeter, ameasure of smooth muscle constriction, was not altered(n = 5). Raw showed nochange from baseline (1.4 ± 0.4 cmH2O · l1 · s)after bradykinin infusion (n = 10).During MCh challenge, Raw increased by 3.2 ± 04 cmH2O · l1 · s,and this change did not differ after administration of bradykinin. MChchallenge caused similar decreases in smooth muscle perimeter (10%)and luminal area (72 vs. 68%) before and after bradykinin infusion.However, the time constant of recovery of Raw from MCh constriction wasincreased from control (40 ± 3 s) to 57 ± 10 s after bradykinininfusion (P = 0.03). When lung lobeswere excised at the same time after MCh challenge was terminated(n = 5), luminal area was greaterbefore bradykinin infusion than after (86 vs. 78%;P = 0.007), as was smooth muscleperimeter. The results of this study demonstrate that airway wall edemalimits relaxation after induced constriction rather than enhancingconstriction.

  相似文献   

12.
The dynamic stiffness (H), dampingcoefficient (G), and harmonic distortion (kd)characterizing tissue nonlinearity of lung parenchymal strips fromguinea pigs were assessed before and after treatment with elastase orcollagenase between 0.1 and 3.74 Hz. After digestion, data wereobtained both at the same mean length and at the same mean force of thestrip as before digestion. At the same mean length, G and H decreasedby ~33% after elastase and by ~47% after collagenase treatment.At the same mean force, G and H increased by ~7% after elastase andby ~25% after collagenase treatment. The kdincreased more after collagenase (40%) than after elastase (20%)treatment. These findings suggest that, after digestion, the fractionof intact fibers decreases, which, at the same mean length, leads to adecrease in moduli. At the same mean force, collagen fibers operate ata higher portion of their stress-strain curve, which results in anincrease in moduli. Also, G and H were coupled so that hysteresivity(G/H) did not change after treatments. However,kd was decoupled from elasticity and wassensitive to stretching of collagen, which may be of value in detectingstructural alterations in the connective tissue of the lung.

  相似文献   

13.
Bates, Jason H. T., Thomas F. Schuessler, Carrie Dolman, andDavid H. Eidelman. Temporal dynamics of acute isovolume bronchoconstriction in the rat. J. Appl.Physiol. 82(1): 55-62, 1997.The time course oflung impedance changes after intravenous injection of bronchial agonisthave produced significant insights into the mechanisms ofbronchoconstriction in the dog (J. H. T. Bates, A.-M. Lauzon, G. S. Dechman, G. N. Maksym, and T. F. Shuessler. J. Appl.Physiol. 76: 616-626, 1994). We studied the timecourse of acute induced bronchoconstriction in five anesthetizedparalyzed open-chest rats injected intravenously with a bolus ofmethacholine. For the 16 s immediately after injection, we held thelung volume constant while applying small-amplitude flow oscillationsat 1.48, 5.45, and 19.69 Hz simultaneously, which provided us withcontinuous estimates of lung resistance(RL) and elastance(EL) at eachfrequency. This procedure was repeated at initial lung inflationpressures of 0.2, 0.4, and 0.6 kPa. BothRL andEL increased progressively aftermethacholine administration; however, the rate of change ofEL increased dramatically asfrequency was increased, whereas RL remained relativelyindependent of frequency. We interpret these findings in terms of athree-compartment model of the rat lung, featuring two parallelalveolar compartments feeding into a central airway compartment. Modelsimulations support the notions that both central airway shunting andregional ventilation inhomogeneity developed to a significant degree inour constricted rats. We also found that the rates of increase in bothRL andEL were greatly enhanced as theinitial lung inflation pressure was reduced, in accord with the notionthat parenchymal tethering is an important mechanism limiting theextent to which airways can narrow when their smooth muscle isstimulated to contract.

  相似文献   

14.
A distributed nonlinear model of lung tissue elasticity   总被引:2,自引:0,他引:2  
Maksym, Geoffrey N., and Jason H. T. Bates. Adistributed nonlinear model of lung tissue elasticity.J. Appl. Physiol. 82(1): 32-41, 1997.- We present a theory relating the static stress-strainproperties of lung tissue strips to the stress-bearing constituents,collagen and elastin. The fiber pair is modeled as a Hookean spring(elastin) in parallel with a nonlinear string element (collagen), whichextends to a maximum stop length. Based on a series of fiber pairs, wedevelop both analytical and numerical models with distributedconstituent properties that account for nonlinear tissue elasticity.The models were fit to measured stretched stress-strain curves of fiveuniaxially stretched tissue strips, each from a different dog lung. Wefound that the distributions of stop length and spring stiffness followinverse power laws, and we hypothesize that this results from thecomplex fractal-like structure of the constituent fiber matrices inlung tissue. We applied the models to representative pressure-volume(PV) curves from patients with normal, emphysematous,and fibrotic lungs. The PV curves were fit to theequation V = A  Bexp(KP),where V is volume, P is transpulmonary pressure, andA, B, andK are constants. Our models lead to apossible mechanistic explanation of the shape factorK in terms of the structuralorganization of collagen and elastin fibers.

  相似文献   

15.
Thorpe, C. William, and Jason H. T. Bates. Effect ofstochastic heterogeneity on lung impedance during acutebronchoconstriction: a model analysis. J. Appl.Physiol. 82(5): 1616-1625, 1997.In a previousstudy (J. H. T. Bates, A. M. Lauzon, G. S. Dechman, G. N. Maksym, and T. F. Schuessler. J. Appl.Physiol. 76: 616-626, 1994), we investigated theacute changes in isovolume lung mechanics immediately after a bolusinjection of histamine. We found that dynamic resistance and elastanceincreased progressively in the 80-s period after injection, whereas theestimated tissue hysteresivity reached a stable plateau after ~25 s.In the present study, we developed a computer model of the lung toinvestigate the mechanisms responsible for these observations. Themodel conforms to Horsfield's morphometry, with the addition ofcompliant airways and structural damping tissue units. Using thismodel, we simulated the time course of acute bronchoconstriction afterintravenous administration of a bolus of bronchial agonist.Heterogeneity was induced by randomly varying the values of the maximalairway smooth muscle contraction and the tissue response to theagonist. Our results demonstrate that much of the increase in lungimpedance observed in our previous study can be produced purely by theeffects of airway heterogeneity. However, we were only able toreproduce the plateauing of hysteresivity by assigning a minimum radius to each airway, beyond which it would immediately snap completely shut.We propose that airway closure played an important role in ourexperimental observations.

  相似文献   

16.
Simon, Brett A., Koichi Tsuzaki, and Jose G. Venegas.Changes in regional lung mechanics and ventilation distribution after unilateral pulmonary artery occlusion. J. Appl.Physiol. 82(3): 882-891, 1997.Regionalpneumoconstriction induced by alveolar hypocapnia is an importanthomeostatic mechanism for optimization of ventilation-perfusionmatching. We used positron imaging of 13NN-equilibrated lungs to measurethe distribution of regional tidal volume(VT), lung volume(VL), and lung impedance(Z) before and after left (L)pulmonary artery occlusion (PAO) in eight anesthetized, open-chestdogs. Measurements were made during eucapnic sinusoidal ventilation at0.2 Hz with 4-cmH2O positive end expiratory pressure. Right(R) and L lung impedances(ZRandZL)were determined from carinal pressure and positron imaging of dynamicregional VL. LPAO caused anincrease in|ZL|relative to|ZR|,resulting in a shift in VT awayfrom the PAO side, with a L/R|Z| ratio changing from 1.20 ± 0.07 (mean ± SE) to 2.79 ± 0.85 after LPAO(P < 0.05). Although mean L lungVL decreased slightly, theVL normalized parametersspecific admittance and specific compliance both significantly decreased with PAO. Lung recoil pressure at 50% totallung capacity also increased after PAO. We conclude that PAO results inan increase in regional lung Z thatshifts ventilation away from the affected area at normal breathingfrequencies and that this effect is not due to a change inVL but reflects mechanicalconstriction at the tissue level.

  相似文献   

17.
Lambert, Rodney K., and Peter D. Paré. Lungparenchymal shear modulus, airway wall remodeling, and bronchialhyperresponsiveness. J. Appl. Physiol.83(1): 140-147, 1997.When airways narrow, either through theaction of smooth muscle shortening or during forced expiration, thelung parenchyma is locally distorted and provides an increasedperibronchial stress that resists the narrowing. Although thisinterdependence has been well studied, the quantitative significance ofairway remodeling to interdependence has not been elucidated. We haveused an improved computational model of the bronchial response tosmooth muscle agonists to investigate the relationships between airwaynarrowing (as indicated by airway resistance), parenchymal shearmodulus, adventitial thickening, and inner wall thickening at lungrecoil pressures of 4, 5, and 8 cmH2O. We have found that, at lowrecoil pressures, decreases in parenchymal shear modulus have asignificant effect that is comparable to that of moderate thickening ofthe airway wall. At higher lung recoil pressures, the effect isnegligible.

  相似文献   

18.
Toinvestigate whether changes of tissue resistance (Rti) duringmethacholine (MCh)-induced constriction correspond to an intrinsicmechanism or are an artifact of increased airways inhomogeneity, rabbits were studied after exposure to air(n = 7) or 1.5 parts/million O3(n = 6). Animals were anesthetized andmechanically ventilated. Tracheal flow and pressure (Ptr) and fouralveolar capsule pressures (Pcap) were measured during 3 min afteradministration of an intrajugular bolus of 0.8 mg/ml MCh. By adjustmentof the equation of motion [P(t) = E · V(t) + R · dV(t)/dt + P0] [whereP(t), V(t), and dV(t)/dt are pressure, volume, and flow as a function of time, respectively, Eis elastance, R is resistance, and P0 is end-expiratorypressure] to Ptr, lung resistance(RL) and dynamic elastance(EL) were determined breath bybreath. Rti and airways resistance (Raw) were determined from Pcap in phase with rate of change of pulmonary expansion. Hysteresivity () was calculated. Parallel inhomogeneity wasestimated from the coefficients of variation (CV) of every Pcap at endinspiration and end expiration. Increase in CV significantly laggedRti, RL, and . A linearrelationship between EL and Rawwas observed. Our results suggest that changes in tissue mechanicsduring the transition to the constricted state are not artifactual.

  相似文献   

19.
Grossmann, Gertie, Yasuhiro Suzuki, Bengt Robertson, TsutomuKobayashi, Per Berggren, Wen-Zhi Li, Guo-Wei Song, and Bo Sun.Pathophysiology of neonatal lung injury induced by monoclonal antibody to surfactant protein B. J. Appl.Physiol. 82(6): 2003-2010, 1997.Near-termnewborn rabbits were exposed via the airways to a monoclonal antibodyto surfactant protein B and ventilated for 0-120 min. Controlanimals received nonspecific rabbit or mouse immunoglobulin G, saline,or no material via the airways. Administration of the antibody at 40mg/kg elicited an immediate, significant fall in lung-thorax complianceassociated with progressive intra-alveolar edema and/oralveolar collapse and necrosis and desquamation of airway epithelium,and hyaline membranes. The vascular-to-alveolar leak of human albuminand human immunoglobulin G, injected intravenously at birth anddetermined in lung lavage fluid 60-120 min after instillation ofthe antibody, was 1.8% for the left lung, with no difference betweenthe markers. The average leak in control animals ventilated for 120 minwas <0.3% (P < 0.05). Cytospin preparations of lung lavage fluid from animals exposed to the antibodyshowed significantly increased recruitment of neutrophilic granulocytes. The pathology and pathophysiology of neonatal lung injuryinduced by the monoclonal antibody to surfactant protein B probablyreflect a combination of direct inactivation of surfactant and aninflammatory response triggered by the immune reaction.

  相似文献   

20.
Takeda, S., E. Y. Wu, R. H. Epstein, A. S. Estrera, and C. C. W. Hsia. In vivo assessment of changes in air and tissue volumes after pneumonectomy. J. Appl.Physiol. 82(4): 1340-1348, 1997.We examined theprogression and topographical distribution of postpneumonectomy volumechanges in immature foxhounds undergoing right pneumonectomy (R-Pnx,n = 5) or sham pneumonectomy (Sham, n = 6) at 2 mo of age and subsequentlyraised to maturity. Volumes of lung air (Vair) and tissue(Vti) were estimated by computerized tomography (CT) scan at 7, 22, and52 wk after surgery at a transpulmonary pressure of 20 cmH2O. Estimates of Vti by CT scanincluded both septal tissue as well as nonseptal tissue (small- andmedium-sized airways and blood vessels); these were compared withestimates of septal Vti by an acetylene rebreathing (Rb) method. Wefound significant correlations between these techniques(VairCT = 0.83 VairRb + 275, R = 0.97;VtiCT = 1.62 VtiRb  30, R = 0.81). Extravascular septal Vtireturned to normal 7 wk after R-Pnx and remained normal up to maturity.Nonseptal Vti remained significantly below normal. The greatestincrease in Vti occurred in the midlung region just cephalad and caudalto the heart. After an early period of accelerated tissue growth afterR-Pnx, the rate of septal tissue growth matched that of somatic growth,whereas nonseptal tissue growth lagged behind. Compensatory growth ofthe remaining left lung was not associated with selectivealterations in thoracic development.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号