首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA sequencing methods have been used for the molecular taxonomic discrimination of dinoflagellate protists, particularly using partial 18S rRNA sequences. This study evaluated the taxonomic discrimination power of rRNA gene hypervariable regions (V1 to V9) in dinoflagellates from a large dataset. These included 77 dinoflagellate species (9 orders, 17 families, 40 genera). The complete 18S rRNA sequences of the dinoflagellates ranged from 1,787 to 1,813?bp in length, and consisted of eight V regions with a total combined length of 678 to 699?bp. Regions longer than 100?bp were recoded for V2, V4, and V8 regions; high nucleotide divergences were detected in V1, V2, and V4 regions. Statistic tests showed that the divergences of individual V regions were significantly different (t-test, P?<?0.05) compared with the complete 18S rRNA. The V2 region showed the highest score (83.5%) for PI sites. Moreover, intra-genus DNA similarities of the V2 were considerably low (<93%). Neighbor-joining analyses showed that phylogenetic resolution in the V2–V4 region was 1.32-fold higher than that of the complete 18S rRNA. These results demonstrate that V2 has the highest taxonomic resolving power within the 18S rRNA gene of dinoflagellates, suggesting the V2 and adjacent regions (e.g., V1 to V4) may be the best for marker considerations.  相似文献   

2.
A detailed restriction endonuclease map was prepared for the cloned 5.8 S ribosomal RNA (rRNA) gene region of the brine shrimp Artemia. The nucleotide sequence of the 5.8 S rRNA gene and its flanking nucleotides was determined. This sequence differs in two positions from that of the previously reported 5.8 S rRNA. The primary structure of the Artemia 5.8 S rRNA gene, which, unlike in dipteran insects, is shown to contain no insertion sequence, is conserved according to the relatedness of the species compared. The 5.8 S rRNA gene flanking nucleotides, which were sequenced 176 nucleotide pairs upstream and 70 nucleotide pairs downstream from the gene, show no evidence of sequence conservation between evolutionarily diverse species by computer analysis. Direct nucleotide repeats are present within the flanking sequences at both ends of the gene at about the same distance upstream and downstream, which could serve as processing signals.  相似文献   

3.
The cloned 18 S ribosomal RNA gene from Saccharomyces cerevisiae have been sequenced, using the Maxam-Gilbert procedure. From this data the complete sequence of 1789 nucleotides of the 18 S RNA was deduced. Extensive homology with many eucaryotic as well as E. coli ribosomal small subunit rRNA (S-rRNA) has been observed in the 3'-end region of the rRNA molecule. Comparison of the yeast 18 S rRNA sequences with partial sequence data, available for rRNAs of the other eucaryotes provides strong evidence that a substantial portion of the 18 S RNA sequence has been conserved in evolution.  相似文献   

4.
Summary Partial nucleotide sequences for the 5S and 5.8S rRNAs from the dinoflagellateCrypthecodinium cohnii have been determined, using a rapid chemical sequencing method, for the purpose of studying dinoflagellate phylogeny. The 5S RNA sequence shows the most homology (75%) with the 5S sequences of higher animals and the least homology (< 60%) with prokaryotic sequences. In addition, it lacks certain residues which are highly conserved in prokaryotic molecules but are generally missing in eukaryotes. These findings suggest a distant relationship between dinoflagellates and the prokaryotes. Using two different sequence alignments and several different methods for selecting an optimum phylogenetic tree for a collection of 5S sequences including higher plants and animals, fungi, and bacteria in addition to theC. cohnii sequence, the dinoflagellate lineage was joined to the tree at the point of the plant-animal divergence, well above the branching point of the fungi. This result is of interest because it implies that the well-documented absence in dinoflagellates of histones and the typical nucleosomal subunit structure of eukaryotic chromatin is the result of secondary loss. and not anindication of an extremely primitive state, as was previously suggested. Computer simulations of 5S RNA evolution have been carried out in order to demonstrate that the above-mentioned phylogenetic placement is not likely to be the result of random sequence convergence.We have also constructed a phylogeny for 5.8S RNA sequences in which plants, animals, fungi and the dinoflagellates are again represented. While the order of branching on this tree is the same as in the 5S tree for the organisms represented, because it lacks prokaryotes, the 5.8S tree cannot be considered a strong independent confirmation of the 5S result. Moreover, 5.8S RNA appears to have experienced very different rates of evolution in different lineages indicating that it may not be the best indicator of evolutionary relationships.We have also considered the existing biological data regarding dinoflagellate evolution in relation to our molecular phylogenetic evidence.  相似文献   

5.
We present the sequence of the 5' terminal 585 nucleotides of mouse 28S rRNA as inferred from the DNA sequence of a cloned gene fragment. The comparison of mouse 28S rRNA sequence with its yeast homolog, the only known complete sequence of eukaryotic nucleus-encoded large rRNA (see ref. 1, 2) reveals the strong conservation of two large stretches which are interspersed with completely divergent sequences. These two blocks of homology span the two segments which have been recently proposed to participate directly in the 5.8S-large rRNA complex in yeast (see ref. 1) through base-pairing with both termini of 5.8S rRNA. The validity of the proposed structural model for 5.8S-28S rRNA complex in eukaryotes is strongly supported by comparative analysis of mouse and yeast sequences: despite a number of mutations in 28S and 5.8S rRNA sequences in interacting regions, the secondary structure that can be proposed for mouse complex is perfectly identical with yeast's, with all the 41 base-pairings between the two molecules maintained through 11 pairs of compensatory base changes. The other regions of the mouse 28S rRNA 5'terminal domain, which have extensively diverged in primary sequence, can nevertheless be folded in a secondary structure pattern highly reminiscent of their yeast' homolog. A minor revision is proposed for mouse 5.8S rRNA sequence.  相似文献   

6.
The genetic diversity of the ciguatera fish poisoning-related dinoflagellate distributed in Japanese coastal areas was investigated. The entire sequence of the 5.8S rRNA gene and two internal transcribed (ITS) regions were determined, which included putative pseudogenes, from 19 strains of dinoflagellates assigned to the genus Gambierdiscus Adachi et Fukuyo collected from Japanese subtropical and temperate coastal areas. The sequences obtained from the 19 strains were divided into two types based on sequence similarity. Here we designate the two types as type 1 and type 2. For the relationship between the genotypes and origins of the strains used, the strains collected from subtropical areas possessed the type 1 sequence; whereas those from temperate areas possessed the type 2. This observation led us to question former reputations that Gambierdiscus cells observed in Japanese temperate areas are immigrants from Japanese subtropical areas. Subsequently, we sequenced a part of the 18S rRNA gene from two strains from subtropical areas and two from temperate areas. Unfortunately, phylogenetic analysis including the sequences obtained from various gonyaulacales dinoflagellates failed to determine the species phylogenetically closely related to and possible origin(s) of the Gambierdiscus sp. from the Japanese coastal areas.  相似文献   

7.
Y X Feng  G Krupp    H J Gross 《Nucleic acids research》1982,10(20):6383-6387
The nucleotide sequence of 5.8S rRNA from the Chinese silkworm Philosamia cynthia ricini has been determined by gel sequencing and mobility shift methods. The complete primary structure is (sequence in text). This is one of the largest known 5.8S rRNAs. As compared to Bombyx 5.8S rRNA, it is two nucleotides longer; two nucleotides near the 5'end and two nucleotides near the 3'end are different, and psi 61 of the Bombyx RNA sequence is an unmodified U in Philosamia RNA. The secondary structure of Philosamia 5.8S rRNA may differ from the Bombyx RNA structure by three additional base pairs at the 5'/3' ends.  相似文献   

8.
Although dinoflagellates are eucaryotes, they possess many bacterial nuclear traits. For this reason they are thought by some to be evolutionary intermediates. Dinoflagellates also possess some unusual nuclear traits not seen in either bacteria or higher eucaryotes, such as a very large number of identical appearing, permanently condensed chromosomes suggesting polyteny or polyploidy. We have studied the DNA of the dinoflagellate Crypthecodinium cohnii with respect to DNA per cell, chromosome counts, and renaturation kinetics. The renaturation kinetic results tend to refute extreme polyteny and polyploidy as the mode of nuclear organization. This organism contains 55-60% repeated, interspersed DNA typical of higher eucaryotes. These results, along with the fact that dinoflagellate chromatin contains practically no basic protein, indicate that dinoflagellates may be organisms with a combination of both bacterial and eucaryotic traits.  相似文献   

9.
The D1/D2 domains of large subunit (LSU) rDNA have commonly been used for phylogenetic analyses of dinoflagellates; however, their properties have not been evaluated in relation to other D domains due to a deficiency of complete sequences. This study reports the complete LSU rRNA gene sequence in the causative unarmored dinoflagellate Cochlodinium polykrikoides, a member of the order Gymnodiniales, and evaluated the segmented domains and secondary structures when compared with its relatives. Putative LSU rRNA coding regions were recorded to be 3433 bp in length (49.0% GC content). A secondary structure predicted from the LSU and 5.8S rRNAs and parsimony analyses showed that most variation in the LSU rDNA was found in the 12 divergent (D) domains. In particular, the D2 domain was the most informative in terms of recent evolutional and taxonomic aspects, when compared with both the phylogenetic tree topologies and molecular distance (approximately 10 times higher) of the core LSU. Phylogenetic analysis was performed with a matrix of LSU DNA sequences selected from domains D2 to D4 and their flanking core sequences, which showed that C. polykrikoides was placed on the same branch with Akashiwo sanguinea in the “GPP” complex, which is referred to the gymnodinioid, peridinioid and prorocentroid groups. A broad phylogeny showed that armored and unarmored dinoflagellates were never clustered together; instead, they were clearly divided into two groups: the GPP complex and Gonyaulacales. The members of Gymnodiniales were always interspersed with peridinioid, prorocentroid and dinophysoid forms. This supports previous findings showing that the Gymnodiniales are polyphyletic. This study highlights the proper selection of LSU rDNA molecules for molecular phylogeny and signatures.  相似文献   

10.
11.
12.
Dinoflagellate chloroplast genes are unique in that each gene is on a separate minicircular chromosome. To understand the origin and evolution of this exceptional genomic organization we completely sequenced chloroplast psbA and 23S rRNA gene minicircles from four dinoflagellates: three closely related Heterocapsa species (H. pygmaea, H. rotundata, and H. niei) and the very distantly related Amphidinium carterae. We also completely sequenced a Protoceratium reticulatum minicircle with a 23S rRNA gene of novel structure. Comparison of these minicircles with those previously sequenced from H. triquetra and A. operculatum shows that in addition to the single gene all have noncoding regions of approximately a kilobase, which are likely to include a replication origin, promoter, and perhaps segregation sequences. The noncoding regions always have a high potential for folding into hairpins and loops. In all six dinoflagellate strains for which multiple minicircles are fully sequenced, parts of the noncoding regions, designated cores, are almost identical between the psbA and 23S rRNA minicircles, but the remainder is very different. There are two, three, or four cores per circle, sometimes highly related in sequence, but no sequence identity is detectable between cores of different species, even within one genus. This contrast between very high core conservation within a species, but none among species, indicates that cores are diverging relatively rapidly in a concerted manner. This is the first well-established case of concerted evolution of noncoding regions on numerous separate chromosomes. It differs from concerted evolution among tandemly repeated spacers between rRNA genes, and that of inverted repeats in plant chloroplast genomes, in involving only the noncoding DNA cores. We present two models for the origin of chloroplast gene minicircles in dinoflagellates from a typical ancestral multigenic chloroplast genome. Both involve substantial genomic reduction and gene transfer to the nucleus. One assumes differential gene deletion within a multicopy population of the resulting oligogenic circles. The other postulates active transposition of putative replicon origins and formation of minicircles by homologous recombination between them.  相似文献   

13.
Y L Chan  J Olvera    I G Wool 《Nucleic acids research》1983,11(22):7819-7831
The nucleotide sequence of a rat 28S rRNA gene was determined. The 28S rRNA encoded in the gene contains 4718 nucleotides and the molecular weight estimated from the sequence is 1.53 x 10(6). The guanine and cytosine content is 67%. The sequence of rat 28S rRNA diverges appreciably from that of Saccharomyces carlsbergensis 26S rRNA (about 50% identity), but more closely approximates that of Xenopus laevis 28S rRNA (about 75% identity). Rat 28S rRNA is larger than the analogous nucleic acids from yeast (3393 nucleotides) and X, laevis (4110 nucleotides) ribosomes. The additional bases are inserted in specific regions and tend to be rich in guanine and cytosine. 5.8S rRNA can interact with 28S rRNA by extensive hydrogen bonding at two sites near the 5' end of the latter.  相似文献   

14.
We have characterized the rRNA gene repeat in Schizosaccharomyces pombe. This repeat, which does not contain the 5S RNA gene, is found in a 10.4 kb HindIII DNA fragment. We have determined the nucleotide sequences of the S. pombe 5.8S RNA gene and intergenic spacers from two different 10.4 kb DNA fragments. Analysis of isolated total cellular 5.8S RNA revealed the presence of eight species of 5.8S RNA, differing in the number of nucleotides at the 5'-end. The eight 4.8S RNA species vary in length from 158 to 165 nucleotides. Apart from the heterogeneity observed at the 5'-end, the sequence of the eight 5.8S RNA species appears to be identical and is the same sequence as coded for by the 5.8S genes. The gene sequence shows great homology to the 5.8S RNA genes or S. cerevisiae and N. crassa. Most of the base differences are confined to the highly variable stem though to be involved in co-axial helix stacking with the 25S RNA, where base pairing is nearly identical despite the sequence differences. Secondary structure models are examined in light of 5.8S RNA oligonucleotide conservation across species from yeasts to higher eukaryotes.  相似文献   

15.
16.
The complete nucleotide sequence of the 25 S rRNA gene from one rDNA repeating unit of Saccharomyces cerevisiae has been determined. The corresponding 25 S rRNA molecule contains 3392 nucleotides and has an estimated relative molecular mass (Mr, Na-salt) or 1.17 x 10(6). Striking sequence homology is observed with known 5'- and 3'-end terminal segments of L-rRNA from other eukaryotes. Possible models of interaction with 5.8 S rRNA are discussed.  相似文献   

17.
Some species of the dinoflagellate genus Dinophysis form red tides and are toxin producers with a great environmental impact. The dinoflagellates as a group display high plastid diversity. Several cases indicate that plastids have been replaced. In the case of the genus Dinophysis, the plastids show characteristics of a plastid originating from a cryptophyte. Recent molecular evidence showed that the plastid indeed originates from a cryptophyte, but the source could not be identified to species or genus level. The data presented here show that both a 799 bp region of the psbA gene and 1,221 bp region of the 16S rRNA gene from Dinophysis spp. are identical to the same loci in Teleaulax amphioxeia SCCAP K434. This strongly indicates that the plastid was acquired recently in Dinophysis and may be a so-called kleptoplastid, specifically originating from a species of Teleaulax.  相似文献   

18.
19.
海洋喇叭虫Maristentor dinoferus 1996年在关岛(Guam)的珊瑚暗礁上被发现,至今尚未阐明其确切的系统发育地位.克隆到的海洋喇叭虫的18S-ITS1-5.8S rDNA序列包括222 bp的18S序列,77 bp的ITS1序列和22 bp的5.8S序列.比较分析了纤毛虫主要类群的ITS1序列后得出:短的ITS1序列可能是异毛类纤毛虫的特征.根据18S序列,利用邻接法构建,最大简约法和最大似然法构建系统发育树.其拓扑结构显示海洋喇叭虫属于异毛纲纤毛虫,但并不隶属喇叭虫科,应予以新的分类地位.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号