首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of the inactivation of 6-phosphogluconate dehydrogenase from Candida utilis with two coenzyme analogues can be differentiated on the basis of kinetic studies and of the properties of the inactivated enzyme. 3-Chloroacetylpyridine--adenine dinucleotide phosphate is clearly an affinity label and 3-choloroacetylpyridine--adenine dinucleotide a second-order reagent. For 3-chloroacetylpyridine--adenine dinucleotide phosphate, there is a loss of one thiol per subunit at complete inactivation whereas for 3-chloroacetylpyridine--adenine dinucleotide 2.7 thiol groups are lost. The fluorescence of the protein is quenched after alkylation by 3-chloroacetylpyridine--adenine dinucleotide phosphate and there is no quenching after the inactivation with 3-chloroacetylpyridine--adenine dinucleotide.  相似文献   

2.
Amino acid sequence of ovine 6-phosphogluconate dehydrogenase   总被引:3,自引:0,他引:3  
The amino acid sequence of the NADP+-dependent enzyme ovine 6-phosphogluconate dehydrogenase has been determined by conventional direct protein sequence analysis of peptides resulting from digestion of the protein with trypsin and chemical cleavages with cyanogen bromide, hydroxylamine, and iodosobenzoic acid. The polypeptide contains 466 amino acids and its NH2 terminus is acetylated. The Candida utilis enzyme is inactivated by reaction of pyridoxal phosphate with two lysine residues (Minchiotti, L., Ronchi, S., and Rippa, M. (1981) Biochim. Biophys. Acta 657, 232-242). These residues are conserved in the ovine enzyme. In contrast to NAD+ dehydrogenases which have weakly related sequences and spatially related folds in their nucleotide-binding sites, no significant sequence homologies were detected between 6-phosphogluconate dehydrogenase and any of three other NADP+-requiring enzymes, glutamate dehydrogenase, p-hydroxybenzoate hydroxylase, and dihydrofolate reductase. This is in accord with structural data that show no spatial relationship between NADP+-binding sites in these enzymes.  相似文献   

3.
Periodate-oxidized NADP+ binds specifically and reversibly to the NADP+ binding site of 6-phosphogluconate dehydrogenase (EC 1.1.1.44) from Candida utilis. The inhibition can be stabilized by reduction with sodium borohydride. It has been shown that an aldehydic group of the inhibitor forms a Schiff base with a lysine residue of the enzyme.  相似文献   

4.
The two species of 6-phosphogluconate dehydrogenase (EC 1.1.1.43) from Pseudomonas multivorans were resolved from extracts of gluconate-grown bacteria and purified to homogeneity. Each enzyme comprised between 0.1 and 0.2% of the total cellular protein. Separation of the two enzymes, one which is specific for nicotinamide adenine dinucleotide phosphate and the other which is active with nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate was facilitated by the marked difference in their respective isoelectric points, which were at pH 5.0 and 6.9. Comparison of the subunit compositions of the two enzymes indicated that they do not share common peptide chains. The enzyme active with nicotinamide adenine dinucleotide was composed of two subunits of about 40,000 molecular weight, and the nicotinamide adenine dinucleotide phosphate-specific enzyme was composed of two subunits of about 60,000 molecular weight. Immunological studies indicated that the two enzymes do not share common antigenic determinants. Reduced nicotinamide adenine dinucleotide phosphate strongly inhibited the 6-phosphogluconate dehydrogenase active with nicotinamide adenine dinucleotide by decreasing its affinity for 6-phosphogluconate. Guanosine-5'-triphosphate had a similar influence on the nicotinamide adenine dinucleotide phosphate-specific 6-phosphogluconate dehydrogenase. These results in conjunction with other data indicating that reduced nicotinamide adenine dinucleotide phosphate stimulates the conversion of 6-phosphogluconate to pyruvate by crude bacterial extracts suggest that in P. multivorans, the relative distribution of 6-phosphogluconate into the pentose phosphate and Entner-Doudoroff pathways might be determined by the intracellular concentrations of reduced nicotinamide adenine dinucleotide phosphate and purine nucleotides.  相似文献   

5.
Formation of binary complex between 6-phosphogluconate dehydrogenase (6-phospho-D-gluconate:NADP+ 2-oxidoreductase (decarboxylating), EC 1.1.1.44) from Candida utilis and 6-phosphogluconate was investigated by means of ultraviolet difference spectroscopy. The formation of the enzyme-substrate complex induces in the difference spectrum a positive peak the wavelength and extinction coefficient of which agree well with a tyrosine ionization. Titrimetric studies indicate that the formation of the binary complex is not coupled to a proton release from the protein. These data support an intramolecular proton transfer from a tyrosine to other functional group. This proton transfer could be correlated to the conformational change induced by substrate in 6-phosphogluconate dehydrogenase.  相似文献   

6.
Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glutathione reductase and pyruvate kinase of Candida utilis and baker's yeast, when in anionic form, were adsorbed on a cation exchanger, P-cellulose, due to affinities similar to those for the phosphoric groups of their respective substrates; thus, glucose-6-phosphate dehydrogenase was readily eluted by either NADP+ or NADPH, glutathione reductase by NADPH, 6-phosphogluconate dehydrogenase by 6-phosphogluconate, and pyruvate kinase by either ATP or ADP. This type of chromatography may be called "affinity-adsorption-elution chromatography"; the main principle is different from that of so-called affinity-elution chromatography. Based on these findings, a large-scale procedure suitable for successive purification of several enzymes having affinities for the phosphoric groups of their substrates was devised. As an example, glucose-6-phosphate dehydrogenase was highly purified from baker's yeast and crystallized.  相似文献   

7.
The fungus, Cunninghamella elegans has been widely used in bioremediation and microbial models of mammalian studies in many laboratories. Using the polymerase chain reaction to randomly amplify the insert directly from the single non-blue plaques of a C. elegans cDNA library, then partly sequencing and comparing with GenBank sequences, we have identified a clone which contains C. elegans 6-phosphogluconate dehydrogenase gene. The polymerase chain reaction product was cloned into a plasmid, pGEM-T Easy vector for full insert DNA sequencing. The 6-phosphogluconate dehydrogenase gene (1458 bases) and the deduced protein sequence were determined from the insert DNA sequence. The gene was found by open reading frame analysis and confirmed by the alignment of the deduced protein sequence with other published 6-phosphogluconate dehydrogenase sequences. Several highly conserved regions were found for the 6-phosphogluconate dehydrogenase sequences. The 6-phosphogluconate dehydrogenase gene was subcloned and over-expressed in a plasmid–E. coli system (pQE30). The cell lysate of this clone has a very high 6-phosphogluconate dehydrogenase enzyme activity. Most of the recombinant protein in this system was formed as insoluble inclusion bodies, but soluble in high concentration of urea-buffer. Ni-NTA resin was used to purify the recombinant protein which showed 6-phosphogluconate dehydrogenase enzyme activity. The recombinant protein has a predicted molecular size correlating with that revealed by sodium dodecylsulfate-polyacrylamide gel electrophoresis analysis. The C. elegans 6-phosphogluconate dehydrogenase was in a cluster with yeast' 6-phosphogluconate dehydrogenase in the phylogenetic tree. Bacterial 6-phosphogluconate dehydrogenase and higher organisms' 6-phosphogluconate dehydrogenase were found in different clusters.  相似文献   

8.
A nicotinamide adenine dinucleotide (NAD) linked 6-phosphogluconate (6-PG)dehydrogenase has been detected in Rhizobium. The enzyme activity is similar in both slow- and fast-growing rhizobia. The nicotinamide adenine dinucleotide phosphate (NADP) dependent 6-PG dehydrogenase was detected only in the fast growers and was more than twice as active as the NAD-linked enzyme. Partial characterization of the products of 6-PG oxidation in Rhizobium suggests that the NADP-linked enzyme is the decarboxylating enzyme of the pentose phosphate (PP) pathway (EC 1.1.1.44) whereas a phosphorylated six-carbon compound, containing ketonic group(s), is the product of the oxidation catalyzed by the NAD-linked enzyme.  相似文献   

9.
Mechanisms underlying increased activity of 6-phosphogluconate dehydrogenase (6-phospho-D-gluconate: NADP oxidoreductase [decarboxylating] EC 1.1.1.44) in axotomized rat superior cervical ganglia were explored using a highly sensitive micro-immunochemical assay employing antibodies raised in rabbits against the purified enzyme. 6-Phosphogluconate dehydrogenase was purified from rat brain more than 1700-fold by salt fractionation, anion exchange, and immunoaffinity chromatography. The purified enzyme consisted of identical subunits having molecular weights of about 48,800 which could aggregate to catalytically active isomers of various sizes; however, only one form of the enzyme was detected in freshly prepared homogenates of rat neural tissue. Physical and immunological properties of the enzyme from rat brain were similar to those from superior cervical ganglia and liver. Augmented 6-phosphogluconate dehydrogenase activity noted in superior cervical ganglia 2 days after transection of major postganglionic nerve trunks was accompanied by a parallel increase in immunoreactive protein. Michaelis constants of the enzyme were the same in control and axotomized ganglia, and the presence of activators and inhibitors was not detected. It is concluded that increases in 6-phosphogluconate dehydrogenase subsequent to axotomy can be accounted for entirely by an increase in the steady state concentration of this protein.  相似文献   

10.
The NAD-dependent glutamate dehydrogenase from Candida utilis was isolated from 32P-labeled cells following enzyme inactivation promoted by glutamate starvation and found to exist in a phosphorylated form. Analysis of purified, fully active NAD-dependent glutamate dehydrogenase (a form) and inactive NAD-dependent glutamate dehydrogenase (b form) for alkalilabile phosphate revealed that the a form contained 0.09 +/- 0.06 mol of phosphate/mol of enzyme subunit and b form 1.25 +/- 0.06 mol of phosphate/mol of enzyme subunit. Phosphorylation caused a 10-fold reduction in enzyme specific activity. Dephosphorylation (release of 32P) and enzyme reactivation occurred on incubation with cell-free yeast extracts, indicating the presence of a phosphoprotein phosphatase in such preparations.  相似文献   

11.
A protein phosphatase was isolated from the yeast, Candida utilis, which could reactivate (dephosphorylate) the phosphorylated form of the NAD-dependent glutamate dehydrogenase. The protein could also dephosphorylate casein, histone and kemptide (a heptapeptide corresponding to the phosphorylation site of liver pyruvate kinase). Reactivation of the phosphorylated glutamate dehydrogenase was stimulated by the simultaneous addition of NAD and L-glutamate; 2-oxoglutarate, NH+4 and NADH had no effect. The reactivation of phosphorylated glutamate dehydrogenase could be inhibited by phosphate, pyrophosphate and fluoride.  相似文献   

12.
Glucose-adapted Streptococcus faecalis produced little if any (14)CO(2) from glucose-1-(14)C, although high levels of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) were detected in cell-free extracts. Metabolism of glucose through the oxidative portion of the hexose-monophosphate pathway was shown to be regulated in this organism by the specific inhibitory interaction of the Embden-Meyerhof intermediate, fructose-1, 6-diphosphate (FDP), with 6-phosphogluconate dehydrogenase. Glucose-6-phosphate dehydrogenase activity was unaffected by FDP. The S. faecalis 6-phosphogluconate dehydrogenase was partially purified from crude extracts by standard fractionation procedures and certain kinetic parameters of the FDP-mediated inhibition were investigated. The negative effector was shown to cause a decrease in V(max) and an increase in the apparent K(m) for both 6-phosphogluconate and nicotinamide adenine dinucleotide phosphate (NADP). These effects were apparently a consequence of the ligand interacting with the enzyme at a site distinct from either the substrate or the coenzyme sites. Among the evidence supporting this was the fact that beta-mercaptoethanol blocked completely FDP inhibition, but had no effect on catalytic activity. The possibility that the regulation of 6-phosphogluconate dehydrogenase activity by FDP might be of some general significance was suggested by the observation that this enzyme from several other sources was also sensitive to FDP.  相似文献   

13.
6-Phosphogluconate dehydrogenase is the pivotal enzyme that links the gluconate route and the oxidative phase of the pentose phosphate pathway in Schizosaccharomyces pombe. The enzyme differs from the known 6-phosphogluconate dehydrogenases of other sources in that the Schizosaccharomyces enzyme is tetrameric having a subunit mass of 38 kDa, that it requires NADP+ obligatorily for activity, and that it can be activated by divalent metal ions such as Co2+ and Mn2+. Steady-state kinetic studies were undertaken. Initial rate and product inhibition results suggest that 6-phosphogluconate dehydrogenase from Schizosaccharomyces pombe catalyzes NADP(+)-linked oxidative decarboxylation of 6-phosphogluconate by an equilibrium random mechanism with two independent binding sites, namely one site for the nicotinamide coenzyme, NADP+/NADPH, and another site for 6-phosphogluconate-D-ribulose-5-phosphate and for CO2. Studies of pH dependence implicated a basic residue with a pK value of 7.4 in the binding of 6-phosphogluconate and an acidic residue with a pK value of 6.7 in the cation-mediated interaction of NADP+ with the enzyme.  相似文献   

14.
1. 6-phosphogluconate dehydrogenase from sheep liver has been purified 350-fold by affinity chromatography with a final specific activity of 18 micronmol of NADP+/reduced min per mg of protein and an overall yield of greater than 40%. 2. A systematic investigation of potential ligands has been carried out: these included 6-phosphogluconate and NADP+, pyridoxal phosphate and several immobilized nucleotides. The results indicate that NADP+ is the most suitable ligand for the purification of 6-phosphogluconate dehydrogenase. 3. The effects of pH and alternative eluents have been examined in relation to the parameters known to affect the desorption phase of affinity chromatography; careful manipulation of the elution conditions permitted the separation of glucose 6-phosphate dehydrogenase, glutathione reductase and 6-phosphogluconate dehydrogenase from sheep liver on NADP+-Sepharose 4B. 4. A large-scale purification scheme for 6-phosphogluconate dehydrogenase is presented that uses the competitive inhibitors inorganic pyrophosphate and citrate as specific eluents.  相似文献   

15.
Habituated (H) nonorganogenic sugarbeet callus was found to exhibit a disturbed sugar metabolism. In contrast to cells from normal (N) callus, H cells accumulate glucose and fructose and show an abnormal high fructose/glucose ratio. Moreover, H cells which have decreased wall components, display lower glycolytic enzyme activities (hexose phosphate isomerase and phosphofructokinase) which is compensated by higher activities of the enzymes of the hexose monophosphate pathway (glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase). The disturbed sugar metabolism of the H callus is discussed in relation to a deficiency in H2O2 detoxifying systems.Abbreviations 6PG-DH 6-phosphogluconate dehydrogenase - G6P-DH glucose-6-phosphate dehydrogenase - H fully habituated callus - HK hexokinase - HMP hexoses monophosphate - HPI hexose phosphate isomerase - N normal callus - PFK phosphofructokinase  相似文献   

16.
The analogues of the coenzyme NADP+, nicotinamide--8-bromo-adenine dinucleotide phosphate (Nbr8ADP+) and 3-iodopyridine--adenine dinucleotide phosphate (io3PdADP+), were prepared. Nbr8ADP+ was found to be active in the hydrogen transfer adn io3PdADP+ is a coenzyme competitive inhibitor for 6-phosphogluconate dehydrogenase. The binding of NADP+, NADPH and NADPH together with 6-phosphogluconate as well as that of both analogues to crystals of the enzyme 6-phosphogluconate dehydrogenase has been investigated at 0.6-nm resolution using difference electron density maps. The molecules bind in a similar position in a cleft in the enzyme subunit distant from the dimer interface. The orientation of the coenzyme in the site has been determined from the io3PdADP+ -NADP+ difference density. The ternary complex difference density extends beyond that of the nicotinamide moiety of the coenzyme and tentatively indicates substrate binding. No clear identification of the bromine atom of Nbr8ADP+ can be made. However, the analogue is bound more deeply in the cleft than is NADP+. The NADPH density is the most clearly defined and has thus been used to fit a molecular model using an interactive graphics system, checking for preferred geometry. A possible conformation is presented which is significantly different from that of NAD+ in the lactate dehydrogenase ternary complex.  相似文献   

17.
The topology of phosphogluconate dehydrogenases in rat liver microsomes   总被引:1,自引:0,他引:1  
Rat liver microsomes are known to contain a 6-phosphogluconate dehydrogenase which differs from the 6-phosphogluconate dehydrogenase in the soluble fraction. Microsomes which were washed once bind the soluble phosphogluconate dehydrogenase more tightly than they do glucose-6-phosphate dehydrogenase. Microsomes washed three times in 0.15 M Tris-HCl, pH 8.0, contain only the microsomal 6-phosphogluconate dehydrogenase. Two observations show that this dehydrogenase is located in the cisternae. First, this dehydrogenase is inactive in intact, three times washed microsomes. Second, proteolytic inactivation of 6-phosphogluconate dehydrogenase like that of the cisternal enzyme glucose-6-phosphatase requires disruption of the membrane. Under the conditions used, detergent did not affect the proteolytic inactivation of NADPH-cytochrome c reductase, an enzyme located on the external surface. The excellent correspondence between the activations of hexose phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in microsomes at various stages of disruption of the microsomal membrane produced by detergent supports the earlier contention that these two dehydrogenases are reducing NADP in the same region of the microsomes. A similar experiment which shows an exact correspondence between the activations of 6-phosphogluconate dehydrogenase and mannose-6-phosphatase with increasing concentrations of detergent indicates that the activation of the dehydrogenase can be explained solely by the penetration of the substrates to the active dehydrogenase within the microsomes and strongly suggests that the dehydrogenase is catalytically active in the cisternae.  相似文献   

18.
The effect of inorganic phosphate on the stability of some enzymes.   总被引:1,自引:1,他引:0       下载免费PDF全文
In the presence of 5nM-P1, 6-phosphogluconate dehydrogenase from the yeast Candida utilis is more resistant to proteolysis and to the inactivating action of some chemical and physical agents. P1 also protects other enzymes against proteolysis. A hypothesis for the mechanism of the stabilizing action of P1 is advanced.  相似文献   

19.
Enzyme variation in Eimeria species of the chicken.   总被引:6,自引:0,他引:6  
M W Shirley 《Parasitology》1975,71(3):369-376
A method for the biochemical identification of protozoa belonging to the genus Eimeria is described for the first time. Starch gel electrophoresis of the enzymes lactate dehydrogenase, glucose phosphate isomerase, 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase from parasite extracts revealed both intra- and inter-species differences when 11 strains representative of 6 species of Eimeria were examined. Oocysts were the most accessible parasite stage for investigation but sporozoites and merozoites of an embryo-adapted strain of E. tenella were also examined for enzyme activity.  相似文献   

20.
1. Procedures were developed for the extraction and assay of glycolytic enzymes from the epididymis and epididymal spermatozoa of the rat. 2. The epididymis was separated into four segments for analysis. When rendered free of spermatozoa by efferent duct ligation, regional differences in enzyme activity were apparent. Phosphofructokinase, glycerol phosphate dehydrogenase and glucose 6-phosphate dehydrogenase were more active in the proximal regions of the epididymis, whereas hexokinase, lactate dehydrogenase and phosphorylase were more active in the distal segment. These enzymes were less active in the epididymis of castrated animals and less difference was apparent between the proximal and distal segments. However, the corpus epididymidis from castrated rats had lower activities of almost all enzymes compared with other epididymal segments. 3. Spermatozoa required sonication to obtain satisfactory enzyme release. Glycolytic enzymes were more active in spermatozoa than in epididymal tissue, being more than 10 times as active in the case of hexokinase, phosphoglycerate kinase and phosphoglycerate mutase. 4. The specific activities of a number of enzymes in the epididymis were dependent on the androgen status of the animal. These included hexokinase, phosphofructokinase, aldolase, glyceraldehyde phosphate dehydrogenase, phosphoglycerate kinase, pyruvate kinase, glycerol phosphate dehydrogenase, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and phosphorylase. 5. The caput and cauda epididymidis differed in the extent to which enzyme activities changed in response to an altered androgen status. The most notable examples were hexokinase, phosphofructokinase, aldolase, phosphoglycerate kinase, 6-phosphogluconate dehydrogenase and phosphorylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号