首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以朵丽蝶兰为材料,对乙烯和生长素调节的授粉后花的发育进行了研究。实验结果显示,切花和植株上的花授粉后,乙烯的产生和花的发育无明显差异;花瓣的衰老、子房发育、花粉萌发和花粉管的伸长受乙烯调节;与切花相比,植株上花的子房内无ACC合酶和ACC 氧化酶mRNA 的积累。用生长素运输抑制剂2 [(1naphthalenylamino)carbonyl] benzoicacid(NPA) 处理柱头,授粉诱导的子房发育在很大程度上受到抑制, 表明授粉后子房的发育需要转运来的生长素。  相似文献   

2.
3.
Pollination induces many physiological responses in the flower, including deterioration and death in specific pistil cell types. It is shown here that within the style of tobacco, pollination-induced cell deterioration was restricted to the transmitting tissue while the surrounding cortical tissue was not affected. It was distinct from general senescence since exogenously applying the senescence-inducing hormone ethylene, or its precursor aminocyclopropane-1-carboxylic acid (ACC), to the flower or the pistil induced overall deterioration in the entire flower. Furthermore, both pollen tube growth and ethylene action were needed for the entire spectrum of cellular changes associated with this pollination-induced transmitting tissue deterioration process. It is also shown that pollination-induced mRNA poly(A) tail-shortening for at least three major classes of transmitting tissue-specific mRNAs. As is commonly observed for poly(A) tail-shortened mRNAs, the levels of two of these three mRNA classes decline after pollination. On the other hand, the third class of mRNAs, transmitting tissue-specific (TTs) mRNAs, was maintained at a very high level subsequent to pollination, even after substantial poly(A)-tail shortening. TTS mRNAs encode a pollen tube growth-promoting and -attracting protein needed for optimal in vivo pollen tube growth. The specific preservation of TTS mRNAs in the deteriorating transmitting tissue cells suggests that these cells can distinguish molecules needed in the pollinated styles from those that are dispensable, and protect them from degradation. It is suggested that the pollination-induced mRNA poly(A) tail-shortening and cell death are programmed processes suited to the post-pollination transmitting tissue environment. Results showing that ACC is a candidate signal molecule for the pollination-induced mRNA-shortening which is accentuated by ethylene and mediated via a protein phosphorylation-dependent signal transduction pathway are also presented.  相似文献   

4.
Pollination of many flowers initiates a sequence of precisely regulated developmental events that include senescence of the perianth and development of the ovary. The plant hormone ethylene is known to play a key role in regulating the biochemical and anatomical changes that constitute the postpollination syndrome. For this reason, we have studied the pollination syndrome in Phalaenopsis orchids by examining the spatial and temporal location of ethylene biosynthesis within the orchid flower, and how this biosynthesis is regulated by factors that influence expression of genes that encode key enzymes in the ethylene biosynthetic pathway. In particular, we examined the role in the postpollination syndrome of the expression of the gene for 1-aminocyclopropane-1-carboxylate (ACC) oxidase, which catalyzes the conversion of ACC to ethylene. In vivo incubation of tissues with the ethylene precursor ACC demonstrated that ACC oxidase activity increases after pollination in the stigma, contrary to the observation that activity is constitutive in petunia and carnation gynoecia. RNA blot hybridization of floral tissues indicates that the increase in ACC oxidase activity is due to de novo synthesis of mRNA and presumably protein, which is induced after pollination. Furthermore, the pattern of induction is consistent with a model of coordinate regulation of gene expression in which the pollination signal travels to other organs of the flower to induce their ethylene production. We have also used in situ hybridization to define further the temporal and spatial expression of ACC oxidase within the floral organs, showing that expression, and,by inference, the capability to oxidize ACC to ethylene, is induced in all living cells of the tissues examined after pollination. These findings contrast with work in petunia that suggests that ACC oxidase is localized to the stigmatic surface.  相似文献   

5.
6.
The temporal and spatial expression patterns of three 1-aminocyclopropane-1-carboxylate (ACC) synthase genes were investigated in pollinated orchid (Phalaenopsis spp.) flowers. Pollination signals initiate a cascade of development events in multiple floral organs, including the induction of ethylene biosynthesis, which coordinates several postpollination developmental responses. The initiation and propagation of ethylene biosynthesis is regulated by the coordinated expression of three distinct ACC synthase genes in orchid flowers. One ACC synthase gene (Phal-ACS1) is regulated by ethylene and participates in amplification and interorgan transmission of the pollination signal, as we have previously described in a related orchid genus. Two additional ACC synthase genes (Phal-ACS2 and Phal-ACS3) are expressed primarily in the stigma and ovary of pollinated orchid flowers. Phal-ACS2 mRNA accumulated in the stigma within 1 h after pollination, whereas Phal-ACS1 mRNA was not detected until 6 h after pollination. Similar to the expression of Phal-ACS2, the Phal-ACS3 gene was expressed within 2 h after pollination in the ovary. Exogenous application of auxin, but not ACC, mimicked pollination by stimulating a rapid increase in ACC synthase activity in the stigma and ovary and inducing Phal-ACS2 and Phal-ACS3 mRNA accumulation in the stigma and ovary, respectively. These results provide the basis for an expanded model of interorgan regulation of three ACC synthase genes that respond to both primary (Phal-ACS2 and Phal-ACS3) and secondary (Phal-ACS1) pollination signals.  相似文献   

7.
Conditional male fertility in maize   总被引:3,自引:0,他引:3  
  相似文献   

8.
9.
In tobacco, as in other species, ethylene is produced in response to pollination. Although tobacco is a self-compatible species, it displays unilateral incongruity with other Nicotianaplants. Incongruous pollination also results in ethylene production, but this production differs depending on the pollen used and is related to the extent to which pollen tubes grow in the tobacco style. In the investigation reported here we followed the expression of the ACC synthase- and ACC oxidase-coding genes upon pollination of tobacco pistils and compared self-pollination with incongruous pollination. The pattern of expression of these genes also correlated with pollen-tube growth, although wounding alone cannot explain the results obtained. We also examined the expression of these genes upon pollination of immature tobacco pistils, in which different pollen tubes grew indistinctly inside the tobacco style and reached the ovary at the same rate. In this situation no significant differences in gene expression could be observed between the different pollinations. Ethephon, a substance that produces ethylene, could, in some cases, minimize the arrest of incongruous pollen tubes inside the style.  相似文献   

10.
分析了与授粉有关的因子调节的ACC合酶和ACC氧化酶基因在朵丽蝶兰(DoritaenopsishybridaHort.)花中的表达。生长素和乙烯均可诱导ACC合酶和ACC氧化酶的mRNA在花器官中积累。然而,去雄却不能诱导这两个基因在花器官中表达。生长素和乙烯所诱导的ACC合酶和ACC氧化酶的mRNA在花器官中的积累模式相似。原位杂交结果表明,生长素和乙烯处理后ACC氧化酶的mRNA在柱头的表皮和薄壁细胞中积累。根据ACC合酶和ACC氧化酶基因表达的结果,对生长素、乙烯和去雄在兰花授粉后乙烯生物合成过程中的作用进行了分析。  相似文献   

11.
In the pollen-pistil system of petunia (Petunia hybrida L.) self-compatible and self-incompatible clones within 7 h after self-pollination, we determined the content of ACC (1-aminocyclopropane-1-carboxylic acid), the activity of two enzymes (ACC synthase and ACC oxidase), and the rate of ethylene production. Depending on the type of pollination, germination of pollen on the stigma surface and the pollen tube growth in the tissues of style were accompanied by different levels of ACC and ethylene release. The pollen-pistil system of the self-compatible clone contained twice more ACC than in the self-incompatible clone, whereas the pollen-pistil system in the self-incompatible clone produced 4–5 times more ethylene than in the self-compatible clone. For both types of pollination, ACC and ethylene were predominantly produced in the stigma tissues. The rate of ethylene production therein was 50 times greater than in the styles and ovaries, and the content of ACC was 100 times higher than in the styles and ovaries. Germination of male gametophyte after both types of pollination was accompanied by elevated ACC synthase activity (especially in the case of compatible pollination), whereas notable increase in ACC oxidase activity was manifested in growing pollen tubes after self-incompatible pollination  相似文献   

12.
13.
14.
In many flowers, and especially in orchids, pollination regulates a syndrome of developmental events that collectively prepare the flower for fertilization while shedding of organs that have completed their function in pollen dispersal and reception. In this study, we performed a water extraction of the primary pollen signal(s) from the pollinia of Phalaenopsis flowers and characterized its biochemical nature. The primary pollen signal is readily soluble in water and is a relatively small molecular substance below 3000 MW. The pollen signal is probably not proteinaceous in nature, since biological activity was retained after digesting the pollen diffusate by Proteinase K or boiling for 30. By separating the pollen diffusate on an amino anion exchange column, we found that different fractions induced the postpollination syndrome suggesting that different pollen-borne substances may be involved in the pollination response. More than 90% of a radiolabeled free IAA standard coeluted with a specific fraction, however other collected fractions also induced the postpollination response, suggesting that IAA can not be the only primary pollen signal as previously described. High pressure liquid chromatography analysis revealed that the pollen diffusate contained two major peaks and five smaller peaks of detected substances. Fractions containing substances from two of these peaks completely mimicked the postpollination response of perianth senescence and ovary growth, while fractions of the other peaks only induced perianth senescence. By running additional standards, it was found that 1-aminocyclopropane-1-carboxylic acid peaked at the same retention time as one of the major pollen diffusate peaks, while the free IAA standard peak could not be correlated to any of the pollen diffusate peaks. In the future, further purification of these peaks, and analysis by gas chromatography coupled with mass spectrometry, will provide more information about the exact nature of the primary pollen signals.  相似文献   

15.
The pistil of flowers is a specialized organ which contains the female gametophytes and provides the structures necessary for pollination and fertilization. Pollen deposited on the stigmatic surface of a compatible plant germinates a pollen tube which penetrates the stigmatic papillae and grows intercellularly through the style towards the ovules in the ovary. Pollen tube growth is largely restricted to the transmitting tissue in the style. Therefore the stylar transmitting tissue is extremely important for the migration of the pollen cell towards the ovary. We have isolated two related cDNAs, transmitting tissue-specific (TTS)-1 and TTS-2, derived from two proline-rich protein (PRP)-encoding mRNAs that accumulate specifically in the transmitting tissue of tobacco. The deduced PRP sequences share similarities with proline-rich cell wall glycoproteins found in a variety of plants. TTS-1 and TTS-2 mRNAs are induced in very young floral buds, accumulate most abundantly during the later stages of flower development when style elongation is the most rapid, and remain at relatively high levels at anthesis. These mRNAs become undetectable in maturing green fruits. In situ hybridization shows that TTS-1 and TTS-2 mRNA accumulation is restricted to the transmitting tissue of the style. The possible roles that these transmitting tissue-specific PRPs may play in maintaining the structural integrity of the style or in the function of this organ is discussed.  相似文献   

16.
不同葡萄品种柱头、花柱发育与种子形成的关系   总被引:3,自引:0,他引:3  
对‘京秀’、‘香妃’(二倍体)和‘黑奥林’、‘巨峰’(四倍体)葡萄品种的柱头、花柱发生发育以及花粉管在雌蕊中生长与坐果和果实中种子形成的关系进行了研究。结果显示:‘京秀’、‘香妃’的坐果率和果实中的种子数明显高于‘黑奥林’和‘巨峰’,而‘巨峰’葡萄的坐果率和种子数最低。开花期‘京秀’和‘香妃’的花柱直径略小于‘黑奥林’和‘巨峰’,但花柱中部引导组织的直径和引导组织所占花柱的比例却大于‘黑奥林’和‘巨峰’;半实心花柱的比例也高于‘黑奥林’和‘巨峰’,说明花柱中引导组织的结构和发育状况可能与坐果和果实中种子形成有关;人工授粉24 h后,在‘京秀’和‘香妃’雌蕊中花粉管的生长速度快于‘黑奥林’和‘巨峰’,授粉后48 h‘京秀’和‘香妃’雌蕊中到达各部位的花粉管数要多于‘黑奥林’和‘巨峰’,授粉后72 h各品种到达子房各部位的花粉管数开始减少。表明‘京秀’和‘香妃’花柱中引导组织较为发达,而且半实心花柱比例也较高,有利于花粉管在雌蕊中的生长和完成授粉受精,使‘京秀’和‘香妃’的坐果率和果实中种子的形成都较高。  相似文献   

17.
18.
19.
20.
Wang H  Wu HM  Cheung AY 《The Plant cell》1993,5(11):1639-1650
The extracellular matrix of stylar transmitting tissues of many angiosperms is enriched in secretory materials that are believed to be important for interactions with pollen tubes. We have previously characterized two related cDNAs (TTS-1 and TTS-2) for stylar transmitting tissue-specific proline-rich proteins (TTS proteins) from Nicotiana tabacum. We show here that TTS proteins are highly glycosylated proteins with apparent molecular masses ranging between 50 and 100 kD. Results from chemical and enzymatic deglycosylation suggest that TTS proteins have N-linked glycosyl groups, and the extensive glycosylation most probably has resulted from modifications at the proline residues. TTS proteins are localized to the intercellular regions between neighboring transmitting tissue cells, the space in which pollen tubes elongate as they migrate from the stigma toward the ovary. TTS mRNA and protein levels are regulated during pistil development and by pollination. The levels of TTS mRNAs and proteins increase with flower development and reach the maximal levels as flowers approach anthesis. These maximal levels are maintained in the styles for at least 3 to 4 days after pollination, during which time pollen tubes elongate and reach the ovary. Spatially, TTS mRNAs and proteins accumulate first in the stigmatic end of young styles, and their levels progressively increase toward the basal end as pistils mature. Pollination stimulates the levels of TTS mRNAs and proteins in hand-pollinated young styles, which normally accumulate relatively low levels of these TTS gene products. Pollination also qualitatively affects TTS mRNAs and proteins. In pollinated styles, TTS mRNAs are shorter than those in unpollinated styles and underglycosylated TTS protein species begin to accumulate. The elaborate regulatory mechanisms governing TTS mRNAs and proteins during development and by pollination strongly suggest that these proteins may play a functional role in the process of pollination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号