首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Kinetics of P absorption were investigated in mycorrhizal (Glomus fasciculatus) and nonmycorrhizal tomato (Lycopersicon esculentum) roots to determine why increased ion absorption by mycorrhizae occurs. Initial rates of absorption of 32P were measured at 1 to 100 micromolar KH2PO4 (pH 4.6). Absorption rates of mycorrhizae were about twice those of control roots. Augustinsson-Hofstee analysis yielded two linear phases; Vmax and Km were calculated for each phase. In the low phase (1 to 20 micromolar), Vmax values for the mycorrhizal and nonmycorrhizal roots were each 0.10 micromoles P per gram fresh weight per hour while Km values were 1.6 and 3.9 micromolar KH2PO4, respectively. For the high phase (30 to 100 micromolar), Vmax values for mycorrhizal and nonmycorrhizal roots were 0.32 and 0.25 micromoles P per gram fresh weight per hour and Km values were 35 and 42 micromolar, respectively. These results indicate that at the lower phase concentrations, similar to those expected in most soil solutions, a major factor contributing to the increased uptake was an apparent greater affinity of the absorbing sites for H2PO4 (lower Km).  相似文献   

2.
Interactions between absorption of paraquat and the polyamines putrescine, cadaverine, and spermine in roots of intact maize (Zea mays L. cv 3377 Pioneer) seedlings were examined. Concentration-dependent kinetics for paraquat and putrescine influx were similar and both kinetic curves could be resolved into a linear and a saturable component. The linear component was previously shown to represent cell wall/membrane binding. The saturable components for paraquat and putrescine uptake, which represent influx across the plasmalemma, had Km values of 98 and 120 micromolar, respectively, and Vmax values of 445 and 456 nanomoles per gram fresh weight per hour, respectively. Lineweaver-Burk transformation of the saturable component of paraquat influx in the presence of varying concentrations of putrescine indicated that the diamine competitively inhibited the saturable component of paraquat uptake. Reciprocal experiments similarly demonstrated that paraquat competitively inhibited the saturable component of putrescine uptake. Competitive inhibition of both paraquat and putrescine influx could also be demonstrated with the diamine cadaverine, which has a charge distribution similar to that of paraquat and putrescine. In contrast, the larger, tetravalent polyamine spermine appeared to noncompetitively inhibit the influx of paraquat and putrescine. These results strongly suggest that paraquat enters maize root cells via a carrier system that normally functions in the transport of diamines with a charge distribution similar to that of paraquat.  相似文献   

3.
The interaction between ammonium and potassium during influx was examined in roots of dark-grown decapitated corn seedlings (Zea mays L., cv. Pioneer 3369A). Influx was measured during a 10-min exposure to either (15NH4)2SO4 ranging from 10 to 200 M NH 4 + with and without 200 M K(86Rb)Cl or to K(86Rb)Cl ranging from 10 to 200 M K+ with and without 200 M NH 4 + as (15NH4)2SO4. The simple Michaelis-Menten model described the data well only for potassium influx in the presence of ambient ammonium. For the other three instances, the data were improved by assuming that a second influx mechanism became operative as the low-concentration phase approached saturation. Two distinct mechanisms are thus indicated for both ammonium and potassium influx within the range of 10 to 200 M.The influx mechanism operating at low concentrations showed greater affinity for potassium than for ammonium, even though the capacity for ammonium transport was twice as large as that for potassium. It is suggested that this phase involved a common transport system for the two ions and that localized low acidity next to the internal surface, following H+ extrusion, favored ammonium deprotonation and dissociation from the transport system-ammonium complex. Parallel decreases in V max and increases in Km of the low-concentration saturable phase occurred for ammonium influx when ambient potassium was present and for potassium influx when ambient ammonium was present. The data support a mixed-type inhibition in each case. Simultaneous measurement of potassium and ammonium influx showed that they were highly negatively correlated at the lower concentrations, indicating that the extent to which influx of the inhibited ion was restricted was associated with influx of the inhibitor ion. Presence of ambient ammonium eliminated the second phase of potassium influx. In contrast, the presence of ambient potassium decreased the concentration at which the second phase of ammonium influx was initiated but did not restrict the rate.Paper no. 11131 of the Journal Series of the North Carolina Agricultural Research ServiceThe use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the products named, nor criticism of similar ones not mentioned  相似文献   

4.
Putrescine metabolism, uptake, and compartmentation were studied in roots of hydroponically grown intact maize (Zea mays L.) seedlings. In vivo analysis of exogenously applied putrescine indicated that the diamine is primarily metabolized by a cell wall-localized diamine oxidase. Time-dependent kinetics for putrescine uptake could be resolved into a rapid phase of uptake and binding within the root apoplasm, followed by transport across the plasma membrane that was linear for 30 to 40 minutes. Concentration-dependent kinetics for putrescine uptake (between 0.05 and 1.0 millimolar putrescine) appeared to be nonsaturating but could be resolved into a saturable (Vmax 0.397 micromoles per gram fresh weight per hour; Km 120 micromolar) and a linear component. The linear component was determined to be cell wall-bound putrescine that was not removed during the desorption period following uptake of [3H]putrescine. These results suggest that a portion of the exogenously applied putrescine can be metabolized in maize root cell walls by diamine oxidase activity, but the bulk of the putrescine is transported across the plasmalemma by a carrier-mediated process, similar to that proposed for animal systems.  相似文献   

5.
The effect of ambient ammonium (0.5 millimolar [14NH4]2SO4) added to a nutrient solution containing 1.0 millimolar K15NO3, 99 atom per cent 15N, upon [15N]nitrate assimilation and utilization of previously accumulated [14N]nitrate was investigated. Corn seedlings, 5-day-old dark-grown decapitated (experiment I) and 10-day-old light-grown intact (experiment II), which had previously been grown on K14NO3 nutrient solution, were used. In both experiments, the presence of ambient ammonium decreased [15N]nitrate influx (20% after 6 hours) without significantly affecting the efflux of previously accumulated [14N]nitrate. In experiment I, relative reduction of [15N]nitrate (reduction as a percentage of influx) was inhibited more than was [15N]nitrate influx. Nevertheless, in experiment I, where all reduction could be assigned to the root system, the absolute inhibition of reduction during the 12 hours (13 micromoles/root) was less than the absolute inhibition in influx (24 micromoles/root). The data suggest that the influence of ammonium on [15N]nitrate influx could not be totally accounted for by the decrease in the potential driving force which resulted from restricted reduction; an additional impact on the influx process is indicated. Reduction of [15N]nitrate in experiment II after 6 hours accounted for 30 and 18% of the tissue excess 15N in the control and ammonium treatments, respectively. Relative distribution of 15N between roots and exudate (experiment I), or between roots and shoots (experiment II) was not affected by ammonium. On the other hand, the accumulation of [15N]nitrate in roots, shoots, and xylem exudate was enhanced by ammonium treatment compared to the control, whereas the accumulation of reduced 15N was inhibited.  相似文献   

6.
Densities of osmoticum and potassium were measured as a function of distance from the tip of the primary root of Zea mays L. (cv WF9 × mo17). Millimeter segments were excised and analyzed for osmotic potential by a miniaturized freezing point depression technique, and for potassium by flame spectrophotometry. Local deposition rates were estimated from the continuity equation with values for density and growth velocity. Osmotic potential was uniform, −0.73 ± 0.05 megapascals, throughout the growth zone of well-watered roots. Osmoticum deposition rate was 260 μosmoles per gram fresh weight per hour. Potassium density fell from 117 micromoles per gram in the first mm region to 48 micromoles per gram at the base of the growth zone. Potassium deposition rates had a maximum of 29 micromoles per gram per hour at 3.5 millimeters from the tip and were positive (i.e. potassium was being added to the tissue) until 8 millimeters from the tip. The results are discussed in terms of ion relations of the growing zone and growth physics.  相似文献   

7.
Effects of vanadate on the plasma membrane ATPase of red beet and corn   总被引:15,自引:14,他引:1       下载免费PDF全文
The effect of vanadate on the plant plasma membrane ATPase were investigated in plasma membrane fractions derived from corn roots (Zea mays L.) and red beets (Beta vulgaris L.). The Ki for vanadate inhibition of the plasma membrane ATPase from corn roots and red beets was between 6 and 15 micromolar vanadate. In both membrane fractions, 80% to 90% of the total ATPase was inhibited at vanadate concentrations below 100 micromolar. Vanadate inhibition was optimal at pH 6.5, enhanced by the presence of K+, and was partially reversed by 1 millimolar EDTA. The Mg:ATP kinetics for the plasma membrane ATPase were hyperbolic in both the absence and presence of vanadate. Vanadate decreased both the Km and Vmax of the red beet plasma membrane ATPase, indicating that vanadate inhibits the ATPase uncompetitively. These results indicate many similarities with respect to vanadate inhibition between the plant plasma membrane ATPase and other major iontranslocating ATPases from fungal and animal cells. The high sensitivity to vanadate reported here, however, differs from other reports of vanadate inhibition of the plant plasma membrane ATPase from corn, beets, and in some instances oats.  相似文献   

8.
Sucrose translocation and storage in the sugar beet   总被引:14,自引:9,他引:5       下载免费PDF全文
Several physiological processes were studied during sugar beet root development to determine the cellular events that are temporally correlated with sucrose storage. The prestorage stage was characterized by a marked increase in root fresh weight and a low sucrose to glucose ratio. Carbon derived from 14C-sucrose accumulation was partitioned into protein and structural carbohydrate fractions and their amino acid, organic acid, and hexose precursors. The immature root contained high soluble acid invertase activity (Vmax 20 micromoles per hour per milligram protein; Km 2 to 3 millimolar) which disappeared prior to sucrose storage. Sucrose storage was characterized by carbon derived from 14C-sucrose uptake being partitioned into the sucrose fraction with little evidence of further metabolism. The onset of storage was accompanied by the appearance of sucrose synthetase activity (Vmax 12 micromoles per hour per milligram protein; Km 7 millimolar). Neither sucrose phosphate synthetase nor alkaline invertase activities were detected during beet development. Intact sugar beet plants (containing a 100-gram beet) exported 70% of the translocate to the beet, greater than 90% of which was retained as sucrose with little subsequent conversions.  相似文献   

9.
Abstract Potassium (86Rb) influx from 200 mmol m ?3 KCl into dark grown, decapitated maize seedlings 6 d old) was stimulated by nitrate pretreatment. The stimulus was clearly evident by 6h exposure to nitrate and required 12–24 h for maximal expression. Decay of the nitrate-stimulated potassium influx was more than 50% complete within 3 h after transfer to nitrogen-free solutions. The stimulation of potassium influx was entirely accounted for by an increase in the influx component that was resistant to inhibition by presence of 200 mmol m?3 ambient ammonium. In contrast, the component of potassium influx that was sensitive to inhibition by ambient ammonium was unaffected by nitrate pretreatment. Exposure to the glutamine synthetase inhibitor L-methionine-dl-sulphoximine (MSX) during nitrate pretreatment stimulated the resistant component but the sensitive component was nearly eliminated. Pretreatment with ammonium increased the resistant component of potassium influx within 3 h, i.e. before it was increased by nitrate pretreatment, but the sensitive component was concomitantly restricted. The latter recovered partially during extended pretreatment with ammonium. The data indicate that the resistant component responded positively to increases in tissue ammonium concentrations whereas the sensitive component was unaffected by tissue ammonium except at concentrations in excess of 10μmol g?1. Ammonium influx was also stimulated by nitrate pretreatment and to a greater extent than potassium influx. Presence of MSX with nitrate during pretreatment resulted in a further stimulation in ammonium influx. The parallel increases in root ammonium concentrations with the two pretreatments imply that part of the increase in ammonium influx was a consequnce of increased counter-transport with endogenous ammonium.  相似文献   

10.
Saturable uptake of indol-3yl-acetic Acid by maize roots   总被引:1,自引:1,他引:0       下载免费PDF全文
The uptake of 5-[3H]indol-3yl-acetic acid (IAA*) by segments of Zea mays L. roots was measured in the presence of nonradioactive indol-3yl-acetic acid (IAA°) at different concentrations. IAA uptake was found to have a nonsaturable component and a saturable part with (at pH 5.0) an apparent Km of 0.285 micromolar and apparent Vmax 55.0 picomoles per gram fresh mass per minute. These results are consistent with those which might be expected for a saturable carrier capable of regulating IAA levels. High performance liquid chromatography analyses showed that very little metabolism of IAA* took place during 4 minute uptake experiments. Whereas nonsaturable uptake was similar for all 2 millimeter long segments prepared within the 2 to 10 millimeter region, saturable uptake was greatest for the 2 to 4 millimeter region. High levels of uptake by stelar (as compared with cortical) segments are partly attributable to the saturable carrier, and also to a high level of uptake by nonsaturable processes. The carrier may play an essential role in controlling IAA levels in maize roots, especially the accumulation of IAA in the apical region. The increase in saturable uptake toward the root tip may also contribute to the acropetal polarity of auxin transport.  相似文献   

11.
The effects of ammonium (0–5 mol m?3) on root hair membrane potential and on the influx of nitrate and phosphate were investigated in roots of intact barley and tomato plants. In both species, addition of ammonium to the medium bathing the roots caused an almost immediate depolarization of the membrane potential; the depolarization was greater at higher concentrations of ammonium. Influx of 13NC3? and 32Pi was inhibited over the same time scale and concentration range. In tomato roots, there was little further depolarization of the membrane potential or inhibition of anion influx at ammonium concentrations above 0.4 mol m?3. In barley roots, the inhibition of nitrate influx and the depolarization of the membrane potential did not saturate below 5 mol m?3 ammonium.  相似文献   

12.
Proton extrusion by roots of intact sunflower plants (Helianthus annuus L.) was studied in nutrient solutions or in agar media with a pH indicator. Proton extrusion was enhanced by either iron deficiency, addition of fusicoccin, or single salt solutions of ammonium or potassium salts. The three types of proton extrusion differ in both localization along the roots and capacity. From their sensitivity to ATPase inhibitors it seems justified to characterize them as proton pumps driven by plasma membrane APTases.

Enhanced proton extrusion induced by preferential cation uptake from (NH4)2SO4 or K2SO4 was uniformly distributed over the whole root system. In contrast, the enhancement effect of fusicoccin was confined to the basal root zones and that of iron deficiency to the apical root zones. Also the rates of proton extrusion per unit of root fresh weight differed remarkably and increased in the order: Fusicoccin K2SO4 < (NH4)2SO4 < iron deficiency.

Under iron deficiency the average values of proton extrusion for the whole root system are 5.6 micromoles H+ per gram fresh weight per hour; however, for the apical root zones values of about 28 micromoles H+ can be calculated. This high capacity is most probably related to the iron deficiency-induced formation of rhizodermal transfer cells in the apical root zones. It can be assumed that the various types of root-induced acidification of the rhizosphere are of considerable ecological importance for the plant-soil relationships in general and for mobilization of mineral nutrients from sparingly soluble sources in particular.

  相似文献   

13.
The role of Ca2+ transport in the mechanism of Al toxicity was investigated, using a Ca2+-selective microelectrode system to study Al effects on root apical Ca2+ fluxes in two wheat (Triticum aestivum L.) cultivars: Al-tolerant Atlas 66 and Al-sensitive Scout 66. Intact 3-day-old low-salt-grown (100 micromolar CaCl2, pH 4.5) wheat seedlings were used, and it was found that both cultivars maintained similar rates of net Ca2+ uptake in the absence of Al. Addition of Al concentrations that were toxic to Scout (5-20 micromolar AlCl3) immediately and dramatically inhibited Ca2+ uptake in Scout, whereas Ca2+ transport in Atlas was relatively unaffected. The Al-induced inhibition of Ca2+ uptake in Scout 66 was rapidly reversed following removal of Al from the solution bathing the roots. Similar studies with morphologically intact root cell wall preparations indicated that the Al effects did not involve Al-Ca interactions in the cell wall. These results suggest that Al inhibits Ca2+ influx across the root plasmalemma, possibly via blockage of calcium channels. The differential effect of Al on Ca2+ transport in Al-sensitive Scout and Al-tolerant Atlas suggests that Al blockage of Ca2+ channels could play a role in the cellular mechanism of Al toxicity in higher plants.  相似文献   

14.
The influx of K+(86Rb+) into intact roots of rye (Secale cereale L. cv. Rheidal) exposed to a differential temperature (DT) between the root (8° C) and shoot (20° C) is initially reduced compared with warm-grown (WG) controls with both shoot and root maintained at 20° C. Over a period of 3 d, however, K+-influx rates into DT plants are restored to levels similar to or greater than those of the WG controls, the absolute rates of K+ influx being strongly dependent upon the shoot/root ratio. Acclimation in DT plants results in a reduction of K+ influx into the apical (0–2 cm) region of the seminal root which is associated with a compensatory increase in K+ influx into the more mature, basal regions of the root. Values of V max and apparent K m for K+ influx into DT plants were similar to those for WG plants at assay temperatures of 8° C and 20° C except for an increase in the apparent K m at 8° C. The influx of K+ from solutions containing 0.6 mol·m-3 K+ into both WG and DT plants was found to be linearly related to assay temperature over the range 2–27° C, and the temperature sensitivity of K+ influx to be dependent upon shoot/root ratio. At high shoot/root ratios, the ratio of K+ influx at 20° C:K+ influx at 8° C for WG plants approached a minimum value of 1.9 whereas that for DT plants approached unity indicating that K+ influx into DT plants has a large temperature-insensitive component. Additionally, when plants were grown in solutions of low potassium concentration, K+ influx into DT plants was consistently greater than that into WG plants, in spite of having a greater root potassium concentration ([K+]int). This result indicates some change in the regulation of K+ influx by [K+]int in plants exposed to low root temperatures. We suggest that K+ influx into rye seedlings exposed to low root temperatures is regulated by the increased demand placed on the root system by a proportionally larger shoot and that the acclimation of K+ influx to low temperatures may be the result of an increased hydraulic conductivity of the root system.Abbreviations DT differential temperature pretreatment - [K+]int root potassium concentration - [K+]ext potassium concentration of nutrient medium - WG warm-grown pretreatment  相似文献   

15.
Bhadoria  P.S.  El Dessougi  H.  Liebersbach  H.  Claassen  N. 《Plant and Soil》2004,262(1-2):327-336
Phosphorus acquisition efficiency of maize (Zea mays L.) and groundnut (Arachis hypogaea L.) was investigated in a flowing nutrient solution culture at constant P concentrations of 0.2, 1 and 100 μM. To calculate the P influx and study changes in plant growth and P uptake in relation to plant age, four harvests were taken. Phosphorus uptake kinetics of the roots, i.e. maximum influx, I\max, the Michaelis constant, Km, and the minimum concentration, CLmin (the concentration at which no net uptake occurs) were estimated in a series of short-term experiments, based on the rate of depletion of P from solution over a range of concentrations. At 1 μM P, maize was more P efficient producing up to 90% of its maximum yield as compared to groundnut with only 20% of maximum yield. A 3 times faster P uptake rate was the reason for the maize P efficiency. In contrast for groundnut at 1 μM P, a net efflux was observed at some development stages of this crop indicating a much higher P requirement at the root surface for maximum growth. Maize had a 6 times higher I\max value and a 2 times higher Km value as compared to groundnut. The higher influx of maize was mainly because of the higher I\max. Maize previously grown at low P concentrations had a CLmin of 0.1 μM, while groundnut had values of 0.2 and 0.6 μM. Furthermore groundnut previously grown at 100 μM, was not able to absorb P even at 40 μM. Acclimation to low P concentrations in solution by increasing I\max or decreasing Km was not evident in this study. Differences in P acquisition efficiency between maize and groundnut in solution culture were mainly because of differences in P-uptake kinetics, and to a lesser extent to the size of the root system.  相似文献   

16.
Poynton CY  Huang JW  Blaylock MJ  Kochian LV  Elless MP 《Planta》2004,219(6):1080-1088
Several species of fern from the Pteris genus are able to accumulate extremely high concentrations of arsenic (As) in the fronds. We have conducted short-term unidirectional As influx and translocation experiments with 73As-radiolabeled arsenate, and found that the concentration-dependent influx of arsenate into roots was significantly larger in two of these As-hyperaccumulating species, Pteris vittata (L.) and Pteris cretica cv. Mayii (L.), than in Nephrolepis exaltata (L.), a non-accumulating fern. The arsenate influx could be described by Michaelis-Menten kinetics and the kinetic parameter K m was found to be lower in the Pteris species, indicating higher affinity of the transport protein for arsenate. Quantitative analysis of kinetic parameters showed that phosphate inhibited arsenate influx in a directly competitive manner, consistent with the hypothesis that arsenate enters plant roots on a phosphate-transport protein. The significantly augmented translocation of arsenic to the shoots that was seen in these As hyperaccumulator species is proposed to be due to a combination of the increased root influx and also decreased sequestration of As in the roots, as a larger fraction of As could be extracted from roots of the Pteris species than from roots of N. exaltata. This leaves a larger pool of mobile As available for translocation to the shoot, probably predominantly as arsenite.Abbreviations As V Arsenate - As III Arsenite - K m Michaelis-Menten constant - P i Phosphate - V max Maximum rate of an enzyme-catalyzed reaction  相似文献   

17.
Sucrose uptake was studied in isolated, immature pea cotyledons (Pisum sativum L. cv Marzia) in relation to their developmental stage. During the developmental period examined the water content of the cotyledons decreased from ≈80% “stage 1” to ≈55% “stage 2”. When assayed in an isotonic medium (400 osmoles per cubic meter) the influx capacity per gram fresh weight for sucrose was almost constant during this developmental period. The influx could be analyzed into a saturable component (Km ≈ 9 moles per cubic meter; Vmax ≈ 150 nanomoles per minute per gram fresh weight) and an unsaturable component (ki ≈ 0.5 nanomoles per minute per gram fresh weight [per mole per cubic meter]). Incubation in a hypotonic medium reduced the sucrose influx in stage 1 cotyledons, up to 80% reduction at 0 milliosmole (medium without mannitol), but had no effect on sucrose uptake by stage 2 cotyledons. Reduced uptake in a hypotonic medium (100 osmoles per cubic meter) could be attributed to a lowering of the Vmax from 150 to 36 nanomoles per minute per gram fresh weight. During incubation of stage 1 cotyledons and stage 2-cotyledons in a hypotonic medium (200 osmoles per cubic meter) their volume increased by 16% and 5.6%, respectively, while the calculated turgor pressure increased from 0.2 to 0.6 megapascal for cotyledons of both developmental stages. Reduced sucrose influx in hypotonic medium, therefore, seems to be related to cell swelling (membrane stretching) rather than to increased turgor pressure.  相似文献   

18.
The effect of the exogenous and endogenous NO3 concentration on net uptake, influx, and efflux of NO3 and on nitrate reductase activity (NRA) in roots was studied in Phaseolus vulgaris L. cv. Witte Krombek. After exposure to NO3, an apparent induction period of about 6 hours occurred regardless of the exogenous NO3 level. A double reciprocal plot of the net uptake rate of induced plants versus exogenous NO3 concentration yielded four distinct phases, each with simple Michaelis-Menten kinetics, and separated by sharp breaks at about 45, 80, and 480 micromoles per cubic decimeter.

Influx was estimated as the accumulation of 15N after 1 hour exposure to 15NO3. The isotherms for influx and net uptake were similar and corresponded to those for alkali cations and Cl. Efflux of NO3 was a constant proportion of net uptake during initial NO3 supply and increased with exogenous NO3 concentration. No efflux occurred to a NO3-free medium.

The net uptake rate was negatively correlated with the NO3 content of roots. Nitrate efflux, but not influx, was influenced by endogenous NO3. Variations between experiments, e.g. in NO3 status, affected the values of Km and Vmax in the various concentration phases. The concentrations at which phase transitions occurred, however, were constant both for influx and net uptake. The findings corroborate the contention that separate sites are responsible for uptake and transitions between phases.

Beyond 100 micromoles per cubic decimeter, root NRA was not affected by exogenous NO3 indicating that NO3 uptake was not coupled to root NRA, at least not at high concentrations.

  相似文献   

19.
Effects of glyoxylate on photosynthesis by intact chloroplasts   总被引:6,自引:4,他引:2       下载免费PDF全文
Because glyoxylate inhibits CO2 fixation by intact chloroplasts and purified ribulose bisphosphate carboxylase/oxygenase, glyoxylate might be expected to exert some regulatory effect on photosynthesis. However, ribulose bisphosphate carboxylase activity and activation in intact chloroplasts from Spinacia oleracea L. leaves were not substantially inhibited by 10 millimolar glyoxylate. In the light, the ribulose bisphosphate pool decreased to half when 10 millimolar glyoxylate was present, whereas this pool doubled in the control. When 10 millimolar glyoxylate or formate was present during photosynthesis, the fructose bisphosphate pool in the chloroplasts doubled. Thus, glyoxylate appeared to inhibit the regeneration of ribulose bisphosphate, but not its utilization.

The fixation of CO2 by intact chloroplasts was inhibited by salts of several weak acids, and the inhibition was more severe at pH 6.0 than at pH 8.0. At pH 6.0, glyoxylate inhibited CO2 fixation by 50% at 50 micromolar, and glycolate caused 50% inhibition at 150 micromolar. This inhibition of CO2 fixation seems to be a general effect of salts of weak acids.

Radioactive glyoxylate was reduced to glycolate by chloroplasts more rapidly in the light than in the dark. Glyoxylate reductase (NADP+) from intact chloroplast preparations had an apparent Km (glyoxylate) of 140 micromolar and a Vmax of 3 micromoles per minute per milligram chlorophyll.

  相似文献   

20.
Na+-dependent leucine uptake was greater in potassium loaded brush-border membrane vesicles compared with controls. This effect was not mediated by an electrical potential difference, since it was still present in voltage-clamped conditions. Inhibition experiments indicate the same Na+-dependent leucine transport activity in the presence or in the absence of potassium. The affinity of sodium for the cotransporter was identical at 10 or 100 mM potassium. Leucine kinetics at different potassium concentrations showed a maximum 2.4-fold increase in Vmax, while Km was unaffected. The secondary plots of the kinetic results were not linear. This kinetic behaviour suggests that K+ acts as a non-essential activator of Na+-dependent leucine cotransport. A charge compensation of sodium-leucine influx is most probably a component of the potassium effect in the presence of valinomycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号