首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A human gastric intrinsic factor (IF) cDNA clone was isolated using a rat cDNA clone as a probe. Comparison of the predicted amino acid sequence revealed 80% identity of human IF with rat IF. These cDNA clones were used to isolate and map two overlapping clones encoding the human IF gene. The first exon of the cloned region (exon 2) contains 30 bp of the 5' untranslated region, the signal peptide, and the first 8 amino acids of the mature protein. Exons 3-10 encode the remainder of the coding and 3' noncoding regions. Southern analysis of genomic DNA indicated the presence of a single human IF gene and also revealed the presence of strong hybridizing sequences in genomic DNA from monkey, rat, mouse, cow, and human, suggesting that the IF gene is well conserved. The IF gene was localized to human chromosome 11 by concurrent cytogenetic and cDNA probe analysis of a panel of human X mouse somatic cell hybrids. Southern analysis of genomic DNA from patients with congenital pernicious anemia (lacking intrinsic factor) revealed normal restriction fragment patterns, suggesting that a sizable gene deletion was not responsible for the deficiency.  相似文献   

2.
A human serum amyloid A (SAA) cDNA was used as a probe in chromosome mapping studies to detect human SAA gene sequences in DNA isolated from human/mouse somatic cell hybrids. Southern analysis of DNA from 20 hybrid cell lines, including some with translocations of human chromosomes, placed the SAA gene(s) in the p11----pter region of chromosome 11. Screening of human DNA from unrelated individuals by Southern analysis using the SAA cDNA probe revealed restriction fragment polymorphisms for HindIII and PstI. An analysis of the segregation of these polymorphisms with other markers on the short arm of chromosome 11 should more precisely map the SAA gene(s).  相似文献   

3.
We have isolated cDNA clones that code for human cytochrome b5. Owing to the high degree of evolutionary conservation of cytochrome b5 sequences and the existence of human and rodent cytochrome b5 processed pseudogenes, we were unable to map unambiguously the chromosomal localization of the human gene(s) by Southern blot hybridization of DNA from human-rodent somatic cell hybrids. An alternative approach, based on restriction enzyme digestion of PCR-amplified DNA, enabled us to map the human cytochrome b5 gene(s) to chromosome 18 and one of its processed pseudogenes to the X chromosome. We propose the designations CYB5 and CYB5P1 for the gene and pseudogene loci, respectively.  相似文献   

4.
Multiple ferritin H subunit sequences are present in the genome of higher vertebrates, but it is not yet known with certainty if more than one is expressed. In this paper, we provide evidence that there is only one functional ferritin H gene in the mouse. We screened a mouse genomic library using a mouse ferritin H cDNA as a probe and characterized five clones. These genomic clones proved to contain three pseudogenes and two allelic forms of a unique functional gene. These two alleles differed by only two point mutations in the promoter and three in the first intron and by a 31-bp insertion in the first intron. They were equally expressed when transiently transfected in HeLa cells. These five genomic clones account for all the bands observed on a Southern blot of mouse genomic DNA hybridized with a ferritin H cDNA, and these bands present a restriction fragment length polymorphism between various representatives of the genus Mus. Using a DNA panel prepared from the backcross progeny (C57BL/6 X Mus spretus)F1 X C57BL/6, we localized the functional ferritin H gene (Fth) in region B of mouse chromosome 19 and established cen-Ly-1-Fth-Pax-2 as the most likely gene order, thus defining a conserved syntenic fragment with human chromosome 11q.  相似文献   

5.
We have isolated clones containing the gene for tumor necrosis factor (TNF-alpha) from a mouse genomic library. Four out of five clones containing the TNF-alpha gene also hybridized to a human lymphotoxin (TNF-beta) probe. We constructed a restriction enzyme cleavage map of a 6.4 kb region from one of the genomic clones. From partial sequencing data and hybridizations with exon-specific oligonucleotide probes, we conclude that this region contains the mouse TNF-alpha and TNF-beta genes in a tandem arrangement, that they are separated by only about 1100 bases, and that their intron-exon structure is very similar to that seen in man. We probed genomic blots of DNA from human/mouse hybrids containing single mouse chromosomes for the presence of the mouse TNF genes. The results show that the genes are located on mouse chromosome 17, which also contains the major histocompatibility complex. Therefore, both the mouse and the human TNF genes are tandemly arranged and located on the same chromosome as the MHC.  相似文献   

6.
Thyroxine-binding globulin (TBG) is the major thyroid-hormone transport protein in the plasma of most vertebrate species. A recombinant phage (lambda cTBG8) containing a cDNA insert of human TBG recently has been described. With the cDNA insert from lambda cTBG8 used as a radiolabeled probe, DNA from a series of somatic-cell hybrids containing deletions of the X chromosome was analyzed by means of blot hybridization. The results indicated that the TBG gene is located in the midportion of the long arm of the X chromosome between bands Xq11 and Xq23. The gene then was mapped to band region Xq21-22 by means of in situ hybridization to metaphase chromosomes. Sequences on the X chromosome that are homologous to the cDNA probe are contained within a single EcoRI restriction fragment of 12.5 kb in human DNA. On the basis of the intensity of the hybridization signal on Southern blots, it was determined that the human TBG cDNA probe used in the present study shares significant homology with hamster and mouse sequences. A single EcoRI restriction fragment was recognized in both hamster (8.0-kb) and mouse (5.1-kb) DNA.  相似文献   

7.
We have isolated genomic DNA clones which code for the human erythroid membrane protein band 3 (EMPB3). The identification of the gene has been confirmed by comparison of the amino acid sequence derived from the nucleotide sequence for two restriction fragments from the 5' end of the gene. Two exons have been identified. One exon encodes 20 amino acids which are identical to residues 36 to 56 of the band 3 protein, and the other encodes 44 amino acids homologous to residues 118 to 162. Southern analysis of genomic DNA derived from a panel of rodent-human somatic cell hybrids, which retain different complements of human chromosomes, with band 3 probes has allowed us to localize EMPB3 to human chromosome 17. The gene has been further localized between 17q21 and qter by analysis of DNA from somatic cell hybrids which carry derivative chromosomes from translocations involving chromosome 17 and either chromosome 15 or 21.  相似文献   

8.
The chromosomal location of the murine lambda 5 gene was analyzed by Southern hybridization using restriction enzyme-digested DNA from a panel of 15 mouse X hamster somatic cell hybrids. Sequences homologous with those of lambda 5 DNA were detected in DNA of 5 hybrids. In all 5 hybrids lambda 5 was contained in restriction fragments of equal sizes, the lengths of which indicated that the germline configuration of lambda 5 with three exons and the restriction sites expected from its genomic structure were present. Southern hybridization with the murine lambda 1 gene as a probe detected the same 5 hybrids as positive. The only mouse chromosome present on all of the positive hybrids, and absent from negative ones, was number 16. We conclude that lambda 5 is situated on the same chromosome as lambda 1, i.e., on the murine chromosome 16.  相似文献   

9.
The chromosomal locations of the human and murine T11 (CD2) gene have been determined. Using recently cloned cDNA to probe Southern blots of mouse X human and Chinese hamster X mouse somatic cell hybrids, we have localized the human T11 gene to chromosome 1 and the murine T11 gene to chromosome 3. Based on previously determined blocks of homology between human chromosome 1 and mouse chromosome 3, it is suggested that the human T11 gene may lie on the short arm of chromosome 1 proximal to p221. Thus, the T11 gene is not linked to any other genes for T cell markers that have been mapped to date.  相似文献   

10.
Summary A cDNA clone encoding the human T lymphocyte sheep erythrocyte receptor [the CD2 (T11) antigen] was used as a probe to define the chromosomal location of the gene. The signal, revealed by hybridisation to Southern blots of genomic DNA from somatic cell hybrids, showed a high degree of concordance for human chromosome 1. In particular, the hybrid F4Sc13C19 which contained the short arm only of human chromosome 1 was positive. The location of the CD2 gene to 1p13 was confirmed by in situ hybridisation.  相似文献   

11.
The mouse genome carries one gene and two pseudogenes for cytoplasmic thymidine kinase. The overall structure of these genes was determined with the help of cosmids and lambda phage clones and the upstream sequence containing the promoter was determined. The data allow an allocation of bands seen in the complex patterns of genomic Southern blots obtained from the DNA of wild type cells and of thymidine kinase deficient mutants to the gene as well as to the two pseudogenes. The much used LTK cell line was found to lack the entire gene but to retain the pseudogenes. Two other TK cell lines had DNA patterns indistinguishable from the wild type. Whereas the LTK line did not produce any TKmRNA, the two other mutants had normal amounts of TKmRNA but no cytoplasmic TK activity.  相似文献   

12.
LEF-1 is a 54-kDa nuclear protein that is expressed specifically in pre-B and T-cells. It binds to a functionally important site in the T-cell receptor alpha enhancer and contributes to maximal enhancer activity. LEF-1 is a member of a family of regulatory proteins that share homology with the high mobility group protein 1 (HMG1). The location of the LEF1 gene on human and mouse chromosomes was determined by Southern blot analysis of DNA from panels of interspecies somatic cell hybrids using a murine cDNA probe. Human-specific DNA fragments were detected in all somatic cell hybrids that retained the human chromosomal region 4cen-q31.2. Fluorescent in situ hybridization with two biotin-labeled overlapping human genomic cosmids revealed a specific hybridization signal at 4q23-q25. The homologous locus in the mouse was mapped to chromosome 3 by Southern analysis of rodent x mouse hybrid cell DNA. This chromosomal location was confirmed by the use of a restriction fragment length polymorphism (RFLP) in recombinant inbred mouse strains. The results of this RFLP analysis indicated that the mouse Lef-1 gene was closely linked to Pmv-39 and Egf and was likely placed between these loci, both of which were previously mapped to distal mouse chromosome 3. Our mapping results did not suggest involvement of this gene in previously mapped genetic disorders or in known neoplasia-associated translocation breakpoints.  相似文献   

13.
The human desmin and vimentin genes are located on different chromosomes   总被引:4,自引:0,他引:4  
We have used somatic cell hybrids of Chinese hamster X man and mouse X man to localize the genes (des and vim) encoding the intermediate filaments desmin and vimentin in the human genome. Southern blots of DNA prepared from each cell line were screened with hamster cDNA probes specific for des and vim genes, respectively. The single-copy human des gene is located on chromosome 2, and the single-copy human vim gene is assigned to chromosome 10. Partial restriction maps of the two human genomic loci are presented. A possible correlation of the des locus with several reported hereditary myopathies is discussed.  相似文献   

14.
The chromosomal location of the human intestinal Na+/glucose cotransporter gene (SGLT1) was determined using human cDNA and genomic probes for this transporter gene. Southern blot analysis of genomic DNA from 15 mouse-human somatic cell hybrids showed that the human gene for this transporter resides on chromosome 22. Analysis of hamster-human hybrids selectively retaining chromosome 22 or a portion of it allowed specific assignment of the locus to the q11.2----qter region of chromosome 22. A restriction fragment length polymorphism was identified with EcoRI.  相似文献   

15.
Summary We used a mouse-human somatic cell hybrid to construct a chromosome 21-enriched library in phage vector EMBL4. In all, 35 phage clones containing human inserts were identified by differential screening with total human and mouse DNA. Whole recombinant phages were regionally mapped on chromosome 21 by Southern blot analysis using competitive hybridisation conditions to block repetitive sequences. Ten phage clones mapped proximal to a translocation breakpoint in band 21q21.2, while 25 mapped distal to this point. Three of the phage clones identify restriction fragment length polymorphisms. Polymorphic chromosome 21 markers may be useful in the genetic analysis of Alzheimer's dementia and Down syndrome.  相似文献   

16.
The chromosomal location of the human gene for erythropoietin (EPO) was determined by Southern blot hybridization analysis of a panel of human-mouse somatic hybrid cell DNAs. DNAs from cell hybrids containing reduced numbers of human chromosomes were treated with the restriction enzyme PstI and screened with a cloned human EPO cDNA probe. EPO is assigned to human chromosome 7 based on the complete cosegregation of EPO with this chromosome in all 45 cell hybrids tested. A cell hybrid containing a translocated derivative of chromosome 7 localizes EPO to 7pter----q22. A HindIII restriction fragment length polymorphism is detected by hybridization of the EPO cDNA probe to human genomic DNA.  相似文献   

17.
A human T-cell antigen receptor beta chain gene maps to chromosome 7.   总被引:11,自引:2,他引:11       下载免费PDF全文
cDNA clones which encode the human and mouse T cell antigen receptor beta chain gene have previously been isolated. We have used a mouse cDNA clone to map the chromosomal position of a human beta chain gene. Southern blot analysis of DNA prepared from somatic cell hybrids has assigned this gene to chromosome 7. The use of a hybrid containing a chromosome 7 translocation has further localised this gene to the region 7q22-qter.  相似文献   

18.
Rat genome was assayed for the presence of hsp70 gene-related sequences. Southern blots prepared from rat DNA digested with EcoRI or HindIII restriction endonucleases were hybridized with mouse, human and fruit fly hsp 70 gene probes at increasing stringencies. At the stringency which allows sequences divergent up to about 30% to form stable complexes all three probes detected 25–30 restriction fragments. Increased stringency of the hybridization reduced the number of detectable bands to a few and among them the DNA fragments hybridizing specifically either with mouse or human hsp70 gene probes were detected. Most of the genomic fragments containing hsp70 gene-related sequences were subsequently isolated by screening the rat genomic library with mouse hsp70 gene probe. 168 positive clones were plaque purified and on the basis of the restriction and hybridization pattern we deduced that inserts represented 20 different genomic regions. Partial restriction maps of all isolated genomic fragments were constructed and regions containing hsp70 gene related as well as highly repetitive DNA sequences were localized. A putative sequence rearrangement in the proximity of the hsp70 gene-related sequence was detected in one of the isolated genomic segments.  相似文献   

19.
20.
T Glaser  E Rose  H Morse  D Housman  C Jones 《Genomics》1990,6(1):48-64
The irradiation-fusion technique offers a means to isolate intact subchromosomal fragments of one mammalian species in the genetic background of another. Irradiation-reduced somatic cell hybrids can be used to construct detailed genetic and physical maps of individual chromosome bands and to systematically clone genes responsible for hereditary diseases on the basis of their chromosomal position. To assess this strategy, we constructed a panel of hybrids that selectively retain the portion of human chromosome band 11p13 that includes genes responsible for Wilms tumor, aniridia, genitourinary anomalies, and mental retardation (constituting the WAGR syndrome). A hamster-human hybrid containing the short arm of chromosome 11 as its only human DNA (J1-11) was gamma-irradiated and fused to a Chinese hamster cell line (CHO-K1). We selected secondary hybrid clones that express MIC1 but not MER2, cell-surface antigens encoded by bands 11p13 and 11p15, respectively. These clones were characterized cytogenetically by in situ hybridization with human repetitive DNA and were tested for their retention of 56 DNA, isozyme, and antigen markers whose order on chromosome 11p is known. These cell lines appear to carry single, coherent segments of 11p spanning MIC1, which range in size from 3000 kb to more than 50,000 kb and which are generally stable in the absence of selection. In addition to the selected region of 11p13, two cell lines carry extra fragments of the human centromere and two harbor small, unstable segments of 11p15. As a first step to determine the size and molecular organization of the WAGR gene complex, we analyzed a subset of reduced hybrids by pulsed-field gel electrophoresis. A small group of NotI restriction fragments comprising the WAGR complex was detected in Southern blots with a cloned Alu repetitive probe. One of the cell lines (GH3A) was found to carry a stable approximately 3000-kb segment of 11p13 as its only human DNA. The segment encompasses MIC1, a recurrent translocation breakpoint in acute T-cell leukemia (TCL2), and most or all of the WAGR gene complex, but does not include the close flanking markers D11S16 and delta J. This hybrid forms an ideal source of molecular clones for the developmentally fascinating genes underlying the WAGR syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号