共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
O. M. Volpina M. A. Titova D. O. Koroev T. D. Volkova M. B. Oboznaya M. N. Zhmak T. A. Aleekseev V. I. Tsetlin 《Russian Journal of Bioorganic Chemistry》2006,32(2):154-159
Potential B epitopes and T-helper epitopes in the N-terminal extracellular domain of the α7-subunit of human acetylchloline receptor (AChR) were theoretically calculated in order to reveal peptides that can induce the formation of specific antibodies to this domain. Four peptides structurally corresponding to four α7-subunit regions containing 16–23 aa and three of their truncated analogues were synthesized. Rabbits were immunized with both free peptides and protein conjugates of their truncated analogues, and a panel of antibodies to various exposed regions of the N-terminal extracellular domain of the AChR α7-subunit was obtained. All of the four predicted peptides were shown to induce the production of antipeptide antibodies in free form, without conjugation with any protein carrier. The free peptides and the protein conjugates of truncated analogues induced the formation of almost equal levels of antibodies. Most of the obtained antisera contained antibodies that bind to the recombinant extracellular N-terminal domain of the rat AChR α7-subunit and do not react with the analogous domain of the α1-subunit of the ray Torpedo californica AChR. 相似文献
3.
Eighteen consecutive uniform overlapping synthetic peptides that spanned the entire extracellular part (residues 1–210) of the α-chain ofTorpedo californica acetylcholine receptor were screened for binding activity of125I-labeled cobratoxin. Five toxin-binding regions were localized within residues 1–10, 32–41, 100–115, 122–150, and 182–198. The five toxin-binding regions may be distinct sites or, alternatively, different faces in one or more sites. 相似文献
4.
《Journal of receptor and signal transduction research》2013,33(6):469-483
Galantamine is an approved drug treatment for Alzheimer’s disease. Initially identified as a weak cholinesterase inhibitor, we have established that galantamine mainly acts as an ‘allosterically potentiating ligand (APL)’ of nicotinic acetylcholine receptors (nAChR). Meanwhile other ‘positive allosteric modulators (PAM)’ of nAChR channel activity have been discovered, and for one of them a binding site within the transmembrane domain has been proposed. Here we show, by performing site-directed mutagenesis studies of ectopically expressed chimeric chicken α7/mouse 5-hydroxytryptamine 3 receptor-channel complex, in combination with whole-cell current measurements, in the presence and absence of galantamine, that the APL binding site is different from the proposed PAM binding site. We demonstrate that residues T197, I196, and F198 of ß-strand 10 represent major elements of the galantamine binding site. Residue K123, earlier suggested as being ‘close to’ the APL binding site, is not part of this site but rather appears to play a role in coupling of agonist binding to channel opening and closing. Our data confirm our earlier results that the galantamine binding site is different from the ACh binding site. Both sites are in close proximity and hence may influence each other in a synergistic fashion. Other interesting areas identified in the present study are a ‘hinge’ region around and containing residues F122, K123, and K143 possibly being involved in relaying the signal of agonist binding to gating of the transmembrane channel, and a ‘folding centre’, with P119 as the dominating residue, that crucially positions the agonist binding site with respect to the hinge region. 相似文献
5.
Ludwig J Höffle-Maas A Samochocki M Luttmann E Albuquerque EX Fels G Maelicke A 《Journal of receptor and signal transduction research》2010,30(6):469-483
Galantamine is an approved drug treatment for Alzheimer's disease. Initially identified as a weak cholinesterase inhibitor, we have established that galantamine mainly acts as an 'allosterically potentiating ligand (APL)' of nicotinic acetylcholine receptors (nAChR). Meanwhile other 'positive allosteric modulators (PAM)' of nAChR channel activity have been discovered, and for one of them a binding site within the transmembrane domain has been proposed. Here we show, by performing site-directed mutagenesis studies of ectopically expressed chimeric chicken α7/mouse 5-hydroxytryptamine 3 receptor-channel complex, in combination with whole-cell current measurements, in the presence and absence of galantamine, that the APL binding site is different from the proposed PAM binding site. We demonstrate that residues T197, I196, and F198 of ?-strand 10 represent major elements of the galantamine binding site. Residue K123, earlier suggested as being 'close to' the APL binding site, is not part of this site but rather appears to play a role in coupling of agonist binding to channel opening and closing. Our data confirm our earlier results that the galantamine binding site is different from the ACh binding site. Both sites are in close proximity and hence may influence each other in a synergistic fashion. Other interesting areas identified in the present study are a 'hinge' region around and containing residues F122, K123, and K143 possibly being involved in relaying the signal of agonist binding to gating of the transmembrane channel, and a 'folding centre', with P119 as the dominating residue, that crucially positions the agonist binding site with respect to the hinge region. 相似文献
6.
A set of seven peptides constituting the various loops and most of the surface areas of α-bungarotoxin (BgTX) was synthesized. In appropriate peptides, the cyclical (by a disulfide bond) monomers were prepared. In all cases, the peptides were purified and characterized. The ability of these peptides to bindTorpedo californica acetylcholine receptor (AChR) was studied by radiometric adsorbent titrations. Three regions, represented by peptides 1–16, 26–41, and 45–59, were able to bind125I-labeled AChR and, conversely,125I-labeled peptides were bound by AChR. In these regions, residues Ile-1, Val-2, Trp-28 and/or Lys-38, and one or all of the three residues Ala-45, Ala-46, and Thr-47, are essential contact residues in the binding of BgTX to receptor. Other synthetic regions of BgTX showed little or no AChR-binding activity. The specificity of AChR binding to peptides 1–16, 26–41, and 45–59 was confirmed by inhibition with unlabeled BgTX. It is concluded that BgTX has three main AChR-binding regions (loop I with N-terminal extension and loops II and III extended toward the N-terminal by residues 45–47). 相似文献
7.
To study the structural organization of the main extracellular domain of the nicotinic acetylcholine receptor (AChR) subunit in live muscle cells, we examined the native membrane-bound receptors in cultured mouse skeletal muscle cells for their ability to bind a panel of antibodies against uniform-sized overlapping synthetic peptides which collectively represent this entire domain. The binding profile indicated that the regions 23–49,78–126,146–174, and182–210 are accessible to binding with antibody. Residues23–49,78–126, and194–210 contain binding regions for-neurotoxin and some myasthenia gravis autoantibodies. A comparison of this binding profile with the profile obtained for membrane-boundTorpedo californica AChR in isolated membrane fractions showed some similarities as well as significant differences between the subunit organization in the isolated membrane fraction and that in the membrane of live muscle cells. Regions89–104 and158–174, which are exposed in the isolated membrane fraction, are also exposed in the live cell. On the other hand, regions23–49, and182–210, which are exposed in the live cell, are not accessible in the isolated membrane and, furthermore, the region1–16, which has marginal accessibility in the cell, becomes highly accessible in the membrane isolates. The exposed regions defined by this study may be the primary targets for the initial autoimmune attack on the receptors in experimental autoimmune myasthenia gravis. 相似文献
8.
9.
10.
The pharmacological activity of a series of novel amide derivatives was characterized on several nicotinic acetylcholine receptors (AChRs). Ca(2+) influx results indicate that these compounds are not agonists of the human (h) α4β2, α3β4, α7, and α1β1γδ AChRs; compounds 2-4 are specific positive allosteric modulators (PAMs) of hα7 AChRs, whereas compounds 1-4, 7, and 12 are noncompetitive antagonists of the other AChRs. Radioligand binding results indicate that PAMs do not inhibit binding of [(3)H]methyllycaconitine but enhance binding of [(3)H]epibatidine to hα7 AChRs, indicating that these compounds do not directly, but allosterically, interact with the hα7 agonist sites. Additional competition binding results indicate that the antagonistic action mediated by these compounds is produced by direct interaction with neither the phencyclidine site in the Torpedo AChR ion channel nor the imipramine and the agonist sites in the hα4β2 and hα3β4 AChRs. Molecular dynamics and docking results suggest that the binding site for compounds 2-4 is mainly located in the inner β-sheet of the hα7-α7 interface, ~12 ? from the agonist locus. Hydrogen bond interactions between the amide group of the PAMs and the hα7 AChR binding site are found to be critical for their activity. The dual PAM and antagonistic activities elicited by compounds 2-4 might be therapeutically important. 相似文献
11.
Nicole Rempel Sibilla Heyers Hartmut Engels E. Sleegers O. K. Steinlein 《Human genetics》1998,103(6):645-653
The α4-subunit gene (CHRNA4) of the neuronal nicotinic acetylcholine receptor (nAChR) subunit family has recently been identified in two families as
the gene responsible for autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), a rare monogenic idiopathic epilepsy.
As a result of this finding, other subunits of the neuronal nAChR gene family are being considered as candidate genes for
ADNFLE in families not linked to CHRNA4 and for other idiopathic epilepsies. α4-subunitsoften assemble together with β2-subunits (gene symbol CHRNB2) to build heteromeric nAChRs. The gene encoding another abundant AChR subunit, the α3-subunit gene (CHRNA3), is present with those encoding two other subunits, CHRNB4 and CHRNA5, in a gene cluster whose functional role is still
unclear. Here we provide the information on the genomic structures of both the CHRNB2 and the CHRNA3 genes that is necessary for comprehensive mutational analyses, and we refine the genomic assignment of CHRNB2 on chromosome 1.
Received: 5 August 1998 / Accepted: 13 October 1998 相似文献
12.
In recent years, it has become clear that the neuronal nicotinic acetylcholine receptor (nAChR) is a valid target in the treatment
of a variety of diseases, including Alzheimer’s disease, anxiety, and nicotine addiction. As with most membrane proteins,
information on the three-dimensional (3D) structure of nAChR is limited to data from electron microscopy, at a resolution
that makes the application of structure-based design approaches to develop specific ligands difficult. Based on a high-resolution
crystal structure of AChBP, homology models of the extracellular domain of the neuronal rat and human nAChR subtypes α4β2
and α7 (the subtypes most abundant in brain) were built, and their stability assessed with molecular dynamics (MD). All models
built showed conformational stability over time, confirming the quality of the starting 3D model. Lipophilicity and electrostatic
potential studies performed on the rat and human α4β2 and α7 nicotinic models were compared to AChBP, revealing the importance
of the hydrophobic aromatic pocket and the critical role of the α-subunit Trp—the homolog of AChBP-Trp 143—for ligand binding.
The models presented provide a valuable framework for the structure-based design of specific α4β2 nAChR subtype ligands aimed
at improving therapeutic and diagnostic applications.
Figure Electrostatic surface potential of the binding site cavity of the neuronal nicotinic acetylcholine receptor (nAChR). Nicotinic
models performed with the MOLCAD program: a rat α7, b rat α4β2, c human α7, d human α4β2. All residues labeled are part of the α7 (a,c) or α4 (b,d) subunit with the exception of Phe 117, which belongs to subunit β2 (d). Violet Very negative, blue negative, yellow neutral, red very positive 相似文献
13.
Ya. V. Makarova I. V. Shelukhina A. K. Mukherjee D. V. Kuznetsov V. I. Tsetlin Yu. N. Utkin 《Doklady. Biochemistry and biophysics》2017,475(1):253-255
Fluorescent derivatives are widely used to study the structure and functions of proteins. Quantum dots (QDs), fluorescent semiconductor nanocrystals, have a high quantum yield and are much more resistant to bleaching compared to organic dyes. Conjugates of α-neurotoxins with QDs were used for visualization of human α7 acetylcholine receptors heterologously expressed in GH4C1 pituitary adenoma cells. Specific staining of cells by the conjugated toxins was observed. 相似文献
14.
We have synthesised the -subunit of the chick nicotinic acetylcholine receptor (nAChR) in stable, continuous insect (Spodoptera frugiperda) cell lines. A cDNA was integrated randomly into the insect cell genome under control of a baculovius immediate early gene promoter. Transformed cells were obtained by co-transfection of the insect cells with pIEK1.nAChR, encoding the -subunit cDNA, and pIEK1.neo, encoding the neomycin resistance gene. G-418-resistant clones were selected and expanded into continuous cell lines synthesising the chick nAChR -subunit. Using fluorescence microscopy and ligand binding studies we were able to demonstrate efficient membrane targeting of the receptor subunit in the insect cell plasma membrane. Stable insect cell lines may thus have significant advantages over transient baculovirus vectors for the synthesis and characterisation of heterologous receptor proteins.Abbreviations AcNPV
Autographa californica nuclear polyhedrosis virus
- BTX
-bungarotoxin
- BSA
bovine serum albumin
- FITC
Fluoroscein isothiocyanate
- G418
geneticin-418
- hpi
hours post-infection
-
ie-1
immediate early 1 gene
- nAChR
nicotinic acetylcholine receptor alpha subunit
- Sf
Spodoptera frugiperda
- tPA
tissue plasminogen activator 相似文献
15.
Gabriella B. Vannelli Tullio Barni Gianni Forti Andres Negro-Vilar Wylie Vale Mario Serio Giuseppe C. Balboni 《Cell and tissue research》1992,269(2):221-227
Summary The localization of inhibin -subunit in the human testis was studied at the light- and electron-microscope level with immunostaining techniques. Antibodies against specific fragments of porcine and human inhibin -subunits were utilized. At light microscopy, inhibin -subunit immunoreactivity was detected in Sertoli cells, spermatocytes and in some Leydig cells. At electron microscopy, gold labeling was found in the cisternae of the Golgi apparatus and in the endoplasmic reticulum of Sertoli and Leydig cells. Gold labeling for inhibin was also found in coated vesicles in the cytoplasm of Sertoli cells as well as in coated pits and coated vesicles in the cytoplasm of some spermatocytes. The results of the present study suggest that, in the human testis, inhibin is produced by Sertoli and Leydig cells and is taken up by spermatocytes, on which it might act in a paracrine manner. 相似文献
16.
《FEBS letters》1986,207(2):243-249
Regions of the Torpedo marmorata acetylcholine receptor (AChR) α-subunit involved in the binding of acetylcholine were probed with two different covalent ligands. The sulfhydryl-directed affinity reagent 4-(N-maleimido)phenyltrimethylammonium iodide labeled a single α-subunit cyanogen bromide fragment on the reduced AChR which was identified as α 179–207. The novel photoaffinity ligand p-(N,N-dimethylamino)-benzenediazonium fluoroborate, on the other hand, labeled three distinct α-chain cyanogen bromide fragments on the unmodified AChR in a carbamylcholine-protectable manner. The major radiolabeled species was purified and identified by sequence analysis as α 179–207. The acetylcholine-binding site on the native AChR may thus involve several distinct portions of the α-chain, with the region α 179–207 making a major contribution to the site. 相似文献
17.
Hemoglobin binding with haptoglobin: Delineation of the haptoglobin binding site on the α-chain of human hemoglobin 总被引:3,自引:0,他引:3
Previous studies from this laboratory employing a comprehensive synthetic overlapping peptide strategy showed that the -chain of human hemoglobin (Hb) contains a single haptoglobin (HP) binding region residing within residues 121–135. The present study describes a precise delineation of this Hp-binding site on the -chain. Two overlapping peptides (111–125 and 121–135) spanning this region and a panel of five peptides decreasing at the C-terminal from residue 135 by decrements of two residues (119–135, 119–133, 119–131, 119–129, and 119–127) were synthesized, purified, and characterized. Quantitative radiometric titration of125I-labeled human HP (type 2-1) with adsorbents of each of these synthetic peptides showed that the peptide 119–127 retained a Hp-binding activity equivalent to that of peptide 121–135. This finding indicated that Lys-127 marked the C-terminal boundary of the binding site. Another panel of eight peptides was then synthesized, which had their C-terminus fixed at Lys-127 and increased at the N-terminus by one-residue increments from residue 122 up to residue 115 (122–127, 121–127, 120–127, 119–127, 118–127, 117–127, 116–127, and 115–127). The binding of125I-Hp to adsorbents of these peptides demonstrated that the N-terminal boundary of the site did not extend beyond Valine 121. It is, therefore, concluded that the Hp-binding site on the -chain of human Hb comprises residues 121–127. 相似文献
18.
E. V. Mityushova A. N. Shatrova V. V. Zenin N. D. Aksenov I. I. Marakhova 《Cell and Tissue Biology》2013,7(5):397-406
A comparative study of STAT3 and STAT5 activity (assessed by tyrosine phosphorylation level) and the expression of an α-subunit of the interleukin-2 receptor (examined by cytophotometric evaluation of CD25 cell number) during phytohemaglutinin (PHA)-induced proliferation of human blood lymphocytes (HBLs) has been carried out. It was found that the level of STAT3 phosphorylation was high both in resting and competent HBLs and remained unchanged in the presence of PHA or interleukin-2 (IL-2). In contrast to STAT3, phosphorylation of STAT5 was not seen either in resting or competent HBL. In the presence of PHA, STAT5 phosphorylation was observed no earlier than in 2–5 h; maximal phosphorylation was detected after 24 h. In competent HBLs, exogenous IL-2 induced high phosphorylation of STAT5 in 30 min that was retained for the next 24–48 h. Alterations in the level of tyrosine phosphorylation of STAT5 correlated with CD25 expression. WHI-P131, a JAK3 kinase inhibitor, prevents STAT5 activation, CD25 surface expression, and lymphocyte proliferation. It is concluded that JAK3/STAT5 signaling via an IL-2 receptor is necessary to support the long-term expression of a high-affinity αβγc-receptor of IL-2 and HBL optimal proliferation. 相似文献
19.
Sequence comparison of the -subunit of phosphorylase kinase with -tropomyosin revealed 32% identity, and 49% similarity, between the region of -tropomyosin coded by exon 5 and a 39 amino acid segment of the kinase subunit. A subsequence of the -subunit segment and a sequence overlapping the same -subunit region are homologous with: (a) a region of the cytoplasmic domain of EGF receptor (50% identity) and (b) a Ca2+-binding domain of the chain of S-100 protei (50% identity) respectively. Statistical analysis shows that these homologies are significant. The biological implication of the above similarities is discussed. 相似文献
20.
Acetylcholine receptor channels switch between conformations that have a low versus high affinity for the transmitter and conductance for ions (R↔R*; gating). The forward isomerization, which begins at the transmitter binding sites and propagates ∼50 Å to the narrow region of the pore, occurs by approximately the same sequence of molecular events with or without agonists present at the binding sites. To pinpoint the forces that govern the R versus R* agonist affinity ratio, we measured single-channel activation parameters for apo-receptors having combinations of mutations of 10 transmitter binding site residues in the α (Y93, G147, W149, G153, Y190, C192, and Y198), ε (W55 and P121), or δ (W57) subunit. Gating energy changes were largest for the tryptophan residues. The αW149 energy changes were coupled with those of the other aromatic amino acids. Mutating the aromatic residues to Phe reduces the R/R* equilibrium dissociation constant ratio, with αY190 and αW149 being the most sensitive positions. Most of the mutations eliminated long-lived spontaneous openings. The results provide a foundation for understanding how ligands trigger protein conformational change. 相似文献