首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S L Yang  P A Frey 《Biochemistry》1979,18(14):2980-2984
The [32P]uridylyl-enzyme intermediate form of Escherichia coli galactose-1-P uridylyltransferase can be converted to a [32P]phosphoryl-enzyme by first cleaving the ribosyl ring with NaIO4 and then heating at pH 10.5 and 50 degrees C for 1 h. After alkaline hydrolysis of the [32P]phosphoryl-enzyme the major radioactive product is N3-[32P]phosphohistidine. A lesser amount of 32Pi is also produced as a side product of the hydrolysis of N3-[32P]phosphohistidine. No N1-phosphohistidine, N-phospholysine, or phosphoarginine can be detected in these hydrolysates. It is concluded that the nucleophile in galactose-1-P uridylyltransferase to which the uridylyl group is bonded in the uridylyl-enzyme intermediate is imidazole N3 of a histidine residue. This degradation procedure should have general applicability in the degradation and characterization of nucleotidyl-proteins.  相似文献   

2.
L J Wong  K F Sheu  S L Lee  P A Frey 《Biochemistry》1977,16(5):1010-1016
Galactose-1-P uridylyltransferase catalyzes the interconversion of UDP-galactose and galactose-1-P with UDP-galactose and glucose-1-P by a double displacement pathway involving a uridylyl-enzyme intermediate. The amount of radioactivity incorporated into the protein by uracil-labeled UDP-glucose is decreased by the presence of UDP-galactose, which completes with UDP-glucose for uridylylating the enzyme. The amount of glucose-1-P released upon reaction of the enzyme with UDP-glucose indicates that the dimeric enzyme contains more than one active site per molecule, 1.7 on the average for the most active preparation obtained. This suggests that there is one uridylylation site per subunit and that the subunits are similar or identical. The ureidylyl-enzyme is stable to mild alkaline conditions, 0.10 M NaOH at 60 degrees C for 1 h, but is very sensitive to acid, being largely hydrolyzed after 12 h at pH 3.5 and 4 degrees C. The principal radioactive product resulting from hydrolysis of [uracil-2-14C]uridylyl-ens of the uridylyl-enzyme under the latter conditions is [l]ump. The hydrolytic properties of the uridylyl-enzyme show that the uridylyl moiety is bonded to the protein through a phosphoramidate linkage. Complementary studies on the effects of group selective reagents on the activity of the enzyme suggest that the active site nucleophile to which the uridylyl group is bonded may be a histidine residue. The enzyme is rapidly inactivated by diethyl pyrocarbonate at pH 6 and 0 degrees C and reactivated by NH2OH. UDP-glucose at 0.5 mM fully protects the enzyme against diethyl pyrocarbonate while 70 mM galactose-1-P has only a slight protective effect. Uridylyl-enzyme in inactivated by diethyl pyrocarbonate at no more than 2% of the rate for free enzyme. The enzyme is not inactivated by NaBH4 or by NaBH4 in the presence of UDP-glucose. It is not inhibited by 1 mM pyridoxal phosphate or by 0.5 mM 5-nitrosalicylaldehyde at pH 8.6 and it is not inactivated by NaBH4 in the presence of pyridoxal phosphate. The enzyme is inactivated by 5 to 50 muM p-hydroxymercuribenzoate at pH 8.5, but substrates exert no detectable protective effect against this reagent. It is concluded that the enzyme contains at least one essential sulfhydryl group which is not located in the active site in such a way as to be shielded by substrates.  相似文献   

3.
Galactose-1-phosphate uridylyltransferase catalyzes the interconversion of UDP-glucose and galactose-1-P with UDP-galactose and glucose-1-P by a double-displacement mechanism involving the compulsory formation of a uridylyl enzyme intermediate. The uridylyl group is covalently bonded to the N3 position of a histidine residue in the uridylyl enzyme. The galT gene of Escherichia coli, which codes for the uridylyltransferase and is contained in a plasmid for transformation of E. coli, has been sequenced, and the positions of the 15 histidine residues have been determined from the deduced amino acid sequence of this protein. Fifteen mutant genes, in each of which one of the 15 histidine codons has been changed to an asparagine codon, have been generated and used to transform the E. coli strain JM101. When extracts of the transformants were assayed for uridylyltransferase, 13 exhibited high levels of activity. Two of the extracts containing mutant uridylyltransferase exhibited less than control levels of activity. These mutant proteins, H164N and H166N, were overexpressed, isolated, and tested for their ability to form the compulsory uridylyl enzyme intermediate. Neither the H164N nor the H166N mutant proteins could form the intermediate. Thus, both His-164 and His-166 are critical for activity, and their proximity suggests that both are in the active site. One is the essential nucleophilic catalyst to which the uridylyl group is bonded in the intermediate, and the other serves an equally important, as yet unknown, function. The active-site sequence His(164)-Pro-His(166) is conserved in this enzyme from E. coli, humans, Saccharomyces, and Streptomyces.  相似文献   

4.
Abend A  Garrison PN  Barnes LD  Frey PA 《Biochemistry》1999,38(12):3668-3676
Fhit is the protein product of FHIT, a candidate human tumor suppressor gene. Fhit catalyzes the hydrolysis of diadenosine triphosphate (Ap3A) to AMP and ADP. Fhit is here shown to catalyze the hydrolysis in H218O with production of adenosine 5'-[18O]phosphate and ADP, proving that the substitution of water is at Palpha and not at Pbeta. The chain fold of Fhit is similar to that of galactose-1-phosphate uridylyltransferase, which functions by a double-displacement mechanism through the formation of a covalent nucleotidyl-enzyme intermediate and overall retention of configuration at Palpha. The active site of Fhit contains a histidine motif that is reminiscent of the HPH motif in galactose-1-phosphate uridylyltransferases, in which the first histidine residue serves as the nucleophilic catalyst to which the nucleotidyl group is bonded covalently in the covalent intermediate. In this work, the Fhit-catalyzed cleavage of (RP)- and (SP)-gamma-(m-nitrobenzyl) adenosine 5'-O-1-thiotriphosphate (mNBATPalphaS) in H218O to adenosine 5'-[18O]thiophosphate is shown to proceed with overall retention of configuration at phosphorus. gamma-(m-Nitrobenzyl) adenosine 5'-O-triphosphate (mNBATP) is approximately as good a substrate for Fhit as Ap3A, and both (RP)- and (SP)-mNBATPalphaS are substrates that react at about 0.5% of the rate of Ap3A. The stereochemical evidence indicates that hydrolysis by Fhit proceeds by a double-displacement mechanism, presumably through a covalent AMP-enzyme intermediate.  相似文献   

5.
The X-ray crystal structure of the At5g18200.1 protein has been determined to a nominal resolution of 2.30 A. The structure has a histidine triad (HIT)-like fold containing two distinct HIT-like motifs. The sequence of At5g18200.1 indicates a distant family relationship to the Escherichia coli galactose-1-P uridylyltransferase (GalT): the determined structure of the At5g18200.1 protein confirms this relationship. The At5g18200.1 protein does not demonstrate GalT activity but instead catalyzes adenylyl transfer in the reaction of ADP-glucose with various phosphates. The best acceptor among those evaluated is phosphate itself; thus, the At5g18200.1 enzyme appears to be an ADP-glucose phosphorylase. The enzyme catalyzes the exchange of (14)C between ADP-[(14)C]glucose and glucose-1-P in the absence of phosphate. The steady state kinetics of exchange follows the ping-pong bi-bi kinetic mechanism, with a k(cat) of 4.1 s(-)(1) and K(m) values of 1.4 and 83 microM for ADP-[(14)C]glucose and glucose-1-P, respectively, at pH 8.5 and 25 degrees C. The overall reaction of ADP-glucose with phosphate to produce ADP and glucose-1-P follows ping-pong bi-bi steady state kinetics, with a k(cat) of 2.7 s(-)(1) and K(m) values of 6.9 and 90 microM for ADP-glucose and phosphate, respectively, at pH 8.5 and 25 degrees C. The kinetics are consistent with a double-displacement mechanism that involves a covalent adenylyl-enzyme intermediate. The X-ray crystal structure of this intermediate was determined to 1.83 A resolution and shows the AMP group bonded to His(186). The value of K(eq) in the direction of ADP and glucose-1-P formation is 5.0 at pH 7.0 and 25 degrees C in the absence of a divalent metal ion, and it is 40 in the presence of 1 mM MgCl(2).  相似文献   

6.
The stereochemical course of the argininosuccinate synthetase reaction has been determined. The SP isomer of [alpha-17O,alpha-18O,alpha beta-18O]ATP is cleaved to (SP)-[16O,17O,18O]AMP by the action of argininosuccinate synthetase in the presence of citrulline and aspartate. The overall stereochemical transformation is therefore net inversion, and thus the enzyme does not catalyze the formation of an adenylylated enzyme intermediate prior to the synthesis of citrulline adenylate. The RP isomer of adenosine 5'-O-(2-thiotriphosphate) (ATP beta S) is a substrate in the presence of Mg2+, but the SP isomer is a substrate when Cd2+ is used as the activating divalent cation. Therefore, the lambda screw sense configuration of the beta,gamma-bidentate metal--ATP complex is preferred by the enzyme as the actual substrate. No significant discrimination could be detected between the RP and SP isomers of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S) when Mg2+ or Mn2+ are used as the divalent cation. Argininosuccinate synthetase has been shown to require a free divalent cation for full activity in addition to the metal ion needed to complex the ATP used in the reaction.  相似文献   

7.
The steric courses of the reactions catalyzed by phosphatidylserine (PS) synthase from Escherichia coli and yeast were elucidated by the following procedure. RP and SP isomers of 1,2-dipalmitoyl-sn-glycero-3-[17O,18O]phosphoethanolamine ([17O,18O]DPPE) were synthesized with slight modification of the previous procedure [Bruzik, K., & Tsai, M.-D. (1984) J. Am. Chem. Soc. 106, 747-754] and converted to (RP)- and (SP)-1,2-dipalmitoyl-sn-glycero-3-[16O,17O,18O]phosphoric acid ([16O,17O18O]DPPA), respectively, by incubating with phospholipase D. Condensation of [16O,17O,18O]DPPA with cytidine 5'-monophosphomorpholidate in pyridine gave the desired substrate for PS synthase, [17O,18O]cytidine 5'-diphospho-1,2-dipalmitoyl-sn-glycerol ([17O,18O]CDP-DPG), as a mixture of several isotopic and configurational isomers. Incubation of [17O,18O]CDP-DPG with a mixture of L-serine, PS synthase (which converted [17O,18O]CDP-DPG to phosphatidylserine), and PS decarboxylase (which catalyzes decarboxylation of phosphatidylserine) gave [17O,18O]DPPE. The configuration and isotopic enrichments of the starting [17O,18O]DPPE and the product were analyzed by 31P NMR following trimethylsilylation of the DPPE. The results indicate that the reaction of E. coli PS synthase proceeds with retention of configuration at phosphorus, which suggests a two-step mechanism involving a phosphatidyl-enzyme intermediate, while the yeast PS synthase catalyzes the reaction with inversion of configuration, which suggests a single-displacement mechanism. Such results lend strong support to the ping-pong mechanism proposed for the E. coli enzyme and the sequential Bi-Bi mechanism proposed for the yeast enzyme, both based on previous isotopic exchange experiments.  相似文献   

8.
J M Konopka  H A Lardy  P A Frey 《Biochemistry》1986,25(19):5571-5575
Rat liver cytosolic phosphoenolpyruvate carboxykinase (PEPCK) utilizes inosine 5'-(3-thiotriphosphate) (ITP gamma S) as an excellent substrate, with Km and V values of 0.08 mM and 37 mumol min-1 (mg of protein)-1, respectively, compared with the corresponding values of 0.168 mM and 76 mumol min-1 (mg of protein)-1 for ITP. Thus, the V/Km values for the two substrates are the same. Reaction of (RP)-[gamma-18O2]ITP gamma S with oxalacetate catalyzed by cytosolic PEPCK produces (SP)-thio[18O]phosphoenolpyruvate. Therefore, thiophosphoryl transfer catalyzed by this enzyme proceeds with overall inversion of configuration at P. The reaction mechanism involves an uneven number of phosphotransfer steps, most likely a single step transfer between bound substrates. The results do not support the involvement of a phosphoryl enzyme intermediate in the mechanism.  相似文献   

9.
The three stereoisomers of P1,P4-bis(5'-adenosyl)-1,4-dithiotetraphosphate have been synthesized and their 31P NMR spectra investigated. The effect of temperature on the circular dichroic spectrum of the (Sp,Sp)-stereoisomer shows that unstacking of the molecule occurs as the temperature is raised. Treatment of the (Sp,Sp)-stereoisomer with cyanogen bromide in [18O]water leads to substitution of sulfur by 18O with predominant retention of configuration at P1 and P4. (Sp,Sp)-P1,P4-Bis(5'-adenosyl)-1[thio-18O2],4[thio-18O2]tetraphosphate was synthesized and on treatment with cyanogen bromide in [17O]water gave (Rp,Rp)-P1,P4-bis(5'-adenosyl)-1[17O,18O2],4[17O,18O2]tetraphosphate. Hydrolysis by unsymmetrical Ap4A phosphodiesterase from lupin seeds gave (Rp)-5'-[16O,17O,18O]AMP. The reaction therefore proceeds with inversion of configuration at phosphorus, indicating that the enzyme-catalyzed displacement by water occurs by a direct "in-line" mechanism.  相似文献   

10.
Geeganage S  Ling VW  Frey PA 《Biochemistry》2000,39(18):5397-5404
Galactose-1-phosphate uridylyltransferase (GalT) catalyzes the reversible transformation of uridine 5'-diphosphate glucose (UDPGlc) and galactose-1-phosphate into uridine 5'-diphosphate galactose (UDPGal) and glucose-1-phosphate through a double displacement mechanism, with the intermediate formation of a covalent uridylyl-enzyme (UMP-enzyme). The covalent linkage is a phosphoramidate formed between the UMP moiety and the His 166 N(epsilon)(2) of GalT, with His 166 N(delta1) retaining a proton throughout the catalytic cycle. Cys 160 and Ser 161 in Escherichia coli GalT are engaged in hydrogen bonding with the peripheral phosphoryl oxygen atoms of the substrate in the crystalline UMP-enzyme and in the crystalline complex of H166G-GalT with UDPGlc [Wedekind, J. E., Frey, P. A., and Rayment, I. (1996) Biochemistry 35, 11560-11569; Thoden, J. B., Ruzicka, F. J., Frey, P. A., Rayment, I., and Holden, H. M. (1997) Biochemistry 36, 1212-1222]. Site-directed mutagenesis, thermodynamic, transient kinetic, and steady-state kinetic studies have been performed to investigate the roles of Cys 160 and Ser 161 in catalysis. The absence of the thiol group of Cys 160 in the variants C160S and C160A did not seriously alter the enzymatic activity. However, the variant S161A displayed 7000-fold less activity than wild-type GalT. The low activity of S161A was directly related to impaired uridylylation rate constant (3.7 x 10(-)(2) s(-)(1)) and de-uridylylation rate constant (0.5 x 10(-)(2) s(-)(1)) resulting from a higher kinetic barrier for uridylyl-group transfer by the variant S161A as compared with the wild-type GalT. Equilibrium uridylylation studies showed that neither Cys 160 nor Ser 161 was involved in stabilizing the uridylyl-enzyme intermediate. The results lead to the conclusion that the conserved Cys 160 does not play a critical role in catalysis. Ser 161 is most likely involved in donating a hydrogen bond to the beta-phosphoryl group of a substrate, thereby providing proper orientation for nucleophilic catalysis.  相似文献   

11.
The conversion of geranyl pyrophosphate to (+)-cis- and (+)-trans-sabinene hydrate by a partially purified cyclase from sweet marjoram (Majorana hortensis) is considered to proceed by the initial ionization and isomerization of the substrate to (-)-(3R)-linalyl pyrophosphate and the subsequent cyclization of this enzyme-bound tertiary allylic intermediate to the monocyclic (+)-(4R)-alpha-terpinyl cation. A 1,2-hydride shift and a second cyclization with water capture of the resulting cation complete the reaction sequence. [6-3H, 14C]Geranyl pyrophosphate, coupled with selective chemical degradation of the resulting sabinene hydrate products, was employed to demonstrate the hydride shift, while separate testing of the linalyl pyrophosphate enantiomers confirmed the involvement of the (3R)-antipode in the cyclization and indicated the cyclization of linalyl pyrophosphate to be faster than the coupled isomerization-cyclization of the geranyl substrate. (1R)- and (1S)-[1-3H, 14C]geranyl pyrophosphates, in conjunction with stereoselective degradations of the biosynthetic products to locate the 3H, were exploited to deduce that configuration at C1 of the substrate was retained in the reaction. These findings suggest the isomerization of the geranyl substrate to be a suprafacial process and the cyclization of the (3R)-linalyl intermediate to proceed via the anti,endo-conformation consistent with the stereo-chemistry of other monoterpene cyclizations and with chemical model studies. Sulfonium ion analogs of the presumptive linalyl and alpha-terpinyl cationic intermediates of the isomerization-cyclization sequence were shown to be potent inhibitors of the enzymatic reaction (Ki = 0.3 and 2.8 microM, respectively), and inhibition was synergized by the presence of inorganic pyrophosphate, indicating that the enzyme recognized and bound more tightly to these ion-paired species than to either cationic or anionic partner alone. Additionally, the enzyme was capable of ionizing (solvolyzing) the noncyclizable substrate analogs 6,7-dihydrogeranyl pyrophosphate and 2,3-methanogeranyl pyrophosphate. These results define the overall stereochemistry of the coupled isomerization-cyclization to sabinene hydrate, demonstrate the 1,2-hydride shift, and confirm the electrophilic nature of this enzymatic reaction type.  相似文献   

12.
The phosphohydrolase component of the microsomal glucose-6-phosphatase system has been identified as a 36.5-kDa polypeptide by 32P-labeling of the phosphoryl-enzyme intermediate formed during steady-state hydrolysis. A 36.5-kDa polypeptide was labeled when disrupted rat hepatic microsomes were incubated with three different 32P-labeled substrates for the enzyme (glucose-6-P, mannose-6-P, and PPi) and the reaction terminated with trichloroacetic acid. Labeling of the phosphoryl-enzyme intermediate with [32P]glucose-6-P was blocked by several well-characterized competitive inhibitors of glucose-6-phosphatase activity (e.g. Al(F)-4 and Pi) and by thermal inactivation, and labeling was not seen following incubations with 32Pi and [U-14C]glucose-6-P. In agreement with steady-state dictates, the amount of [32P]phosphoryl intermediate was directly and quantitatively proportional to the steady-state glucose-6-phosphatase activity measured under a variety of conditions in both intact and disrupted hepatic microsomes. The labeled 36.5-kDa polypeptide was specifically immunostained by antiserum raised in sheep against the partially purified rat hepatic enzyme, and the antiserum quantitatively immunoprecipitated glucose-6-phosphatase activity from cholate-solubilized rat hepatic microsomes. [32P]Glucose-6-P also labeled a similar-sized polypeptide in hepatic microsomes from sheep, rabbit, guinea pig, and mouse and rat renal microsomes. The glucose-6-phosphatase enzyme appears to be a minor protein of the hepatic endoplasmic reticulum, comprising about 0.1% of the total microsomal membrane proteins. The centrifugation of sodium dodecyl sulfate-solubilized membrane proteins was found to be a crucial step in the resolution of radiolabeled microsomal proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

13.
During AMP-dependent sulfite oxidation by some sulfur bacteria, the liberation of sulfate from adenosine-5'-phosphosulfate (APS) is catalyzed by APS:phosphate adenylyltransferase (APAT). Here we report the first biochemical and genetic characterization of APAT. We isolated this enzyme from the chemolithoautotroph Thiobacillus denitrificans and cloned the corresponding gene. The enzyme is homodimeric with 41,387-Da subunits and exhibits a specific activity of 2100 micromol min(-1) mg(-1). The K(m) values are K(m(APS)) = 300 microM and K(m(P(i))) = 12 mM. Catalysis occurs by a ping-pong mechanism with a covalently bound AMP as reaction intermediate. The arsenolysis of APS, but not of ADP, CDP, GDP, UDP, or IDP, is also catalyzed, indicating a specific and unidirectional function. The former enzyme name ADP-sulfurylase implies that the reverse reaction is catalyzed; therefore, this name should not be used any longer. Histidine modification of APAT results in complete inactivation that can be suppressed by substrate addition. APAT is highly similar to galactose-1-phosphate uridylyltransferase and also related to Ap(4)A phosphorylase. Active site residues of galactose-1-phosphate uridylyltransferase are conserved in APAT and Ap(4)A phosphorylase, suggesting a histidine as the nucleotide-binding residue in all three enzymes, which together form a new family of nucleotidyltransferases.  相似文献   

14.
The enzyme, phosphoenolpyruvate:uridine-5-diphospho-N-acetyl-2-amino-2-deoxyglucose-3-enolpyruvyltransferase, which catalyzes the transfer of enolpyruvate from phosphoenolpyruvate to uridine diphospho-N-acetylglucosamine with the liberation of Pi, was found to form a covalent intermediate with the enolpyruvate moiety. Radioactivity from [1-14-C]phosphoenolpyruvate in the forward reaction and from UDP-GlNAc-[1-14-C]enolpyruvate in the reverse reaction was incorporated into the enzyme and remained bound to the protein after precipitation with ammonium sulfate or treatment with sodium dodecyl sulfate and heat. This incorporation from UDP-GlcNAc-[1-14-C]enolpyruvate took place in the absence of Pi. When [32-P,1-14C]phosphoenolpyruvate was used, only 14-C appeared to be incorporated. In the forward reaction, the incorporation was contingent on the removal of UDP-GlcNAc from the transferase. Consistent with the formation of an enzyme-enolpyruvate intermediate, exchange of UDP-[6-3-H]GlcNAc with UDP-GlcNAc-enolpyruvate was observed in the absence of Pi. Nonstoichiometric incorporation of 3H from 3H2O into the product, UDP-GlcNAc-enolpyruvate, was observed and was shown to be due to a product isotope effect. Based on these observations, a mechanism of action for this enzyme is proposed which involves synchronous addition-elimination followed by a second addition-elimination step.  相似文献   

15.
(Rp)- and (Sp)-5'-O-thymidyl 3'-O-thymidyl [18O]phosphates have been synthesized by reaction of the respective (Sp)- and (Rp)-phosphorothioate precursors with N-bromosuccinimide in dioxane and H218O. Stereochemical analysis of the product derived from the (Rp)-phosphorothioate by digestion with snake venom phosphodiesterase in H217O and examination of the isotopic chirality of the resulting thymidine 5'-[16O,17O,18O]phosphate demonstrate that the replacement reaction has proceeded with inversion of configuration at phosphorus. Inspection of the 31P NMR spectrum of the methyl esters prepared from (Sp)-5'-O-thymidyl 3'-O-thymidyl [18O]phosphate confirms that the replacement reaction has proceeded with very little if any racemization. This spectrum also allows the assignment of the absolute configuration of these methyl triesters. (Rp)-5'-O-Thymidyl 3'-O-thymidyl [18O]phosphate has been used to demonstrate that the stereochemical course of the hydrolytic reaction catalyzed by nuclease P1 from Penicillium citrum proceeds with inversion of configuration at phosphorus and therefore probably does not involve the participation of a covalent enzyme intermediate.  相似文献   

16.
S Geeganage  P A Frey 《Biochemistry》1999,38(40):13398-13406
Galactose-1-phosphate uridylyltransferase (GalT) catalyzes the reversible transformation of UDP-glucose and galactose-1-phosphate (Gal-1-P) into UDP-galactose and glucose-1-phosphate (Glc-1-P) by a double displacement mechanism, with the intermediate formation of a covalent uridylyl-enzyme (UMP-enzyme). GalT is a metalloenzyme containing 1.2 mol of zinc and 0.7 mol of iron/mol of subunits [Ruzicka, F. J., Wedekind, J. E., Kim, J., Rayment, I., and Frey, P. A. (1995) Biochemistry 34, 5610-5617]. The zinc site lies 8 A from His 166 in active site, and the iron site lies 30 A from the active site [Wedekind,J. E., Frey, P. A., & Rayment, I. (1995) Biochemistry 34, 11049-11061]. Zinc is coordinated in tetrahedral geometry by Cys 52, Cys 55, His 115, and His 164. His 164 is part of the highly conserved active-site triad His 164-Pro 165-His 166, in which His 166 is the nucleophilic catalyst. Iron is coordinated in square pyramidal geometry with His 296, His 298, and Glu 182 in bidentate coordination providing the base ligands and His 281 providing the axial ligand. In the present study, site-directed mutagenesis, kinetic, and metal analysis studies show that C52S-, C55S-, and H164N-GalT are 3000-, 600-, and 10000-fold less active than wild-type. None of the variants formed the UMP-enzyme in detectable amounts upon reaction with UDP-Glc in the absence of Gal-1-P. Their zinc content was very low, and the zinc + iron content was about 50% of that for wild-type GalT. Mutation of His 115 to Asn 115 resulted in decreased activity to 2.9% of wild-type, with retention of zinc and iron. In contrast to the zinc-binding site, Glu 182 in the iron site is not important for enzymatic activity. The variant E182A-GalT displayed about half the activity of wild-type GalT, and all of the active sites underwent uridylylation to the UMP-enzyme, similar to wild-type GalT, upon reaction with UDP-Glc. Metal analysis showed that while E182A-GalT contained 0.9 equiv of zinc/subunit, it contained no iron. The residual zinc can be removed by dialysis with 1,10-phenanthroline, with the loss in activity being proportional to the amount of residual zinc. It is concluded that the presence of zinc is essential for maintaining GalT function, whereas the presence of iron is not essential.  相似文献   

17.
Adenylate cyclase from Brevibacterium liquefaciens (ATCC 14929) catalyzes the formation of the RP-diastereomer of adenosine 3':5'-cyclic monophosphorothioate from the SP-diastereomer of adenosine-5'-(1-thiotriphosphate). The reaction catalyzed by this adenylate cyclase proceeds with inversion of configuration at phosphorus, indicating that the cyclization reaction is direct and does not involve formation of an adenylated enzyme intermediate.  相似文献   

18.
The conversion of geranyl pyrophosphate to (+)-bornyl pyrophosphate and (+)-camphene is considered to proceed by the initial isomerization of the substrate to (-)-(3R)-linalyl pyrophosphate and the subsequent cyclization of this bound intermediate. In the case of (-)-bornyl pyrophosphate and (-)-camphene, isomerization of the substrate to the (+)-(3S)-linalyl intermediate precedes cyclization. The geranyl and linalyl precursors were shown to be mutually competitive substrates (inhibitors) of the relevant cyclization enzymes isolated from Salvia officinalis (sage) and Tanacetum vulgare (tansy) by the mixed substrate analysis method, demonstrating that isomerization and cyclization take place at the same active site. Incubation of partially purified enzyme preparations with (3R)-[1Z-3H]linalyl pyrophosphate plus [1-14C]geranyl pyrophosphate gave rise to double-labeled (+)-bornyl pyrophosphate and (+)-camphene, whereas incubation of enzyme preparations catalyzing the antipodal cyclizations with (3S)-[1Z-3H]-linalyl pyrophosphate plus [1-14C]geranyl pyrophosphate yielded double-labeled (-)-bornyl pyrophosphate and (-)-camphene. Each product was then transformed to the corresponding (+)- or (-)-camphor without change in the 3H:14C isotope ratio, and the location of the tritium label was deduced in each case by stereoselective, base-catalyzed exchange of the exo-alpha-hydrogen of the derived ketone. The finding that the 1Z-3H of the linalyl precursor was positioned at the endo-alpha-hydrogen of the corresponding camphor in all cases, coupled to the previously demonstrated retention of configuration at C1 of the geranyl substrate in these transformations, confirmed the syn-isomerization of geranyl pyrophosphate to linalyl pyrophosphate and the cyclization of the latter via the anti,endo- conformer. These relative stereochemical elements, in combination with the observed enantiospecificities of the enzymes for the linalyl intermediates, allows definition of the overall absolute stereochemistry of the coupled isomerization and cyclization of geranyl pyrophosphate to the antipodal camphane (bornane) and isocamphane monoterpenoids.  相似文献   

19.
Bacillus pumilus beta-xylosidase, an enzyme considered restricted to hydrolyzing a narrow range of beta-D-xylosidic substrates with inversion of configuration, was found to catalyze different stereochemical, essentially irreversible, glycosylation reactions with alpha- and beta-D-xylopyranosyl fluoride. The enzyme promoted the hydrolysis of beta-D-xylopyranosyl fluoride at a high rate, V = 6.25 mumol min-1 mg-1 at 0 degrees C, in a reaction that obeyed Michaelis-Menten kinetics. In contrast, its action upon alpha-D-xylopyranosyl fluoride was slow and characterized by an unusual relation between the rate of fluoride release and the substrate concentration, suggesting the possible need for two substrate molecules to be bound at the active center in order for reaction to occur. Moreover, 1H NMR spectra of a digest of alpha-D-xylosyl fluoride showed the substrate to be specifically converted to alpha-D-xylose by the enzyme. The observed retention of configuration is not consistent with direct hydrolysis by this "inverting" enzyme but is strongly indicative of the occurrence of two successive inverting reactions: xylosyl transfer from alpha-D-xylosyl fluoride to form a beta-D-xylosidic product, followed by hydrolysis of the latter to produce alpha-D-xylose. The transient intermediate product formed enzymically from alpha-D-xylosyl fluoride in the presence of [14C]xylose was isolated and shown by its specific radioactivity and 1H NMR spectrum as well as by methylation and enzymic analyses to be 4-O-beta-D-xylopyranosyl-D-xylopyranose containing one [14C]xylose residue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Huang K  Arabshahi A  Wei Y  Frey PA 《Biochemistry》2004,43(23):7637-7642
The human fragile histidine triad protein Fhit catalyzes the Mg(2+)-dependent hydrolysis of P(1)-5'-O-adenosine-P(3)-5'-O-adenosine triphosphate, Ap(3)A, to AMP and ADP. The reaction is thought to follow a two-step mechanism, in which the complex of Ap(3)A and Mg(2+) reacts in the first step with His96 of the enzyme to form a covalent Fhit-AMP intermediate and release MgADP. In the second step, the intermediate Fhit-AMP undergoes hydrolysis to AMP and Fhit. The mechanism is inspired by the chain-fold similarities of Fhit to galactose-1-phosphate uridylyltransferase, which functions by an analogous mechanism, and the observation of overall retention in configuration at phosphorus in the action of Fhit (Abend, A., Garrison, P. N., Barnes, L. D., and Frey, P. A. (1999) Biochemistry 38, 3668-3676). Direct evidence in support of this mechanism is reported herein. Reaction of Fhit with [8,8'-(3)H]-Ap(3)A and denaturation of the enzyme in the steady state leads to protein-bound tritium corresponding to 11% of the active sites. Similar experiments with the poor substrate MgATP leads to 0.9% labeling. The mutated protein H96G-Fhit is completely inactive against MgAp(3)A. However, it is chemically rescued by free histidine. H96G-Fhit also catalyzes the hydrolysis of adenosine-5'-phosphoimidazolide, AMP-Im, and of adenosine-5'-phospho-N-methylimidazolide, AMP-N-MeIm. The hydrolyses of AMP-Im and of AMP-N-MeIm by H96G-Fhit are thought to represent chemical rescue of the covalent Fhit-AMP intermediate. Wild-type Fhit is also found to catalyze the hydrolyses of AMP-Im and of AMP-N-MeIm nearly as efficiently as the hydrolysis of MgAp(3)A. The results indicate that Mg(2+) in the reaction of Ap(3)A is required for the first step, the formation of the covalent intermediate Fhit-AMP, and not for the hydrolysis of the intermediate in the second step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号