首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asymmetry in the recA protein-DNA filament.   总被引:5,自引:0,他引:5  
The apparent DNA site size obtained from an assay monitoring the ATPase activity of Escherichia coli recA protein (n = 3.5) differs from that determined from a direct DNA binding assay (n = 7) done under identical conditions. Investigation of this discrepancy indicates that at a DNA:protein ratio of 3.5:1, one-half of the recA protein population is less sensitive to ATPase activity inhibition by the nonhydrolyzable ATP analogue adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S), suggesting that the recA protein filament is asymmetric with respect to NTP affinity. This asymmetry does not depend on the presence of ATP gamma S since the apparent Km for ATP derived from single-stranded DNA-dependent ATP hydrolysis activity is dependent on the DNA:protein ratio. Three models are proposed to account for the observed site size discrepancy and the NTP binding affinity asymmetry. They differ mainly in the intrinsic site size for each recA protein monomer and in the number of DNA-binding sites/recA molecule. Gel filtration of recA-single-stranded DNA complexes at different DNA:protein ratios complements the enzymological data and provides an additional method of distinguishing among the proposed models. The phenomenon of subunit nonequivalence within the recA protein presynaptic filament may provide a molecular basis for understanding how recA protein can discriminate between different DNA molecules during homologous pairing.  相似文献   

2.
Escherichia coli recA protein catalyzes a specific proteolytic cleavage of repressors in vitro when it is activated by interaction with a single-stranded polynucleotide and nucleoside triphosphate. The ATP analogue adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S) satisfies the NTP requirement. We show here that despite its activity in repressor cleavage, ATP gamma S is hydrolyzed at a negligible rate by the recA protein DNA-dependent nucleoside triphosphatase activity. In the presence of DNA, ATP gamma S binds tightly to recA protein in a complex that can be detected because it is trapped by a nitrocellulose filter. One ATP gamma S molecule is bound per recA monomer. These results suggest that a ternary complex of recA protein, DNA, and nucleoside triphosphate is the species active in repressor cleavage. The activation of recA protein by small, defined oligonucleotides in place of DNA is described and characterized.  相似文献   

3.
J W Lee  M M Cox 《Biochemistry》1990,29(33):7666-7676
ADP and adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) inhibit recA protein promoted ATP hydrolysis by fundamentally different mechanisms. In both cases, at least two modes of inhibition are observed. For ADP, the first mode is competitive inhibition. The second mode is manifested by dissociation of recA protein from DNA. These are readily distinguished in a comparison of ATP hydrolyses that are activated by (a) DNA and (b) high (approximately 2 M) salt concentrations. Competitive inhibition with a significant degree of cooperativity is observed under both sets of conditions, although the DNA-dependent activity is more sensitive to ADP than the high-salt reaction. The reaction in the presence of poly(deoxythymidylic acid) or duplex DNA ceases when about 60% of the available ATP is hydrolyzed, reflecting an ADP-mediated dissociation of recA protein from the DNA that is governed by the ADP/ATP ratio. In contrast, ATP hydrolysis proceeds nearly to completion at high salt concentrations. At high concentrations of ATP and ATP gamma S, ATP gamma S also acts as a competitive inhibitor. At low concentrations of ATP gamma S and ATP, however, ATP gamma S activates ATP hydrolysis. These patterns are observed for recA-mediated ATP hydrolysis with either high salt concentrations or a poly(deoxythymidylic acid) [poly(dT)] cofactor, although the activation is observed at much lower ATP and ATP gamma S concentrations when poly(dT) is used. ATP gamma S can also relieve the inhibitory effect of ADP under some conditions. ATP gamma S and ADP are antagonistic inhibitors, reinforcing the idea that they stabilize different conformations of the protein and suggesting that these conformations are mutually exclusive. The ATP gamma S (ATP) conformation is active in ATP hydrolysis. The ADP conformation is inactive.  相似文献   

4.
The interaction of recA protein with single-stranded (ss) phi X174 DNA has been examined by means of a nuclease protection assay. The stoichiometry of protection was found to be 1 recA monomer/approximately 4 nucleotides of ssDNA both in the absence of a nucleotide cofactor and in the presence of ATP. In contrast, in the presence of adenosine 5'-O-(thiotriphosphate) (ATP gamma S) the stoichiometry was 1 recA monomer/approximately 8 nucleotides. No protection was seen with ADP. In the absence of a nucleotide cofactor, the binding of recA protein to ssDNA was quite stable as judged by equilibration with a challenge DNA (t1/2 approximately 30 min). Addition of ATP stimulated this transfer (t1/2 approximately 3 min) as did ADP (t1/2 approximately 0.2 min). ATP gamma S greatly reduced the rate of equilibration (t1/2 greater than 12 h). Direct visualization of recA X ssDNA complexes at subsaturating recA protein concentrations using electron microscopy revealed individual ssDNA molecules partially covered with recA protein which were converted to highly condensed networks upon addition of ATP gamma S. These results have led to a general model for the interaction of recA protein with ssDNA.  相似文献   

5.
F E Benson  A Stasiak    S C West 《The EMBO journal》1994,13(23):5764-5771
In bacteria, genetic recombination is catalysed by RecA protein, the product of the recA gene. A human gene that shares homology with Escherichia coli recA (and its yeast homologue RAD51) has been cloned from a testis cDNA library, and its 37 kDa product (hRad51) purified to homogeneity. The human Rad51 protein binds to single- and double-stranded DNA and exhibits DNA-dependent ATPase activity. Using a topological assay, we demonstrate that hRad51 underwinds duplex DNA, in a reaction dependent upon the presence of ATP or its non-hydrolysable analogue ATP gamma S. Complexes formed with single- and double-stranded DNA have been observed by electron microscopy following negative staining. With nicked duplex DNA, hRad51 forms helical nucleoprotein filaments which exhibit the striated appearance characteristic of RecA or yeast Rad51 filaments. Contour length measurements indicate that the DNA is underwound and extended within the nucleoprotein complex. In contrast to yeast Rad51 protein, human Rad51 forms filaments with single-stranded DNA in the presence of ATP/ATP gamma S. These resemble the inactive form of the RecA filament which is observed in the absence of a nucleotide cofactor.  相似文献   

6.
S C Kowalczykowski 《Biochemistry》1986,25(20):5872-5881
The binding and cross-linking of the ATP photoaffinity analogue 8-azidoadenosine 5'-triphosphate (azido-ATP) with recA protein have been investigated, and through cross-linking inhibition studies, the binding of other nucleotide cofactors to recA protein has also been studied. The azido-ATP molecule was shown to be a good ATP analogue with regard to recA protein binding and enzymatic function by three criteria: first, the cross-linking follows a simple hyperbolic binding curve with a Kd of 4 microM and a cross-linking efficiency ranging from 10% to 70% depending on conditions; second, ATP, dATP, and adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S) specifically inhibit the cross-linking of azido-ATP to recA protein; third, azido-ATP is a substrate for recA protein ATPase activity. Quantitative analysis of the cross-linking inhibition studies using a variety of nucleotide cofactors as competitors has shown that the binding affinity of adenine-containing nucleotides for recA protein decreases in the following order: ATP-gamma-S greater than dATP greater than ATP greater than adenylyl beta,gamma-imidodiphosphate (AMP-PNP) much greater than adenylyl beta,gamma-methylenediphosphate (AMP-PCP) approximately adenine. Similar competition studies also showed that nearly all of the other nucleotide triphosphates also bind to recA protein, with the affinity decreasing in the following order: UTP greater than GTP approximately equal to dCTP greater than dGTP greater than CTP. In addition, studies performed in the presence of single-stranded DNA demonstrated that the affinity of ATP, dATP, ATP-gamma-S, and AMP-PNP for recA protein is significantly increased. These results are discussed in terms of the reciprocal effects that nucleotide cofactors have on the modulation of recA protein--single-stranded DNA binding affinity and vice versa. In addition, it is demonstrated that nucleotide and DNA binding are necessary though not sufficient conditions for ATPase activity. The significance of this result in terms of the possible requirement of critically sized clusters of 15 or more recA protein molecules contiguously bound to DNA for ATPase activity is discussed.  相似文献   

7.
In an effort to clarify the requirement for ATP in the recA protein-promoted renaturation of complementary DNA strands, we have analyzed the mutant recA1 protein which lacks single-stranded DNA-dependent ATPase activity at pH 7.5. Like the wild type, the recA1 protein binds to single-stranded DNA with a stoichiometry of one monomer per approximately four nucleotides. However, unlike the wild type, the mutant protein is dissociated from single-stranded DNA in the presence of ATP or ADP. The ATP analogue adenosine 5'-O-3' (thiotriphosphate) appears to stabilize the binding of recA1 protein to single-stranded DNA but does not elicit the stoichiometry of 1 monomer/8 nucleotides or the formation of highly condensed protein-DNA networks that are characteristic of the wild type recA protein in the presence of this analogue. The recA1 protein does not catalyze DNA renaturation in the presence of ATP, consistent with the dissociation of recA1 protein from single-stranded DNA under these conditions. However, it does promote a pattern of Mg2+-dependent renaturation identical to that found for wild type recA protein.  相似文献   

8.
N Kobayashi  K Knight  K McEntee 《Biochemistry》1987,26(21):6801-6810
We have used limited trypsin digestion as a means of investigating changes in the structural properties of recA protein accompanying the binding of different nucleoside triphosphates. The levels of four partial digestion products are greatly increased in digests of recA protein complexed with dTTP, dATP, ATP, or the ATP analogue adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S). These bands (22, 19, and 17.5 kilodaltons) are absent or present at reduced levels in digests of recA protein alone. Unlike these nucleotides, all of which bind tightly to recA protein, nucleotides and analogues that bind poorly produce little or no change in the digestion pattern of recA protein. We have compared the rates of fragment accumulation in the presence of dTTP and show a saturable dependence on nucleotide concentration. Binding of single-stranded DNA to recA protein does not alter the pattern of digestion products compared to protein alone, and the digestion pattern of recA protein-DNA-ATP gamma S ternary complexes is similar to that of uncomplexed enzyme. We have used monoclonal antibody binding, high-performance liquid chromatography separation of peptides, and amino acid composition analyses to localize the regions of recA protein which are altered in their susceptibility to trypsin when nucleoside triphosphates are present. The results of these analyses indicate that the fragments arise from trypsin cutting at two or more sites near the middle of the primary sequence. These cleavage sites are more than 80-110 residues away from the site of photoaffinity labeling by 8-N3ATP (Tyr-264). Our results suggest that, in the presence of certain nucleotides, recA protein is organized into two stable structural domains.  相似文献   

9.
Studies of cation requirements in the recA-catalyzed proteolysis of lambda repressor and strand assimilation reactions have demonstrated that Co2+ significantly enhances both activities. In the presence of 4mM MgCl2, the optimal concentration of CoCl2 for proteolysis was 1mM. 2mM Co2+ increased the rate and extent of D-loop formation as measured by membrane filtration. Cobalt did not replace Mg2+ for the ssDNA-dependent ATPase activity of recA, and did not affect the rate of hydrolysis of ATP, measured over a wide range of DNA concentrations. Cobalt did prevent the Mg-dependent ssDNA renaturation catalyzed by recA protein. Membrane filter binding assays established that Co2+ increases the affinity of recA protein for ssDNA with ATP, dATP, or ATP gamma S as cofactors. The dissociation of recA protein from ssDNA-nucleoside triphosphate complex was much slower with CoCl2. This metal provides an excellent tool for dissecting the various activities inherent in recA protein.  相似文献   

10.
The enzymatic activities of Escherichia coli recA protein are sensitive to ionic composition. Here we report that sodium glutamate (NaGlu) is much less inhibitory to the DNA strand exchange, DNA-dependent ATPase, and DNA binding activities of the recA protein than is NaCl. Both joint molecule formation and complete exchange of DNA strands occur (albeit at reduced rates) at NaGlu concentrations as high as 0.5 M whereas concentrations of NaCl greater than 0.2 M are sufficient for complete inhibition. The single-stranded DNA (ssDNA)-dependent ATPase activity is even less sensitive to inhibition by NaGlu; ATP hydrolysis stimulated by M13 ssDNA is unaffected by 0.5 M NaGlu and is further stimulated by E. coli ssDNA binding protein approximately 2-fold. Finally, NaGlu has essentially no effect on the stability of recA protein-epsilon M13 DNA complexes, with concentrations of NaGlu as high as 1.5 M failing to dissociate the complexes. Surprisingly, NaGlu also has little effect on the concentration of NaCl required to disrupt the recA protein-epsilon M13 DNA complex, demonstrating that destabilization is dependent on both the concentration and type of anionic rather than cationic species. Quantitative analysis of DNA binding isotherms establishes that the intrinsic binding affinity of recA protein is affected by the anionic species present and that the cooperativity parameter is relatively unaffected. Consequently, the sensitivity of recA protein-ssDNA complexes to disruption by NaCl does not result from the competitive effects associated with cation displacement from the ssDNA upon protein binding but rather results from anion displacement upon complex formation. The magnitude of this anion-specific effect on ssDNA binding is large relative to that of other nucleic acid binding proteins.  相似文献   

11.
The recA1 mutation is a single point mutation that replaces glycine 160 of the recA polypeptide with an aspartic acid residue. The mutant recA1 protein has a greatly reduced single-stranded DNA-dependent ATPase activity at pH 7.5 compared to the wild-type protein. Interestingly, the recA1 protein does exhibit a vigorous ATPase activity at pH 6.2. To explore the molecular basis of this pH effect, we used site-directed mutagenesis to replace aspartic acid 160 of the recA1 polypeptide with an isosteric, but nonionizing, asparagine residue. The new [Asn160]recA protein catalyzes ATP hydrolysis at pH 7.5 with the same turnover number as the wild-type protein. This result suggests that the activation of the recA1 protein ATPase activity that occurs at pH 6.2 may be due, in part, to neutralization of the negatively charged aspartic acid 160 side chain. Although it is an active single-stranded DNA-dependent ATPase, the [Asn160]recA protein is unable to complement a recA deletion in vivo and is unable to carry out the three-strand exchange reaction in vitro. Further examination of ATP hydrolysis (under strand exchange conditions) revealed that the ATPase activity of the [Asn160]recA protein is strongly suppressed in the presence of Escherichia coli single-stranded DNA-binding protein (a component of the strand exchange assay), whereas the ATPase activity of the wild-type recA protein is stimulated by the E. coli protein. To account for these results, we speculate that ATP may induce specific conformational changes in the wild-type recA protein that are essential to the DNA pairing process and that these conformational changes may not occur with the [Asn160]recA protein.  相似文献   

12.
A proteolytic fragment of recA protein, missing about 15% of the protein at the C terminus, was found to promote assimilation of homologous single-stranded DNA into duplex DNA more efficiently than intact recA protein. This difference was not found if Escherichia coli single-stranded DNA binding protein was present. The ATPase activity of both intact recA protein and the fragment was identical. The difference in strand assimilation activity cannot be due to differences in single-stranded DNA affinity, since both the fragment and intact proteins bind to single-stranded DNA with nearly identical affinities. However, the fragment was found to bind double-stranded DNA more tightly and to aggregate more extensively than recA protein; both of these properties may be important in strand assimilation. Aggregation of the fragment was extensive in the presence of duplex DNA under the same condition where recA protein did not aggregate. The double-stranded DNA binding of both recA protein and the fragment responds to nucleotide cofactors in the same manner as single-stranded DNA binding, i.e. ADP weakens and ATP gamma S strengthens the association. The missing C-terminal region of recA protein includes a very acidic region that is homologous to other single-stranded DNA binding proteins and which has been implicated in DNA binding modulation. This C-terminal region may serve a similar function in recA protein, possibly inhibiting double-stranded DNA invasion. The possible role of the enhanced double-stranded DNA affinity of the fragment protein in the mechanism of strand assimilation is discussed.  相似文献   

13.
recA protein forms stable filaments on duplex DNA at low pH. When the pH is shifted above 6.8, recA protein remains stably bound to nicked circular DNA, but not to linear DNA. Dissociation of recA protein from linear duplex DNA proceeds to a non-zero endpoint. The kinetics and final extent of dissociation vary with several experimental parameters. The instability on linear DNA is most readily explained by a progressive unidirectional dissociation of recA protein from one end of the filament. Dissociation of recA protein from random points in the filament is eliminated as a possible mechanism by several observations: (1) the requirement for a free end; (2) the inverse and linear dependence of the rate of dissociation on DNA length (at constant DNA base-pair concentration); and (3) the kinetics of exposure of a restriction endonuclease site in the middle of the DNA. Evidence against another possible mechanism, ATP-mediated translocation of the filament along the DNA, is provided by a novel effect of the non-hydrolyzable ATP analog, ATP gamma S, which generally induces recA protein to bind any DNA tightly and completely inhibits ATP hydrolysis. We find that very low, sub-saturating levels of ATP gamma S completely stabilize the filament, while most of the ATP hydrolysis continues. If these levels of ATP gamma S are introduced after dissociation has commenced, further dissociation is blocked, but re-association does not occur. These observations are inconsistent with movement of recA protein along DNA that is tightly coupled to ATP hydrolysis. The recA nucleoprotein filament is polar and the protein binds the two strands asymmetrically, polymerizing mainly in the 5' to 3' direction on the initiating strand of a single-stranded DNA tailed duplex molecule. A model consistent with these results is presented.  相似文献   

14.
Purified recA protein is found as rodlike homopolymers, and it forms filamentous complexes with double-stranded DNA that are stable in the presence of ATP gamma S, a nonhydrolyzable analogue of ATP. The structure of these filaments has been described in some detail by electron microscopy. Here we confirm the mass per length of 6.5 recA/100 A in solution by small-angle neutron scattering and extend the analysis to homopolymers of recA protein, finding a mass per length of about 7 recA/100 A and a radial mass distribution (cross-sectional radius of gyration) significantly different for the two filaments. The models proposed so far for the structure of the complex have placed the DNA in the center of the filament. Here we verify this assumption using small-angle neutron scattering to locate the DNA in the complexes, exploiting the contrast variation method in D2O/H2O mixtures. Model calculations show that the natural contrast difference between DNA and protein is not sufficient to locate the DNA (which accounts for only 4.7% of the mass in the complex). When deuterated DNA is used, the contrast difference is enhanced, and model calculations and experiment then converge, indicating that the DNA is indeed near the axis of the complex.  相似文献   

15.
K L Menge  F R Bryant 《Biochemistry》1988,27(7):2635-2640
The cooperativity of the single-stranded DNA dependent nucleoside triphosphatase activity of the recA protein was investigated by examining the influence of a good substrate (ATP) on the hydrolysis of a poor substrate (GTP). At pH 7.5 and 37 degrees C, both ATP and GTP are hydrolyzed with a turnover number of 17.5 min-1. The S0.5 for GTP (750 microM), however, is nearly 20-fold higher than the S0.5 for ATP (45 microM). Low concentrations of ATP activate the GTPase activity of the recA protein by lowering the S0.5 for GTP; in the presence of 50 microM ATP, the S0.5 for GTP is reduced from 750 microM to 200 microM. Concentrations of ATP greater than 50 microM result in competitive inhibition of the ATP-activated GTPase activity. Although GTP is a substrate for hydrolysis, it will not substitute for ATP as a high-energy cofactor in the standard recA protein promoted three-strand exchange reaction. To account for these results, a minimal kinetic model is presented in which ATP binding induces specific conformational changes in the recA protein that do not occur with GTP binding.  相似文献   

16.
High salt activation of recA protein ATPase in the absence of DNA   总被引:4,自引:0,他引:4  
The recA protein of Escherichia coli is a DNA-dependent ATPase. In the absence of DNA, the rate of recA protein-promoted ATP hydrolysis drops 2000-fold, exhibiting an apparent kcat of approximately 0.015 min-1. This DNA-independent activity can be stimulated to levels approximating those observed with DNA by adding high concentrations (approximately 2M) of a wide variety of salts. The increase in ATP hydrolysis appears to require the minimal interaction of three to four ions with recA protein. The active species in ATP hydrolysis is an aggregate of recA protein. There appears to be little or no cooperativity with respect to ATP binding (Hill coefficient = 1.0). The salt-stimulated ATP hydrolysis reaction is dependent upon Mg2+ ions and is optimal between pH 7.0 and 8.0. In many respects, the high salt concentration appears to be functionally mimicking DNA in activating the recA protein ATPase.  相似文献   

17.
The Escherichia coli SOS response to DNA damage is modulated by the RecA protein, a recombinase that forms an extended filament on single-stranded DNA and hydrolyzes ATP. The RecA K72R ( recA2201 ) mutation eliminates the ATPase activity of RecA protein. The mutation also limits the capacity of RecA to form long filaments in the presence of ATP. Strains with this mutation do not undergo SOS induction in vivo . We have combined the K72R variant of RecA with another mutation, RecA E38K ( recA730 ). In vitro , the double mutant RecA E38K/K72R ( recA730,2201 ) mimics the K72R mutant protein in that it has no ATPase activity. The double mutant protein will form long extended filaments on ssDNA and facilitate LexA cleavage almost as well as wild-type, and do so in the presence of ATP. Unlike recA K72R, the recA E38K/K72R double mutant promotes SOS induction in vivo after UV treatment. Thus, SOS induction does not require ATP hydrolysis by the RecA protein, but does require formation of extended RecA filaments. The RecA E38K/K72R protein represents an improved reagent for studies of the function of ATP hydrolysis by RecA in vivo and in vitro .  相似文献   

18.
Purified recA protein is induced by high salt concentrations to hydrolyse ATP even in the absence of DNA. By small angle neutron scattering we show that this salt activation results from a structural transition of the protein filament in the presence of ATPγS from the inactive, compact form (a helical polymer of pitch 70 Å and cross-sectional radius of gyration Rc 40 Å) to the open form (a helical filament of pitch 95 Å and Rc 35 Å, which are the same structural parameters as in the ATPase active complex with DNA and ATP), without detectable change in the degree of association. We conclude that activation of recA is due to the same structural change whether induced by the binding of DNA or by salt. Indeed, the other enzymatic activity of recA, the proteolytic cleavage of the lexA repressor, is found to be inducible by the same salt concentrations as those of the structural transition.  相似文献   

19.
Left-handed Z-DNA binding by the recA protein of Escherichia coli   总被引:10,自引:0,他引:10  
recA binding to left-handed Z-DNA was measured using nitrocellulose filter binding assays with four DNA polymers with defined nucleotide sequences and four recombinant plasmids. Two to 7-fold preferential binding of recA to Z-DNA polymers was observed. Left-handed Z-DNA polymer binding by recA required ATP or its nonhydrolyzable analog, ATP(gamma S), while ADP inhibited binding. Complex formation with both B- and Z-forms was influenced by polymer length; recA bound longer DNAs better. recA binding to recombinant plasmids containing supercoil-stabilized Z-DNA was essentially similar to that found for the control vector; thus, no preferential binding of recA to the Z-form was observed. Comparative experiments with the rec1 protein of Ustilago maydis and the Escherichia coli recA protein were performed. In our hands, recA and rec1 have a similar capacity for binding left-handed Z-DNA polymers and for binding recombinant plasmids containing B- and/or Z-regions. recA contains a left-handed Z-DNA-stimulated ATPase activity. This activity differs from the right-handed B-DNA-stimulated activity since it is less sensitive to increasing pH. The kinetics of ATP hydrolysis in B-DNA/Z-DNA mixing experiments showed that the turnover of the Z-DNA recA complex was slower than for B-DNA suggesting that left-handed Z-DNA is more stably bound by recA. Our results are consistent with the postulate that left-handed Z-DNA is involved in genetic recombination.  相似文献   

20.
Under conditions that diminish secondary structure in single-stranded DNA, stable presynaptic filaments can be formed by recA protein in the presence of the nonhydrolyzable analog ATP gamma S, without the need for Escherichia coli single strand binding protein. Such stable presynaptic filaments resemble those formed in the presence of ATP and pair efficiently with homologous duplex DNA. Since this kind of stable filament does not displace a strand from the duplex molecule, it provides a model substrate to study synapsis independent of the earlier and later stages of the recA reaction. Even though detectable strand displacement did not occur in the presence of ATP gamma S, both single strand and double strand breaks in duplex DNA stimulated homologous pairing. These and related observations support the view that the presynaptic nucleoprotein filament and naked duplex DNA intertwine to form a nascent joint in which the duplex DNA is partially unwound, i.e. in which the pitch of the involved duplex segment is reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号