首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fast and slow/cardiac troponin C (TnC) are the two different isoforms of TnC. Expression of these isoforms is developmentally regulated in vertebrate skeletal muscle. Therefore, in our studies, the pattern of their expression was analyzed by determining the steady-state levels of both TnC mRNAs. It was also examined if mRNAs for both isoforms of TnC were efficiently translated during chicken skeletal muscle development. We have used different methods to determine the steady-state levels of TnC mRNAs. First, probes specific for the fast and slow TnC mRNAs were developed using a 390 base pair (bp) and a 255 bp long fragment, of the full-length chicken fast and slow TnC cDNA clones, respectively. Our analyses using RNA-blot technique showed that fast TnC mRNA was the predominant isoform in embryonic chicken skeletal muscle. Following hatching, a significant amount of slow TnC mRNA began to accumulate in the skeletal (pectoralis) muscle. At 43 weeks posthatching, the slow TnC mRNA was nearly as abundant as the fast isoform. Furthermore, a majority of both slow and fast TnC mRNAs was found to be translationally active. A second method allowed a more reliable measure of the relative abundance of slow and fast TnC mRNAs in chicken skeletal muscle. We used a common highly conserved 18-nucleotide-long sequence towards the 5'-end of these mRNAs to perform primer extension analysis of both mRNAs in a single reaction. The result of these analyses confirmed the predominance of fast TnC mRNA in the embryonic skeletal muscle, while significant accumulation of slow TnC mRNA was observed in chicken breast (pectoralis) muscle following hatching. In addition to primer extension analysis, polymerase chain reaction was used to amplify the fast and slow TnC mRNAs from cardiac and skeletal muscle. Analysis of the amplified products demonstrated the presence of significant amounts of slow TnC mRNA in the adult skeletal muscle.  相似文献   

2.
Numerous troponin T (TnT) isoforms are produced by alternative splicing from three genes characteristic of cardiac, fast skeletal, and slow skeletal muscles. Apart from the developmental transition of fast skeletal muscle TnT isoforms, switching of TnT expression during muscle development is poorly understood. In this study, we investigated precisely and comprehensively developmental changes in chicken cardiac and slow skeletal muscle TnT isoforms by two-dimensional gel electrophoresis and immunoblotting with specific antisera. Four major isoforms composed of two each of higher and lower molecular weights were found in cardiac TnT (cTnT). Expression of cTnT changed from high- to low-molecular-weight isoforms during cardiac muscle development. On the other hand, such a transition was not found and only high-molecular-weight isoforms were expressed in the early stages of chicken skeletal muscle development. Two major and three minor isoforms of slow skeletal muscle TnT (sTnT), three of which were newly found in this study, were expressed in chicken skeletal muscles. The major sTnT isoforms were commonly detected throughout development in slow and mixed skeletal muscles, and at developmental stages until hatching-out in fast skeletal muscles. The expression of minor sTnT isoforms varied from muscle to muscle and during development.  相似文献   

3.
4.
The differentiation of troponin (TN) in cardiac and skeletal muscles of chicken embryos was studied by indirect immunofluorescence microscopy. Serial sections of embryos were stained with antibodies specific to TN components (TN-T, -I, and -C) from adult chicken cardiac and skeletal muscles. Cardiac muscle began to be stained with antibodies raised against cardiac TN components in embryos after stage 10 (Hamburger and Hamilton numbering, 1951, J. Morphol. 88:49-92). It reacted also with antiskeletal TN-I from stage 10 to hatching. Skeletal muscle was stained with antibodies raised against skeletal TN components after stage 14. It also reacted with anticardiac TN-T and C from stage C from stage 14 to hatching. It is concluded that, during embryonic development, cardiac muscle synthesizes TN-T and C that possess cardiac- type antigenicity and TN-I that has antigenic determinants similar to those present in cardiac as well as in skeletal muscles. Embryonic skeletal muscle synthesizes TN-I that possesses antigenicity for skeletal muscle and TN-T and C which share the antigenicities for both cardiac and skeletal muscles. Thus, in the development of cardiac and skeletal muscles, a process occurs in which the fiber changes its genomic programming: it ceases synthesis of the TN components that are immunologically indistinguishable from one another and synthesizes only tissue-type specific proteins after hatching.  相似文献   

5.
J Bag  S Sarkar 《Biochemistry》1975,14(17):3800-3807
Cytoplasmic nonpolysomal mRNAs have been isolated in the form of 16-40S ribonucleoprotein particles from the postribosomal supernatant of 14-day-old chick embryonic muscles. An 8-20S RNA fraction isolated from these particles directs the synthesis of actin in a wheat germ embryo S-30 system, as judged by copurification of the products with chicken muscle actin by repeated cycles of G- to F-actin transformation; mobilities of the purified product on sodium dodecyl sulfate-polyacrylamide gels and urea gels; and analysis of the CNBr-cleaved peptides. The 16-40S particles have a buoyant density of 1.4 g/cm3 which corresponds to an RNA/protein ratio of 1:3. They do not contain detectable levels of ribosomal subunits, as judged by the absence of typical ribosomal proteins in the range of 15,000-30,000. They contain at least eight distinct polypeptide species in the molecular weight range of 44,000-100,000, including a prominent 44,000 species. The presence of these particles suggests that they may have a role in the regulation of translation in developing muscles.  相似文献   

6.
Skinned fibers prepared from rabbit fast and slow skeletal and cardiac muscles showed acidotic depression of the Ca2+ sensitivity of force generation, in which the magnitude depends on muscle type in the order of cardiac>fast skeletal>slow skeletal. Using a method that displaces whole troponin-complex in myofibrils with excess troponin T, the roles of Tn subunits in the differential pH dependence of the Ca2+ sensitivity of striated muscle were investigated by exchanging endogenous troponin I and troponin C in rabbit skinned cardiac muscle fibres with all possible combinations of the corresponding isoforms expressed in rabbit fast and slow skeletal and cardiac muscles. In fibers exchanged with fast skeletal or cardiac troponin I, cardiac troponin C confers a higher sensitivity to acidic pH on the Ca2+ sensitive force generation than fast skeletal troponin C independently of the isoform of troponin I present. On the other hand, fibres exchanged with slow skeletal troponin I exhibit the highest resistance to acidic pH in combination with either isoform of troponin C. These results indicate that troponin C is a determinant of the differential pH sensitivity of fast skeletal and cardiac muscles, while troponin I is a determinant of the pH sensitivity of slow skeletal muscle.  相似文献   

7.
8.
We investigated the expression and functional properties of slow skeletal troponin T (sTnT) isoforms in rat skeletal muscles. Four sTnT cDNAs were cloned from the slow soleus muscle. Three isoforms were found to be similar to sTnT1, sTnT2, and sTnT3 isoforms described in mouse muscles. A new rat isoform, with a molecular weight slightly higher than that of sTnT3, was discovered. This fourth isoform had never been detected previously in any skeletal muscle and was therefore called sTnTx. From both expression pattern and functional measurements, it appears that sTnT isoforms can be separated into two classes, high-molecular-weight (sTnT1, sTnT2) and low-molecular-weight (sTnTx, sTnT3) isoforms. By comparison to the apparent migration pattern of the four recombinant sTnT isoforms, the newly described low-molecular-weight sTnTx isoform appeared predominantly and typically expressed in fast skeletal muscles, whereas the higher-molecular-weight isoforms were more abundant in slow soleus muscle. The relative proportion of the sTnT isoforms in the soleus was not modified after exposure to hindlimb unloading (HU), known to induce a functional atrophy and a slow-to-fast isoform transition of several myofibrillar proteins. Functional data gathered from replacement of endogenous troponin complexes in skinned muscle fibers showed that the sTnT isoforms modified the Ca(2+) activation characteristics of single skeletal muscle fibers, with sTnT2 and sTnT1 conferring a similar increase in Ca(2+) affinity higher than that caused by low-molecular-weight isoforms sTnTx and sTnT3. Thus we show for the first time the presence of sTnT in fast muscle fibers, and our data show that the changes in neuromuscular activity on HU are insufficient to alter the sTnT expression pattern.  相似文献   

9.
10.
Fast skeletal troponin C (sTnC) has two low affinity Ca(2+)-binding sites (sites I and II), whereas in cardiac troponin C (cTnC) site I is inactive. By modifying the Ca2+ binding properties of sites I and II in cTnC it was demonstrated that binding of Ca2+ to an activated site I alone is not sufficient for triggering contraction in slow skeletal muscle fibers (Sweeney, H.L., Brito, R. M.M., Rosevear, P.R., and Putkey, J.A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 9538-9542). However, a similar study using sTnC showed that Ca2+ binding to site I alone could partially activate force production in fast skeletal muscle fibers (Sheng, Z., Strauss, W.L., Francois, J.M., and Potter, J.D. (1990) J. Biol. Chem. 265, 21554-21560). The purpose of the current study was to examine the functional characteristics of modified cTnC derivatives in fast skeletal muscle fibers to assess whether or not either low affinity site can mediate force production when coupled to fast skeletal isoforms of troponin (Tn) I and TnT. Normal cTnC and sTnC were compared with engineered derivatives of cTnC having either both sites I and II active, or only site I active. In contrast to what is seen in slow muscle, binding of Ca2+ to site I alone recovered about 15-20% of the normal calcium-activated force and ATPase activity in skinned fast skeletal muscle fibers and myofibrils, respectively. This is most likely due to structural differences between TnI and/or TnT isoforms that allow for partial recognition and translation of the signal represented by binding Ca2+ to site I of TnC when associated with fast skeletal but not slow skeletal muscle.  相似文献   

11.
A modified automatic freezing apparatus (K. M. Kretzschmar and D. R. Wilkie, 1962, J. Physiol. (London), 202, 66–67) was used for studying light chain phosphorylation during the early phase of contraction of the fast, posterior latissimus dorsi, and slow, anterior latissimus dorsi, muscles of chicken at 37 °C. The frozen muscles were worked up under conditions which avoid artifacts in quantitating the level of light chain phosphorylation in contracting and resting muscles. The posterior latissimus dorsi muscle reached 80% of its maximal isometric tension at 0.1 s of tetanic stimulation. At the same time, light chain phosphorylation increased by 60% of its maximal extent. The peak tension of the posterior muscle at 0.2 s of stimulation was accompanied by maximal light chain phosphorylation. In case of the slow anterior latissimus dorsi muscle, maximal tetanic tension was developed in 2.5 – 5 s and light chain phosphorylation also proceeded at a much slower rate than in the fast posterior muscle. When contralateral posterior latissimus dorsi muscles were stimulated for 0.2 s and one muscle was frozen at the height of tetanus while the other muscle was allowed to relax and frozen 0.4 s after terminating the stimulation, both contracted and relaxed muscles exhibited maximal light chain phosphorylation. However, when the muscle was allowed to relax for 0.8 s before freezing, half of the phosphorylated light chain became dephosphorylated. The resting level of phosphate content of the light chain was restored in both the posterior and anterior muscles during a longer time after relaxation.  相似文献   

12.
Ca2+ binding to skeletal muscle troponin C in skeletal or cardiac myofibrils was measured by the centrifugation method using 45Ca. The specific Ca2+ binding to troponin C was obtained by subtracting the amount of Ca2+ bound to the CDTA-treated myofibrils (troponin C-depleted myofibrils) from that to the myofibrils reconstituted with troponin C. Results of Ca2+ binding measurement at various Ca2+ concentrations showed that skeletal troponin C had two classes of binding sites with different affinity for Ca2+. The Ca2+ binding of low-affinity sites in cardiac myofibrils was about eight times lower than that in skeletal myofibrils, while the high-affinity sites of troponin C in skeletal or cardiac myofibrils showed almost the same affinity for Ca2+. The Ca2+ sensitivity of the ATPase activity of skeletal troponin C-reconstituted cardiac myofibrils was also about eight times lower than that of skeletal myofibrils reconstituted with troponin C. These findings indicated that the difference in the sensitivity to Ca2+ of the ATPase activity between skeletal and cardiac CDTA-treated myofibrils reconstituted with skeletal troponin C was mostly due to the change in the affinity for Ca2+ of the low-affinity sites on the troponin C molecule.  相似文献   

13.
14.
15.
The optimal incubation conditions were determined for the assay of the α-amanitin-resistant, DNA-dependent RNA polymerase A and the α-amanitin-sensitive, DNA-dependent RNA polymerase B in nuclei isolated from rat skeletal muscles. Significantly higher levels of activity of RNA polymerase B were found in the nuclei isolated from the slow-twitch soleus compared with nuclei from the fast-twitch extensor digitorum longus.  相似文献   

16.
17.
Using several independent methods, the interaction between troponin T and troponin C from skeletal and cardiac muscles was studied. It was found that troponin T and troponin C from skeletal muscles form a complex whose stability depends on Ca2+ concentration. Study of interactions between these troponin components demonstrated that both electrostatic and hydrophobic forces are involved in the complex formation. Cardiac troponin T and troponin C weakly interact with each other irrespective of experimental conditions. It was assumed that the weakening of interactions between the components of cardiac troponin is due to structural peculiarities of cardiac troponin T.  相似文献   

18.
Polyclonal antibodies were raised against troponin I (TnI) and troponin C (TnC) purified from fast-twitch and slow-twitch rabbit muscles. These antibodies were used to elucidate the distribution of fast and slow isoforms of TnI and TnC in normal and chronically stimulated rabbit hind limb muscles by immunoblots of one-dimensional and two-dimensional electrophoreses. In contrast to the multiplicity of fast and slow troponin T (TnT) isoforms, TnI and TnC were present as unique fast and slow isoforms. Whereas no charge variants were detected for slow TnI, fast TnI was present in at least three charge variants. As judged from the results of alkaline phosphatase digestion, these charge variants represent differently phosphorylated forms. Fast and slow TnC both exist as two charge variants which, however, were unaffected by alkaline phosphatase treatment. Chronic low-frequency stimulation of fast-twitch muscles induced progressive increases in the slow isoforms of TnC and TnI at the expense of their fast isoforms. The extent of the fast-to-slow transition was more pronounced in the case of TnC than in that of TnI. Long-term stimulated muscles with a complete fast-to-slow transition, at the level of the TnT isoforms, still contained fast and slow isoforms of both TnI and TnC. The coexistence of fast and slow isoforms of the three troponin subunits in the transforming muscle was interpreted as indicating the presence of hybrid troponin molecules composed of fast and slow isoforms. Studies at the mRNA level showed changes similar to those at the protein level. However, in long-term stimulated muscles, the fast-to-slow transition of TnI was more pronounced at the mRNA level than at the protein level.  相似文献   

19.
J E Van Eyk  C M Kay  R S Hodges 《Biochemistry》1991,30(41):9974-9981
The cardiac and skeletal TnI inhibitory regions have identical sequences except at position 110 which contains Pro in the skeletal sequence and Thr in the cardiac sequence. The effect of the synthetic TnI inhibitory peptides [skeletal TnI peptide (104-115), cardiac TnI peptide (137-148), and a single Gly-substituted analogue at position 110] on the secondary structure of skeletal and cardiac TnC was investigated. The biphasic increases in ellipticity and tyrosine fluorescence were analyzed to determine the Ca2+ binding constants for the high- and low-affinity Ca2+ binding sites of TnC. Importantly, the skeletal and cardiac TnI peptides altered Ca2+ binding at the low-affinity sites of TnC, but the magnitude and direction of the pCa shifts depended on whether the peptides were bound to skeletal or cardiac TnC. For example, binding of skeletal TnI peptide to skeletal TnC (monitored by CD) caused a pCa shift of +0.30 unit such that a lower Ca2+ concentration was required to fill sites I and II, while binding of this peptide to cardiac TnC caused a pCa shift of -0.35 unit such that a higher Ca2+ concentration was required to fill site II. This is the first report of the alteration at the low-affinity regulatory sites (located in the N-terminal domain) by the skeletal TnI inhibitory peptide, even though the primary peptide binding site is located in the C-terminal domain of TnC, a finding which strongly indicates that there is communication between the two halves of the TnC molecule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
During oogenesis, Xenopus oocytes synthesize and accumulate all types of RNA. In particular, they store poly(A+) RNA to such an extent that only about 5% is actually translated in the oocyte. Using a protein blotting and in vitro binding assay, we have identified proteins which are associated with poly(A+) RNA and perhaps other RNAs as well. Two groups of binding proteins were identified. The first group accumulates during oogenesis, generally is less than 50,000 molecular weight, and sediments in the 80 S and polysome regions of a gradient. These proteins most likely include ribosomal proteins. A second group of proteins is oocyte-specific, sediments less than 80 S as well 80 S and slightly heavier, generally has molecular weights greater than 50,000, and diminishes in amount as oogenesis progresses. In addition, these proteins are retained by oligo(dT)-cellulose when ribonucleoproteins are analyzed by chromatography and, when challenged with several different types of RNA in vitro, bind poly(A+) RNA preferentially. The possibility that some of these proteins might regulate the stability or translatability of mRNAs during oogenesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号