首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrolysis of olive oil catalyzed by Chromobacterium viscosum lipase (EC 3.1.1.3) in a water/isooctane two-phase system was carried out both under ultrasound and conventional stirring. The maximum activity of lipase in the ultrasonicated system was 1.75 times higher than that in the stirred system. The lipase activity was dependent on ultrasonic power and volume ratio of isooctane to water. The optimum reaction temperature in both systems was around 25°C. The stability of lipase at 25°C in the ultrasonicated system decreased more rapidly than that in the stirred system. In the presence of exogenous oleic acid, however the half-life of lipase in the ultrasonicated system was improved to a value, which was respectively half and twice of that in stirred systems with and without oleic acid. The maximum reaction rate (Vmax) was increased by ultrasonication whereas the Michaelis constant (Km) remained unaltered.  相似文献   

2.
The affects of lipase concentration on ring-opening bulk polymerizations of epsilon-caprolactone and trimethylene carbonate were studied by using Novozym 435 (immobilized form of lipase B from Candida antarctica) as biocatalyst. The polymerization of epsilon-caprolactone was carried out in bulk at 70 degrees C. Three lipase concentrations of 9.77, 1.80 and 0.50 mg/mmol epsilon-CL were used in the experiment. The results showed that increasing the lipase concentration used in the polymerization system resulted in an increased rate of monomer consumption. For an enzyme concentration of 9.8 mg lipase per mmol monomer, an 80% monomer conversion was achieved in a 4-h time period, while for the lower enzyme concentration of 1.8 mg lipase per mmol monomer, 48 h were needed to reach monomer conversion. Linear relationships between Mn and monomer conversions were observed in all three enzyme concentrations, suggesting that the product molecular weight may be controlled by the stoichiometry of the reactants for these systems. At the same monomer conversion level, however, Mn decreased with increasing enzyme concentration. After correcting for the amount of monomer consumed in initiation, the plot of ln[([M]o - [M]i)/([Mt] - [M]i)] versus reaction time was found to be linear, suggesting that the monomer consumption followed a first-order rate law and no chain termination occurred. For the TMC systems, the polymerization was carried out in bulk at 55 degrees C. Similar to the epsilon-CL systems, increasing the Novozym 435 concentration from 8.3 to 23.6 mg/mmol TMC increased the rate of monomer conversion. Unlike the epsilon-CL systems, however, nonlinear relationships were obtained between Mn and monomer conversion, indicating that possible chain transfer and/or slow initiation had taken place in these systems. Consistent with the above result, nonlinear behavior was observed for the plot of ln[[M]o/[M]t] versus reaction time.  相似文献   

3.
Chromobacterium viscosum lipase which has adsorbed on liposome and solubilized in microemulsion droplets of glycerol containing a little amount of water could catalyze the glycerolysis of olive oil. Studies on the continuous glycerolysis of olive oil by the immobilized enzyme was done at 37 degrees C in continuous stirred vessel bioreactor with polysulfone membrane. The effect of the flow rate of substrate (olive oil) in isooctane on the conversion and composition of the outlet was investigated using high-performance liquid chromatography (HPLC). The conversion increased with decrease in the flow rate. And we studied the effect of water content in the glycerol-water-lipase solution on the glycerolysis reaction. The conversion to desirable products, mono- and di-olein, was improved without a substantial production of oleic acid at lower water concentrations, i.e., below 8.0% (w/v) which corresponds to a w(o) value of 0.97. At water concentration higher than 8.0% (w/v), the amount of free fatty acid was dramatically increased. Higher operational stability of the enzyme reactor, and the half-line of the enzyme continuous reaction was about 7 weeks.  相似文献   

4.
Batch and continuous hydrolysis of olive oil in an organic-aqueous two-phase system using the live whole cell of Pseudomonas putida 3SK as a source of a lipase is investigated. The strain was not only fully viable and grown well, but also produced extracellular lipase simultaneously. The degree of hydrolysis, depending on olive oil concentration in the solvents, was maximal at 13.5% (w/v) and decreased with the increase of the substrate concentration. At the optimal condition, a degree of hydrolysis higher than 95% was achieved with 24 h at 30 degrees C when the reaction was carried out in a two-phase batch stirred reactor. For long-term operation a continuous stirred reactor was designed. When the reaction was carried out in a continuous stirred reactor, the degree was hydrolysis reached 86% at a dilution rate of 0.2 h(-1). Satisfactory performance of a two-phase bioreactor was obtained in a long-term continous operation, which lasted for at least 30 days by feeding organic solvent containing olive oil and aqueous media separately. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
A thermophilic microorganism, Bacillus thermoleovorans ID-1, isolated from hot springs in Indonesia, showed extracellular lipase activity and high growth rates on lipid substrates at elevated temperatures. On olive oil (1.5%, w/v) as the sole carbon source, the isolate ID-1 grew very rapidly at 65 degrees C with its specific growth rate (2.50 h(-1)) and its lipase activity reached the maximum value of 520 U l(-1) during the late exponential phase and then decreased. In addition to this, isolate ID-1 could grow on a variety of lipid substrates such as oils (olive oil, soybean oil and mineral oil), triglycerides (triolein, tributyrin) and emulsifiers (Tween 20, 40). The excreted lipase of ID-1 was purified 223-fold to homogeneity by ammonium sulfate precipitation, DEAE-Sephacel ion-exchange chromatography and Sephacryl S-200 gel filtration chromatography. As a result, the relative molecular mass of the lipase was determined to be 34 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme showed optimal activity at 70-75 degrees C and pH 7.5 and exhibited 50% of its original activity after 1 h incubation at 60 degrees C and 30 min at 70 degrees C and its catalytic function was activated in the presence of Ca(2+) or Zn(2+).  相似文献   

6.
Candida rugosa lipase (EC 3.1.1.3.) was immobilized in a hydrophilic polyurethane foam and used in the hydrolysis of olive oil, in H-hexane. The results obtained were compared with those from a previous study, in which the same lipase preparation was used in the esterification of ethanol with butyric acid.

The initial rate of hydrolysis increased exponentially with increasing olive oil concentration. In contrast, for the esterification reaction, Michaelis-Menten kinetics with inhibition by both substrates, had been observed.

The effect of medium viscosity, stirring conditions and size of immobilization particles could not explain the observed kinetics of the hydrolytic reaction. However, a direct relationship was observed between the log P values of the reaction medium and the initial rate of hydrolysis, i.e., activation of the immobilized Candida rugosa lipase appears to be promoted by a high hydrophobicity of the reaction medium.

In the case of the esterification reaction, no similar correlation was found.  相似文献   

7.
Candida rugosa lipase immobilized by adsorption on swollen Sephadex LH-20 could almost completely hydrolyze 60% (v/v) olive oil in isooctane. Kinetic analysis of the lipase-catalyzed hydrolysis reaction was found to be possible in this system. Amount of fatty acids produced was linearly proportional to the enzyme concentration of 720 mug/g wet gel. The specific enzyme activity was 217 units/mg protein at 60% (v/v) olive oil concentration. When the initial rate is plotted versus concentration of olive oil, this system did not follow Michaelis-Menten kinetics. Maximum activity was obtained at pH 7, but optimum temperature shifted towards higher one with the increase of olive oil concentration. Among the various chemical compounds tested, Hg(2+) and Fe(2+) inhibited the lipase seriously. As the concentration of olive oil increased, the rate of the hydrolysis also increased, but degree of the hydrolysis was observed to decrease. The supply of water from the inside of the gel to the surface of the gel was the main factor for the control of the rate of hydrolysis in batch hydrolysis. The immobilized lipase was used to hydrolyze olive oil two times. Achievement of chemical equilibrium took a longer time with the addition of water and the degree of hydrolysis decreased in the second consecutive trial. After the second hydrolysis trial, the gels were regenerated in a packed column first by eluting out both residual fatty acids around the gel particles and the accumulated glycerol with ethanol and then with 0.05M phosphate buffer, pH 7. The immobilized lipase on the regenerated gel showed the same hydrolysis activity as the original one.  相似文献   

8.
Lipase-mediated deacetylation and oligomerization of lactonic sophorolipids   总被引:2,自引:0,他引:2  
Hu Y  Ju LK 《Biotechnology progress》2003,19(2):303-311
The direct enzymatic polymerization of lactonic sophorolipids (SLs) was investigated with four lipases, including porcine pancreatic lipase (PPL), immobilized Mucor miehei lipase (MML), lyophilized Candida antarctica lipase (Fraction B, CAL-B), and lyophilized Pseudomonas sp. lipase (PSL). Several organic solvents, covering a wide range of polarity, were compared for suitability as the reaction medium. Isopropyl ether and toluene were found most effective. According to the quantification and structure identification by HPLC and LC-MS, the reaction proceeded with the formation of monoacetylated lactonic SLs and the subsequent conversion of the intermediates to oligomers and polymers, presumably through ring-opening polymerization. Temperature was found to have significant effects on the reaction. Both the conversion of reactant SLs and the subsequent formation of oligomers and polymers from the intermediates were faster at 60 degrees C than at 50 degrees C. The substrate selectivity among the three dominant reactant SLs also differed with the temperature. The conversion rate increased with the ring size of the lactones at 60 degrees C, but it decreased with the size at 50 degrees C.  相似文献   

9.
Candida rugosa lipase has been used to investigate the hydrolysis of high concentration olive oil in the AOT-isooctane reversed micellar system at W(o) = 10, pH 7.1, and 37 degrees C. Results from this work show the hydrolytic reaction obeys Michaelis-Menten kinetics up to the initial substrate concentration of 1.37M, with turnover number k(cat) and Michaelis constant K(M) of 67.1 mumol/min mg enzyme and 0.717M, respectively. A competitive inhibition by the main product, oleic acid, has been found with a dissociation constant K(I) for the complex EP* of 0.089M. The rate equation was further analyzed in the time course reaction and was found in agreement with the experimental results for lower substrate concentrations, up to 0.341M. Large deviation occurred at high substrate concentrations, which may be due to the effects of large consumption of water on kinetics, on the formation of glycerol, and on the deactivation of lipase in the hydrolysis reaction as well.  相似文献   

10.
Proteins represent versatile building blocks for realization of nanostructured materials to be applied in nanobiotechnology. In the present work, the Langmuir–Blodgett technique was utilized to develop nanobiodevices based on protein molecules. Particularly, lipase thin films were fabricated and characterized, with characterization performed in order to optimize the working parameters. As the first step the protein films were studied at the air–water interface and then transferred onto a solid support for further characterization. The films were characterized by different techniques such as UV–Vis spectroscopy, nanogravimetry, atomic force microscopy, and biochemical assays. Catalytic activity of lipase characterized by the maximal reaction rate found to increase over 10 times as a result of inclusion into LB films, while the substrate binding characterized by the Michaelis constant remain unchanged. Catalytic activity per mole of enzyme was found to increase with the increased number of LB layers up to five, and then decrease at 10, while the surface coverage ranged from 70% to 100% from 1 to 10 layers of lipase. This study exploits the possibility to employ LB based protein structures to use in biocatalysis, exemplified by lipase, which is known as an interfacially-activated enzyme, with olive oil as substrate, when lipase should already be in the maximally active state even without a film. We show, however, that it was possible to form even more active lipase nanostructures by the Langmuir–Blodgett technique at the air–water interface, proving that Langmuir-film provides a better catalytic effect in lipase than a mere oil–water boundary.  相似文献   

11.
Two types of experiments were performed to study the reversibility of interfacial adsorption of pancreatic lipase (PL) to fat droplets during lipolysis. Lipolysis was measured in olive oil/gum arabic emulsions containing radiolabeled triolein in the presence of bile salts and lecithin at rate-limiting concentrations of porcine PL (PPL) or human PL (HPL). The lipolysis rate in a labeled emulsion, i.e. release of [(14)C]oleic acid, was immediately reduced by around 50% upon dilution with an equal amount of an unlabeled emulsion. Further, lipolysis was rapidly and completely suppressed when a non-exchanging lipase inhibitor was present in the second emulsion. These results indicate hopping of lipase between emulsion droplets. Alternative explanations were excluded. Hopping of PL between triolein droplets stabilized with gum arabic at supramicellar bile salt concentrations was observed only in the presence, not in the absence, of lecithin. Displacement from a trioctanoin-water interface of active HPL by an inactive mutant (S152G) was studied in the presence of bile salts by measuring HPL distribution between the water phase and the oil-water interface. Colipase was limiting for HPL binding to the oil-water interface (colipase to lipase molar ratio: 0.5) and, thus, for lipolysis. Upon adding S152G, which has the same affinity for colipase, inactive and active HPL were found to compete for binding at the oil-water interface. When equal amounts of HPL and HPL S152G were used, the lipolysis rate dropped to half the maximum rate recorded with HPL alone, suggesting that half the active HPL was rapidly desorbed from the oil-water interface. Therefore, under various conditions, PL does not remain irreversibly adsorbed to the oil-water interface, but can exchange rapidly between oil droplets, via an equilibrium between soluble and lipid-bound PL.  相似文献   

12.
An efficient expression system was developed for the production of the thermostable lipase from Bacillus stearothermophilus L1 in an Escherichia coli system. A structural gene corresponding to mature lipase was subcloned in the pET-22b(+) expression vector and its expression was induced by IPTG at 30 degrees C in E. coli cells. The lipase activity in a cell-free extract was as high as 448,000 units/g protein, which corresponds to as much as 26% of the total cellular protein and is 77 times higher than that of E. coli RR1/pLIP1. Based on its pI (7.4) and pH stability data reported previously, the L1 lipase was efficiently purified to homogeneity with CM (at pH 6.0) and DEAE (at pH 8.8) column chromatographies with a recovery yield of 62%. The specific activity of the purified enzyme was 1700 units/mg protein when olive oil emulsion was used as a substrate. Its optimum temperature for the hydrolysis of olive oil was 68 degrees C and it was stable up to 55 degrees C for 30 min-incubation. The thermostability increased by about 8-10 degrees in the presence of calcium ions. This calcium-dependent thermostability was confirmed by the tryptophan fluorescence emission kinetics showing that the enzyme starts to unfold at 66 degrees C in the presence of calcium ions but at 58 degrees C in the absence of calcium ions, implying that the calcium ions bind to the thermostable enzyme and stabilize the protein tertiary structure even at such high temperatures.  相似文献   

13.
The esterification of geraniol with acetic acid in n-hexane was investigated. A commercial lipase preparation from Candida antarctica was used as catalyst. The equilibrium conversion (no water removal) was found to be 94% for the reaction of 0.1 M alcohol and 0.1 M acid in n-hexane at 30 degrees C. This was shown by both hydrolysis and esterification reactions. The activation energy of reaction over the temperature range 10 degrees to 50 degrees C was found to be 16 kJ/mol. The standard heat of reaction was -28 kJ/mol. Membrane pervaporation using a cellulose acetate/ceramic composite membrane was then employed for selective removal of water from the reaction mixture. The membrane was highly effective at removing water while retaining all reaction components. Negligible transport of the solvent n-hexane was observed. Water removal by pervaporation increased the reaction rate by approximately 150% and increased steady-state conversion to 100%.  相似文献   

14.
A constitutive level of a mycelium-bound lipolytic activity from Aspergillus niger MYA 135 was strongly increased by 97% in medium supplemented with 2% olive oil. The constitutive lipase showed an optimal activity in the pH range of 3.0–6.5, while the mycelium-bound lipase activity produced in the presence of olive oil had two pH optima at pH 4 and 7. Interestingly, both lipolytic sources were cold-active showing high catalytic activities in the temperature range of 4–8°C. These mycelium-bound lipase activities were also very stable in reaction mixtures containing methanol and ethanol. In fact, the constitutive lipase maintained almost 100% of its activity after exposure by 1 h at 37°C in ethanol. A simple methodology to evaluate suitable transesterification activities in organic solvents was also reported.  相似文献   

15.
Transesterification between medium-chain fatty acid triglycerides (MCT) and long-chain fatty acid triglycerides (LCT) in a nonsolvent system was investigated using surfactant modified lipase which is a complex of lipase, Rhizopus japonicus and surfactant, sorbitan monostearate. 74% conversion of was obtained after a 48-h reaction period, and the triglyceride composition was well described by the 1, 3-random 2-random stochastic model. The transesterification reaction between MCT and LCT closely followed the simple kinetic model, and the change in MCT and LCT contents could be simulated using one parameter. The effects of the water activity (A(w)) of modified lipase, the water content of the reaction system and the reaction temperature on the reaction rate were studied. A modified lipase A(w) of 0.35 and a water content of the reaction system at 0.09 wt % showed the highest activity. Inactivation did not occur below 60 degrees C, however, the activity decreased at temperatures over 70 degrees C.  相似文献   

16.
Shearing experiments were conducted in a stirred tank reactor with 0.1% lipase solutions of Candida cylindracea. Inactivation of the lipase solutions were observed at various shear rates from 50 to 150 s(-1) after continuous shearing for ca. 30-240 min under optimal pH and temperature conditions. However, there was no shear stress denaturation of the lipase when it was subjected to shear stresses of 0.72-109.2 kg/m/s(2) and shear rate of 100 s(-1). In the presence of polypropylene glycol, the rate of denaturation of the lipase decreased by 93%. When the lipase solution was filled to the brim, the rate of denaturation of the lipase decreased by 97% compared to that when reactor was half-filled. The rate of denaturation of the lipase decreased by 61% when probes in the fermentor were removed. There was no significant difference in the rate of denaturation of the lipase under ambient conditions compared with that in the absence of oxygen, or in the absence of free metal ions. Recovery of lipase activity from the first hour of shearing was observed at a shear rate of 150 s(-1). The native lipase and the lipase which had recovered its activity showed similar pH profiles, temperature profiles, and activation energies. Temperature was found to have no effect in the rate of shear-induced denaturation of the lipase in the range 20 to 30 degrees C during shearing at 100 s (-1)and optimal pH. Above 30 degrees C, the rate of denaturation of the lipase increased drastically as a function of temperature. The significance of the findings in the de sign of reactor systems for hydrolysis or esterification of oils by lipase will be discussed.  相似文献   

17.
Pig pancreatic carboxylester lipase (cholesterol esterase, E.C. 3.1.1.13) was inactivated at a tributyrin/water interface. The apparent rate constant for inactivation increased with increase in the particle surface area of the tributyrin emulsion. The large energy of activation and entropy change for inactivation (33.7 Kcal.mol-1 and 35.8 cal.mol-1.deg-1, using 5 mM sonicated tributyrin at 37 degrees C, respectively) suggest that the observed inactivation reflects denaturation of the enzyme at the tributyrin/water interface. Bile salts protected the enzyme from irreversible inactivation at the tributyrin/water interface. The protection by bile salts was related both to their concentration and to the tributyrin concentration (substrate surface area). The protection by bile salts was not related to their concentration below or above their critical micellar concentration; the binding of bile salts to enzyme was probably the dominant protection factor. Similar stabilization was observed with other detergents such as Brij-35, Triton X-100, and sodium dodecyl sulfate. These results suggest that inactivation of carboxylester lipase occurs at a high-energy lipid-water interface and that an important role of bile salts in vivo is to stabilize carboxylester lipase at interfaces.  相似文献   

18.
In the study of hydrolysis of tributyrin by the lipase of Candida cylindracea, it is shown that initial rates of hydrolysis are directly proportional to the amount of enzyme adsorbed at the substrate-water interface. As a consequence of understanding the role of the physical state of the substrate in aqueous reaction media, it was hypothesized that the inclusion of synthetic (nonsubstrate) surfaces into the reaction media may enhance the hydrolysis rate of simple liquid lipids which are partly soluble in water, like triacetin. Nonpolar n-hydrocarbons having 5-11 carbon atoms were used to create interfaces in the hydrolysis of triacetin in the soluble range. All of the C(5)-C(11) hydrocarbons showed an activating effect. For quantitative evaluation of the effects of n-hydrocarbons, n-heptane was chosen as the model n-hydrocarbon. Interrelations between the reaction kinetics and adsorption of the enzyme at the n-heptane-water interface were experimentally determined by the use of the same in-line filtration device used for the tributyrin-water system. At 35 degrees C and pH 6 the relative values of the rate constants for the decomposition of enzyme-interface-substrate complexes were calculated as 12 and 1 for the tributyrin and n-heptane-triacetin systems, respectively. The nature of activation at the solvent surfaces were accounted for by a kinetic model which assumes simultaneous adsorption of enzyme and triacetin molecules at the n-heptane-water interface. Making use of the proposed model, the value of a the apparent Michaelis constant for the soluble triacetin-n-heptane system at constant n-heptane concentration, 2 vol %, was calculated as 0.044 mol/L.  相似文献   

19.
The kinetics of enzymatic interesterification of oils and fats, using acetone-dried cells of Rhizopus chinensis immobilized on biomass support particles as a lipase catalyst, were investigated in batch operations at several constant water concentrations.Even under microaqueous (i.e., low-water-content) conditions, not only interesterification but also hydrolysis occured, and the water content in the reaction system decreased. The reaction rates of interesterification and hydrolysis at constant water concentrations were determined.For the reactions between olive oil and methyl stearate at several water concentrations, the parameters involved in the reaction model were determined by a trial-and-error method so as to make the calculated results correlate with the experimental data. The relationship between the parameters obtained and water concentration were examined.The rate constants involved in the reaction model of both interesterification and hydrolysis increased or decreased monotonically with the increasing water content, while the apparent activity of the lipase catalyst for interesterification had a maximum value at a water concentration of about 50 ppm. This suggests that when the water content is excessive the hydrolysis activity of lipase is accelerated more than its interesterification activity, and that when the water content is too little lipase activity can not be activated for either hydrolysis or interesterification.  相似文献   

20.
The mature lipase LipA and its 56aa-truncated chaperone DeltaLipBhis (with 6xhis-tag) from Ralstonia sp. M1 were over-expressed in Escherichia coli BL21 under the control of T7 promoter with a high level of 70 and 12mg protein per gram of wet cells, respectively. The simply purified lipase LipA was effectively refolded by Ni-NTA purified chaperone DeltaLipBhis in molar ratio 1:1 at 4 degrees C for 24 hours in H2O. The in vitro refolded lipase LipA had an optimal activity in the temperature range of 50-55 degrees C and was stable up to 45 degrees C with more than 84% activity retention. The maximal activity was observed at pH 10.75 for hydrolysis of olive oil and found to be stable over alkaline pH range 8.0-10.5 with more than 52% activity retention. The enzyme was found to be highly resistant to many organic solvents especially induced by ethanolamine (remaining activity 137-334%), but inhibited by 1-butanol and acetonitrile (40-86%). Metal ions Cu2+, Sn2+, Mn2+, Mg2+, and Ca2+ stimulated the lipase slightly with increase in activity by up to 22%, whereas Zn2+ significantly inhibited the enzyme with the residual activity of 30-65% and Fe3+ to a lesser degree (activity retention of 77-86%). Tween 80, Tween 60, and Tween 40 induced the activation of the lipase LipA (222-330%) and 0.2-1% (w/v) of Triton X-100, X-45, and SDS increased the lipase activity by up to 52%. However, 5% (w/v) of Triton X-100, X-45, and SDS inhibited strongly the activity by 31-89%. The inhibitors including DEPC, EDTA, PMSF, and 2-mercaptoethanol (0.1-10mM) inhibited moderately the lipase with remaining activity of 57-105%. The lipase LipA hydrolyzed a wide range of triglycerides, but preferentially short length acyl chains (C4 and C6). In contrast to the triglycerides, medium length acyl chains (C8 and C14) of p-nitrophenyl (p-NP) esters were preferential substrates of this lipase. The enzyme preferentially catalyzed the hydrolysis of cottonseed oil (317%), cornoil (227%), palm oil (222%), and wheatgerm oil (210%) in comparison to olive oil (100%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号