首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reversion of CTL escape-variant immunodeficiency viruses in vivo   总被引:17,自引:0,他引:17  
Engendering cytotoxic T-lymphocyte (CTL) responses is likely to be an important goal of HIV vaccines. However, CTLs select for viral variants that escape immune detection. Maintenance of such escape variants in human populations could pose an obstacle to HIV vaccine development. We first observed that escape mutations in a heterogeneous simian immunodeficiency virus (SIV) isolate were lost upon passage to new animals. We therefore infected macaques with a cloned SIV bearing escape mutations in three immunodominant CTL epitopes, and followed viral evolution after infection. Here we show that each mutant epitope sequence continued to evolve in vivo, often re-establishing the original, CTL-susceptible sequence. We conclude that escape from CTL responses may exact a cost to viral fitness. In the absence of selective pressure upon transmission to new hosts, these original escape mutations can be lost. This suggests that some HIV CTL epitopes will be maintained in human populations.  相似文献   

2.
Antiviral CD8(+) T cells are thought to play a significant role in limiting the viremia of human and simian immunodeficiency virus (HIV and SIV, respectively) infections. However, it has not been possible to measure the in vivo effectiveness of cytotoxic T cells (CTLs), and hence their contribution to the death rate of CD4(+) T cells is unknown. Here, we estimated the ability of a prototypic antigen-specific CTL response against a well-characterized epitope to recognize and kill infected target cells by monitoring the immunodominant Mamu-A*01-restricted Tat SL8 epitope for escape from Tat-specific CTLs in SIVmac239-infected macaques. Fitting a mathematical model that incorporates the temporal kinetics of specific CTLs to the frequency of Tat SL8 escape mutants during acute SIV infection allowed us to estimate the in vivo killing rate constant per Tat SL8-specific CTL. Using this unique data set, we show that at least during acute SIV infection, certain antiviral CD8(+) T cells can have a significant impact on shortening the longevity of infected CD4(+) T cells and hence on suppressing virus replication. Unfortunately, due to viral escape from immune pressure and a dependency of the effectiveness of antiviral CD8(+) T-cell responses on the availability of sufficient CD4(+) T cells, the impressive early potency of the CTL response may wane in the transition to the chronic stage of the infection.  相似文献   

3.
SIV(mac239) infection of rhesus macaques (RMs) results in AIDS despite the generation of a strong antiviral cytotoxic T lymphocyte (CTL) response, possibly due to the emergence of viral escape mutants that prevent recognition of infected cells by CTLs. To determine the anatomic origin of these SIV mutants, we longitudinally assessed the presence of CTL escape variants in two MamuA*01-restricted immunodominant epitopes (Tat-SL8 and Gag-CM9) in the plasma, PBMCs, lymph nodes (LN), and rectal biopsies (RB) of fifteen SIV(mac239)-infected RMs. As expected, Gag-CM9 did not exhibit signs of escape before day 84 post infection. In contrast, Tat-SL8 escape mutants were apparent in all tissues by day 14 post infection. Interestingly LNs and plasma exhibited the highest level of escape at day 14 and day 28 post infection, respectively, with the rate of escape in the RB remaining lower throughout the acute infection. The possibility that CTL escape occurs in LNs before RBs is confirmed by the observation that the specific mutants found at high frequency in LNs at day 14 post infection became dominant at day 28 post infection in plasma, PBMC, and RB. Finally, the frequency of escape mutants in plasma at day 28 post infection correlated strongly with the level Tat-SL8-specific CD8 T cells in the LN and PBMC at day 14 post infection. These results indicate that LNs represent the primary source of CTL escape mutants during the acute phase of SIV(mac239) infection, suggesting that LNs are the main anatomic sites of virus replication and/or the tissues in which CTL pressure is most effective in selecting SIV escape variants.  相似文献   

4.
In this report, we assessed the evolution of the cytotoxic T-lymphocyte (CTL) response induced by an epitope vaccine. In two macaques immunized with a mixture of lipopeptides derived from simian immunodeficiency virus (SIV) Nef and Gag proteins, CTL responses were directed against the same, single epitope of the Nef protein (amino acids 128 to 137) presenting an alanine at position 136 (Nef 128-137/136A). However, after 5 months of SIV infection, peripheral blood mononuclear cells from both macaques lost their ability to be stimulated by autologous SIV-infected cells while still retaining their capacity to generate cytotoxic responses after specific Nef 128-137/136A peptide stimulation. The sequences of the pathogenic viral isolate used for the challenge showed a mixture of several variants. Within the Nef epitopic sequence from amino acids 128 to 137, 82% of viral variants expressed the epitopic peptide Nef 128-137/136A; the remaining variants presented a threonine at position 136 (Nef 128-137/136T). In contrast, sequence analysis of cloned proviral DNA obtained from both macaques 5 months after SIV challenge showed a different pattern of quasi-species variants; 100% of clones presented a threonine at position 136 (Nef 128-137/136T), suggesting the disappearance of viral variants with an alanine at this position under antiviral pressure exerted by Nef 128-137/136A-specific CTLs. In addition, 12 months after SIV challenge, six of eight clones from one macaque presented a glutamic acid at position 131 (Nef 128-137/131E+136T), which was not found in the infecting isolate. Furthermore, CTLs generated very early after SIV challenge were able to lyse cells sensitized with the Nef 128-137/136A epitope. In contrast, lysis was significantly less effective or even did not occur when either the selected peptide Nef 128-137/136T or the escape variant peptide Nef 128-137/131E+136T was used in a target cell sensitization assay. Dose analysis of peptides used to sensitize target cells as well as a major histocompatibility complex (MHC)-peptide stability assay suggested that the selected peptide Nef 128-137/136T has an altered capacity to bind to the MHC. These data suggest that CTL pressure leads to the selection of viral variants and to the emergence of escape mutants and supports the fact that immunization should elicit broad CTL responses.  相似文献   

5.
HIV-1 often evades cytotoxic T cell (CTL) responses by generating variants that are not recognized by CTLs. We used single-genome amplification and sequencing of complete HIV genomes to identify longitudinal changes in the transmitted/founder virus from the establishment of infection to the viral set point at 1 year after the infection. We found that the rate of viral escape from CTL responses in a given patient decreases dramatically from acute infection to the viral set point. Using a novel mathematical model that tracks the dynamics of viral escape at multiple epitopes, we show that a number of factors could potentially contribute to a slower escape in the chronic phase of infection, such as a decreased magnitude of epitope-specific CTL responses, an increased fitness cost of escape mutations, or an increased diversity of the CTL response. In the model, an increase in the number of epitope-specific CTL responses can reduce the rate of viral escape from a given epitope-specific CTL response, particularly if CD8+ T cells compete for killing of infected cells or control virus replication nonlytically. Our mathematical framework of viral escape from multiple CTL responses can be used to predict the breadth and magnitude of HIV-specific CTL responses that need to be induced by vaccination to reduce (or even prevent) viral escape following HIV infection.  相似文献   

6.
CD8+ cytotoxic T lymphocytes (CTL) can be effective at controlling HIV-1 in humans and SIV in macaques, but their utility is partly offset by mutational escape. The kinetics of CTL escape and reversion of escape mutant viruses upon transmission to MHC-mismatched hosts can help us understand CTL-mediated viral control and the fitness cost extracted by immune escape mutation. Traditional methods for following CTL escape and reversion are, however, insensitive to minor viral quasispecies. We developed sensitive quantitative real-time PCR assays to track the viral load of SIV Gag164-172 KP9 wild-type (WT) and escape mutant (EM) variants in pigtail macaques. Rapid outgrowth of EM virus occurs during the first few weeks of infection. However, the rate of escape plateaued soon after, revealing a prolonged persistence of WT viremia not detectable by standard cloning and sequencing methods. The rate of escape of KP9 correlated with levels of vaccine-primed KP9-specific CD8+ T cells present at that time. Similarly, when non-KP9 responder (lacking the restricting Mane-A*10 allele) macaques were infected with SHIVmn229 stock containing a mixture of EM and WT virus, rapid reversion to WT was observed over the first 2 weeks following infection. However, the rate of reversion to WT slowed dramatically over the first month of infection. The serial quantitation of escape mutant viruses evolving during SIV infection shows that rapid dynamics of immune escape and reversion can be observed in early infection, particularly when CD8 T cells are primed by vaccination. However, these early rapid rates of escape and reversion are transient and followed by a significant slowing in these rates later during infection, highlighting that the rate of escape is significantly influenced by the timing of its occurrence.  相似文献   

7.
Gag-specific cytotoxic T lymphocytes (CTLs) exert strong suppressive pressure on human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. However, it has remained unclear whether they can actually contain primary viral replication. Recent trials of prophylactic vaccines inducing virus-specific T-cell responses have indicated their potential to confer resistance against primary SIV replication in rhesus macaques, while the immunological determinant for this vaccine-based viral control has not been elucidated thus far. Here we present evidence implicating Gag-specific CTLs as responsible for the vaccine-based primary SIV control. Prophylactic vaccination using a Gag-expressing Sendai virus vector resulted in containment of SIVmac239 challenge in all rhesus macaques possessing the major histocompatibility complex (MHC) haplotype 90-120-Ia. In contrast, 90-120-Ia-positive vaccinees failed to contain SIVs carrying multiple gag CTL escape mutations that had been selected, at the cost of viral fitness, in SIVmac239-infected 90-120-Ia-positive macaques. These results show that Gag-specific CTL responses do play a crucial role in the control of wild-type SIVmac239 replication in vaccinees. This study implies the possibility of Gag-specific CTL-based primary HIV containment by prophylactic vaccination, although it also suggests that CTL-based AIDS vaccine efficacy may be abrogated in viral transmission between MHC-matched individuals.  相似文献   

8.
Certain major histocompatibility complex class I (MHC-I) alleles are associated with delayed disease progression in individuals infected with human immunodeficiency virus (HIV) and in macaques infected with simian immunodeficiency virus (SIV). However, little is known about the influence of these MHC alleles on acute-phase cellular immune responses. Here we follow 51 animals infected with SIV(mac)239 and demonstrate a dramatic association between Mamu-A*01 and -B*17 expression and slowed disease progression. We show that the dominant acute-phase cytotoxic T lymphocyte (CTL) responses in animals expressing these alleles are largely directed against two epitopes restricted by Mamu-A*01 and one epitope restricted by Mamu-B*17. One Mamu-A*01-restricted response (Tat(28-35)SL8) and the Mamu-B*17-restricted response (Nef(165-173)IW9) typically select for viral escape variants in early SIV(mac)239 infection. Interestingly, animals expressing Mamu-A*1 and -B*17 have less variation in the Tat(28-35)SL8 epitope during chronic infection than animals that express only Mamu-A*01. Our results show that MHC-I alleles that are associated with slow progression to AIDS bind epitopes recognized by dominant CTL responses during acute infection and underscore the importance of understanding CTL responses during primary HIV infection.  相似文献   

9.
Resting CD4+ T cells are a reservoir of latent HIV-1. Understanding the turnover of HIV DNA in these cells has implications for the development of eradication strategies. Most studies of viral latency focus on viral persistence under antiretroviral therapy (ART). We studied the turnover of SIV DNA resting CD4+ T cells during active infection in a cohort of 20 SIV-infected pigtail macaques. We compared SIV sequences at two Mane-A1*084:01-restricted CTL epitopes using serial plasma RNA and resting CD4+ T cell DNA samples by pyrosequencing, and used a mathematical modeling approach to estimate SIV DNA turnover. We found SIV DNA turnover in resting CD4+ T cells was slow in animals with low chronic viral loads, consistent with the long persistence of latency seen under ART. However, in animals with high levels of chronic viral replication, turnover was high. SIV DNA half-life within resting CD4 cells correleated with viral load (p = 0.0052) at the Gag KP9 CTL epitope. At a second CTL epitope in Tat (KVA10) there was a trend towards an association of SIV DNA half-life in resting CD4 cells and viral load (p = 0.0971). Further, we found that the turnover of resting CD4+ T cell SIV DNA was higher for escape during early infection than for escape later in infection (p = 0.0084). Our results suggest viral DNA within resting CD4 T cells is more labile and may be more susceptible to reactivation/eradication treatments when there are higher levels of virus replication and during early/acute infection.  相似文献   

10.
Persistence of HIV DNA presents a major barrier to the complete control of HIV infection under current therapies. Most studies suggest that cells with latently integrated HIV decay very slowly under therapy. However, it is much more difficult to study the turnover and persistence of HIV DNA during active infection. We have developed an “escape clock” approach for measuring the turnover of HIV DNA in resting CD4+ T cells. This approach studies the replacement of wild-type (WT) SIV DNA present in early infection by CTL escape mutant (EM) strains during later infection. Using a strain-specific real time PCR assay, we quantified the relative amounts of WT and EM strains in plasma SIV RNA and cellular SIV DNA. Thus we can track the formation and turnover of SIV DNA in sorted resting CD4+ T cells. We studied serial plasma and PBMC samples from 20 SIV-infected Mane-A*10 positive pigtail macaques that have a signature Gag CTL escape mutation. In animals with low viral load, WT virus laid down early in infection is extremely stable, and the decay of this WT species is very slow, consistent with findings in subjects on anti-retroviral medications. However, during active, high level infection, most SIV DNA in resting cells was turning over rapidly, suggesting a large pool of short-lived DNA produced by recent infection events. Our results suggest that, in order to reduce the formation of a stable population of SIV DNA, it will be important either to intervene very early or intervene during active replication.  相似文献   

11.
Several studies have shown that cytotoxic T lymphocytes (CTLs) play an important role in controlling HIV/SIV infection. Notably, the observation of escape mutants suggests a selective pressure induced by the CTL response. However, it remains difficult to assess the definite role of the cellular immune response. We devise a computational model of HIV/SIV infection having a broad cellular immune response targeting different viral epitopes. The CTL clones are stimulated by viral antigen and interact with the virus population through cytotoxic killing of infected cells. Consequently, the virus population reacts through the acquisition of CTL escape mutations. Our model provides realistic virus dynamics and describes several experimental observations. We postulate that inter-clonal competition and immunodominance may be critical factors determining the sequential emergence of escapes. We show that even though the total killing induced by the CTL response can be high, escape rates against a single CTL clone are often slow and difficult to estimate from infrequent sequence measurements. Finally, our simulations show that a higher degree of immunodominance leads to more frequent escape with a reduced control of viral replication but a substantially impaired replicative capacity of the virus. This result suggests two strategies for vaccine design: Vaccines inducing a broad CTL response should decrease the viral load, whereas vaccines stimulating a narrow but dominant CTL response are likely to induce escape but may dramatically reduce the replicative capacity of the virus.  相似文献   

12.
Cytotoxic T-lymphocyte (CTL) responses are crucial for the control of immunodeficiency virus replication. Possible involvement of a dominant single epitope-specific CTL in control of viral replication has recently been indicated in preclinical AIDS vaccine trials, but it has remained unclear if multiple epitope-specific CTLs can be involved in the vaccine-based control. Here, by following up five rhesus macaques that showed vaccine-based control of primary replication of a simian immunodeficiency virus, SIVmac239, we present evidence indicating involvement of multiple epitope-specific CTL responses in this control. Three macaques maintained control for more than 2 years without additional mutations in the provirus. However, in the other two that shared a major histocompatibility complex haplotype, viral mutations were accumulated in a similar order, leading to viral evasion from three epitope-specific CTL responses with viral fitness costs. Accumulation of these multiple escape mutations resulted in the reappearance of plasma viremia around week 60 after challenge. Our results implicate multiple epitope-specific CTL responses in control of immunodeficiency virus replication and furthermore suggest that sequential accumulation of multiple CTL escape mutations, if allowed, can result in viral evasion from this control.  相似文献   

13.
Successful vaccination against HIV should limit viral replication sufficiently to prevent the emergence of viral immune escape mutations. Broadly directed immunity is likely to be required to limit opportunities for immune escape variants to flourish. We studied the emergence of an SIV Gag cytotoxic T cell immune escape variant in pigtail macaques expressing the Mane-A*10 MHC I allele using a quantitative RT-PCR to measure viral loads of escape and wild type variants. Animals receiving whole Gag expressing vaccines completely controlled an SIVmac251 challenge, had broader CTL responses and exhibited minimal CTL escape. In contrast, animals vaccinated with only a single CTL epitope and challenged with the same SIVmac251 stock had high levels of viral replication and rapid CTL escape. Unvaccinated naïve animals exhibited a slower emergence of immune escape variants. Thus narrowly directed vaccination against a single epitope resulted in rapid immune escape and viral levels equivalent to that of naïve unvaccinated animals. These results emphasize the importance of inducing broadly directed HIV-specific immunity that effectively quashes early viral replication and limits the generation of immune escape variants. This has important implications for the selection of HIV vaccines for expanded human trials.  相似文献   

14.
Several vaccine studies have ameliorated disease progression in simian-human immunodeficiency virus (SHIV) infections. The successes of these vaccines have been largely attributed to protective effects of cytotoxic T-lymphocyte (CTL) responses, although the precise correlates of immune protection remain poorly defined. It is now well established that vigorous CTL and antibody responses can rapidly select for viral escape variants after HIV and SIV infection. Here we suggest that viral variation analyses should be performed on viruses derived from vaccinated, SIV-, or SHIV-challenged animals as a routine component of vaccine evaluation to determine the contribution of immune responses to the success (or failure) of the vaccine regimen. To illustrate the importance of escape analysis, we show that rapid emergence of escape variants postchallenge contributed to the failure of a DNA prime/MVA boost vaccine regimen encoding SIV Tat.  相似文献   

15.
Cytotoxic T-lymphocyte (CTL) responses frequently select for immunodeficiency virus mutations that result in escape from CTL recognition with viral fitness costs. The replication in vivo of such viruses carrying not single but multiple escape mutations in the absence of the CTL pressure has remained undetermined. Here, we have examined the replication of simian immunodeficiency virus (SIV) with five gag mutations selected in a macaque possessing the major histocompatibility complex haplotype 90-120-Ia after its transmission into 90-120-Ia-negative macaques. Our results showed that even such a "crippled" SIV infection can result in persistent viral replication, multiple reversions, and AIDS progression.  相似文献   

16.
During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level.  相似文献   

17.
HIV-1 transmission and viral evolution in the first year of infection were studied in 11 individuals representing four transmitter-recipient pairs and three independent seroconverters. Nine of these individuals were enrolled during acute infection; all were men who have sex with men (MSM) infected with HIV-1 subtype B. A total of 475 nearly full-length HIV-1 genome sequences were generated, representing on average 10 genomes per specimen at 2 to 12 visits over the first year of infection. Single founding variants with nearly homogeneous viral populations were detected in eight of the nine individuals who were enrolled during acute HIV-1 infection. Restriction to a single founder variant was not due to a lack of diversity in the transmitter as homogeneous populations were found in recipients from transmitters with chronic infection. Mutational patterns indicative of rapid viral population growth dominated during the first 5 weeks of infection and included a slight contraction of viral genetic diversity over the first 20 to 40 days. Subsequently, selection dominated, most markedly in env and nef. Mutants were detected in the first week and became consensus as early as day 21 after the onset of symptoms of primary HIV infection. We found multiple indications of cytotoxic T lymphocyte (CTL) escape mutations while reversions appeared limited. Putative escape mutations were often rapidly replaced with mutually exclusive mutations nearby, indicating the existence of a maturational escape process, possibly in adaptation to viral fitness constraints or to immune responses against new variants. We showed that establishment of HIV-1 infection is likely due to a biological mechanism that restricts transmission rather than to early adaptive evolution during acute infection. Furthermore, the diversity of HIV strains coupled with complex and individual-specific patterns of CTL escape did not reveal shared sequence characteristics of acute infection that could be harnessed for vaccine design.  相似文献   

18.
Infections with human immunodeficiency virus (HIV) and the closely related monkey viruses simian-human immunodeficiency virus (SHIV) and simian immunodeficiency virus (SIV) are characterized by progressive waves of immune responses, followed by viral mutation and "immune escape." However, escape mutation usually leads to lower replicative fitness, and in the absence of immune pressure, an escape mutant (EM) virus "reverts" to the wild-type phenotype. Analysis of the dynamics of immune escape and reversion has suggested it is a mechanism for identifying the immunogens best capable of controlling viremia. We have analyzed and modeled data of the dynamics of wild-type (WT) and EM viruses during SHIV infection of macaques. Modeling suggests that the dynamics of reversion and immune escape should be determined by the availability of target cells for infection. Consistent with this suggestion, we find that the rate of reversion of cytotoxic T-lymphocyte (CTL) EM virus strongly correlates with the number of CD4(+) T cells available for infection. This phenomenon also affects the rate of immune escape, since this rate is determined by the balance of CTL killing and the WT fitness advantage. This analysis predicts that the optimal timing for the selection of immune escape variants will be immediately after the peak of viremia and that the development of escape variants at later times will lead to slower selection. This has important implications for comparative studies of immune escape and reversion in different infections and for identifying epitopes with high fitness cost for use as vaccine targets.  相似文献   

19.
The overall CD8 T cell response to human/simian immunodeficiency virus (HIV/SIV) targets a collection of discrete epitope specificities. Some of these epitope-specific CD8 T cells emerge in the weeks and months following infection and rapidly select for sequence variants, whereas other CD8 T cell responses develop during the chronic infection phase and rarely select for sequence variants. In this study, we tested the hypothesis that acute-phase CD8 T cell responses that do not rapidly select for escape variants are unable to control viral replication in vivo as well as those that do rapidly select for escape variants. We created a derivative of live attenuated SIV (SIVmac239Δnef) in which we ablated five epitopes that elicit early CD8 T cell responses and rapidly accumulate sequence variants in SIVmac239-infected Mauritian cynomolgus macaques (MCMs) that are homozygous for the M3 major histocompatibility complex (MHC) haplotype. This live attenuated SIV variant was called m3KOΔnef. Viremia was significantly higher in M3 homozygous MCMs infected with m3KOΔnef than in either MHC-mismatched MCMs infected with m3KOΔnef or MCMs infected with SIVmac239Δnef. Three CD8 T cell responses, including two that do not rapidly select for escape variants, predominated during early m3KOΔnef infection in the M3 homozygous MCMs, but these animals were unable to control viral replication. These results provide evidence that acute-phase CD8 T cell responses that have the potential to rapidly select for escape variants in the early phase of infection are needed to establish viral control in vivo.  相似文献   

20.
Induction of virus-specific CD8(+) cytotoxic T-lymphocyte (CTL) responses is a promising strategy for AIDS vaccine development. However, it has remained unclear if or how long-term viral containment and disease control are attainable by CTL-based nonsterile protection. Here, we present three rhesus macaques that successfully maintained Env-independent vaccine-based control of simian immunodeficiency virus (SIV) mac239 replication without disease progression for more than 3 years. SIV-specific neutralizing antibody induction was inefficient in these controllers. Vaccine-induced Gag-specific CTLs were crucial for the chronic as well as the primary viral control in one of them, whereas those Gag-specific CTL responses became undetectable and CTLs specific for SIV antigens other than Gag, instead, became predominant in the chronic phase in the other two controllers. A transient CD8(+) cell depletion experiment 3 years postinfection resulted in transient reappearance of plasma viremia in these two animals, suggesting involvement of the SIV non-Gag-specific CTLs in the chronic SIV control. This sustained, neutralizing antibody-independent viral control was accompanied with preservation of central memory CD4(+) T cells in the chronic phase. Our results suggest that prophylactic CTL vaccine-based nonsterile protection can result in long-term viral containment by adapted CTL responses for AIDS prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号