首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ran C  Yu X  Jin M  Zhang W 《Biotechnology progress》2006,22(2):438-443
We demonstrated that a significant volume of H(2) gas could be photobiologically produced by a marine green alga Platymonas subcordiformis when an uncoupler of photophosphorylation, carbonyl cyanide m-chlorophenylhydrazone (CCCP), was added after 32 h of anaerobic dark incubation, whereas a negligible volume of H(2) gas was produced without CCCP. The role of CCCP in enhancing photobiological H(2) production was delineated. CCCP as an ADRY agent (agent accelerating the deactivation reactions of water-splitting enzyme system Y) rapidly inhibited the photosystem II (PSII) activity of P. subcordiformis cells, resulting in a markedly decline in the coupled oxygen evolution. The mitochondrial oxidative respiration was only slightly inactivated by CCCP, which depleted O(2) in the light. As a result, anaerobiosis during the stage of photobiological H(2) evolution was established, preventing severe O(2) inactivation of the reversible hydrogenase in P. subcordiformis. The uncoupling effect of CCCP accelerates electron transfer from water due to a disruption of the proton motive force and release of DeltapH across the thylakoid membrane and thus enhances the accessibility of electron and H(+) to hydrogenase. The electrons for hydrogen photoevolution are mainly from the photolysis of water (90%). Upon the addition of CCCP, Chl a/b ratio increased, which implies a decrease in the light-harvesting PSII antennae or an increase in PSII/PSI ratio, possibly resulting in higher efficiency of utilization of light energy. The enhancement of H(2) evolution by the addition of CCCP is mostly due to the combination of the above three mechanisms. However, the disruption of the proton gradient across the thylakoid membrane may prevent a sustained photobiological H(2) evolution due to a shortfall of ATP generation essential for the maintenance and repair functions of the cells.  相似文献   

2.
H(2)O(2) is a relatively long-lived reactive oxygen species that signals between cells and organisms. H(2)O(2) signalling in plants is essential for response to stress, defence against pathogens and the regulation of programmed cell death. Although H(2)O(2) diffusion across membranes is often considered as a passive property of lipid bilayers, native membranes represent significant barriers for H(2)O(2). In the present study we addressed the question of whether channels might facilitate H(2)O(2) conduction across plasma membranes. The expression of several plant plasma membrane aquaporins in yeast, including PIP2;1 from Arabidopsis (where PIP is plasma membrane intrinsic protein), enhanced the toxicity of H(2)O(2) and increased the fluorescence of dye-loaded yeast when exposed to H(2)O(2). The sensitivity of aquaporin-expressing yeast to H(2)O(2) was altered by mutations that alter gating and the selectivity of the aquaporins. The conduction of water, H(2)O(2) and urea was compared, using molecular dynamics simulations based on the crystal structure of SoPIP2;1 from spinach. The calculations identify differences in the conduction between the substrates and reveal channel residues critically involved in H(2)O(2) conduction. The results of the calculations on tetramers and monomers are in agreement with the biochemical data. Taken together, the results strongly suggest that plasma membrane aquaporin pores determine the efficiency of H(2)O(2) signalling between cells. Aquaporins are present in most species and their capacity to facilitate the diffusion of H(2)O(2) may be of physiological significance in many organisms and particularly in communication between different species.  相似文献   

3.
A light-scattering technique used to measure the water permeability across closed biomembranes is described, which is based on the different indices of refraction of D2O and H2O. This transient technique is compared with a similar method using D2O-sensitive fluorophores in the intravesicular space. The results of both techniques are equivalent although the signal-to-noise ratio favors the light-scattering or turbidity experiment. The light-scattering method is only applicable to larger particles (no point-scatterers) and is easily extended to biological objects. Data on the H2O/D2O exchange across membranes of ghosts from human erythrocytes suggest two mechanisms: the D2O and H2O permeation through the membrane and a slower D2O-induced conformational change of membraneous proteins.  相似文献   

4.
Contrary to what is widely believed, recent published results show that H2O2 does not freely diffuse across biomembranes. The fast removal of H2O2 by antioxidant enzymes is able to generate a gradient if H2O2 is produced in a different compartment from that containing the enzymes (Antunes, F., and Cadenas, E. (2000) FEBS Lett. 475, 121-126). In this work, we extended these studies and tested whether an active regulation of biomembranes permeability characteristics is part of the cell response to oxidative stress. Using Saccharomyces cerevisiae as a model, we showed that: (a) H2O2 gradients across the plasma membrane are formed upon exposure to external H2O2; (b) there is a correlation between the magnitude of the gradients and the resistance to H2O2; (c) there is not a correlation between the intracellular capacity to remove H2O2 and the resistance to H2O2; (d) the plasma membrane permeability to H2O2 decreases by a factor of two upon acquisition of resistance to this agent by pre-exposing cells either to nonlethal doses of H2O2 or to cycloheximide, an inhibitor of protein synthesis; and (e) erg3Delta and erg6Delta mutants, which have impaired ergosterol biosynthesis pathways, show higher plasma membrane permeability to H2O2 and are more sensitive to H2O2. Altogether, the regulation of the plasma membrane permeability to H2O2 emerged as a new mechanism by which cells respond and adapt to H2O2. The consequences of the results to cellular redox compartmentalization and to the origin and evolution of the eukaryotic cell are discussed.  相似文献   

5.
Heavy water (D2O) has been used as a putative inhibitor of the plasma membrane H(+)-ATPase and the plasma membrane redox system. Concentrations above 50% D2O inhibited H+ secretion and the plasma membrane redox system of Zea mays L. roots. Inhibition of H+ secretion by vanadate was reduced in presence of D2O. The plasma membrane of roots was transiently depolarized after the addition of heavy water in concentrations above 5%. The repolarization of the plasma membrane that takes place while the H+ secretion is still reduced by heavy water indicates that, despite the overall inhibiting effect of D2O, the plant is still able to regulate the membrane potential.  相似文献   

6.
Sodium accumulation by the Na+-ATPase in the plasma membrane (PM) vesicles isolated from the marine alga Tetraselmis (Platymonas) viridis was shown to be accompanied by deltapsi generation across the vesicle membrane (positive inside) and H+ efflux from the vesicle lumen. Na+ accumulation was assayed with 22Na+; deltapsi generation was detected by recording absorption changes of oxonol VI; H+ efflux was monitored as an increase in fluorescence intensity of the pH indicator pyranine loaded into the vesicles. Both ATP-dependent Na+ uptake and H+ ejection were increased by the H+ ionophore carbonyl cyanide m-chlorophenylhydrazone (CICCP) while deltapsi was collapsed. The lipophilic anion tetraphenylboron ion (TPB-) inhibited H+ ejection from the vesicles and abolished deltapsi. Based on the effects of CICCP and TPB- on H+ ejection and deltapsi generation, the conclusion was drawn that H+ countertransport observed during Na+-ATPase operation is a secondary event energized by the electric potential which is generated in the course of Na+ translocation across the vesicle membrane. Increasing Na+ concentrations stimulated H+ efflux and caused the decrease in the deltapsi observed, thus indicating that Na+ is likely a factor controlling H+ permeability of the vesicle membrane.  相似文献   

7.
K Bouarab  P Potin  J Correa    B Kloareg 《The Plant cell》1999,11(9):1635-1650
The endophytic green alga Acrochaete operculata completely colonizes the sporophytes of the red alga Chondrus crispus; however, it does not penetrate beyond the outer cell layers of the gametophytes. Given that the life cycle phases of C. crispus differ in the sulfation pattern of their extracellular matrix carrageenans, we investigated whether carra-geenan fragments could modulate parasite virulence. lambda-Carrageenan oligosaccharides induced release of H(2)O(2), stimulated protein synthesis, increased carrageenolytic activity, and induced specific polypeptides in the pathogen, resulting in a marked increase in pathogenicity. In contrast, kappa-carrageenan oligosaccharides did not induce a marked release of H(2)O(2) from A. operculata but hindered amino acid uptake and enhanced their recognition by the host, resulting in a reduced virulence. Moreover, C. crispus life cycle phases were shown to behave differently in their response to challenge with cell-free extracts of A. operculata. Gametophytes exhibited a large burst of H(2)O(2), whereas only low levels were released from the sporophytes.  相似文献   

8.
To gain further insights into the function of extracellular Ca2+ in alleviating salt stress, Vicia faba guard cell protoplasts (GCPs) were patch-clamped in a whole-cell configuration. The results showed that 100 mM NaCl clearly induced Na+ influx across the plasma membrane in GCPs and promoted stomatal opening. Extracellular Ca2+ at 10 mM efficiently blocked Na+ influx and inhibited stomatal opening, which was partially abolished by La3+ (an inhibitor of plasma membrane Ca2+ channel) or catalase (CAT, a H?O? scavenger), respectively. These results suggest that the plasma membrane Ca2+ channels and H?O? possibly mediate extracellular Ca2+-blocked Na+ influx in GCPs. Furthermore, extracellular Ca2+ activated the plasma membrane Ca2+ channels under NaCl stress, which was partially abolished by CAT. These results, taken together, indicate that hydrogen peroxide (H?O?) likely regulates Na+ uptake by activating plasma membrane Ca2+ channels in GCPs. In accordance with this hypothesis, H?O? could mimic extracellular Ca2+ to activate Ca2+ channels and block Na+ influx in guard cells. A single-cell analysis of cytosolic free Ca2+ ([Ca2+](cyt)) using Fluo 3-AM revealed that extracellular Ca2+ induced the accumulation of cytosolic Ca2+ under NaCl stress, but had few effects on the accumulation of cytosolic Ca2+ under non-NaCl conditions. All of these results, together with our previous studies showing that extracellular Ca2+ induced the generation of H?O? in GCPs during NaCl stress, indicate that extracellular Ca2+ alleviates salt stress, likely by activating the H?O?-dependent plasma membrane Ca2+ channels, and the increase in cytosolic Ca2+ appears to block Na+ influx across the plasma membrane in Vicia guard cells, leading to stomatal closure and reduction of water loss.  相似文献   

9.
Neutron diffraction is used to localize water molecules and/or exchangeable hydrogen ions in the purple membrane by H2O/2H2O exchange experiments at different values of relative humidity. At 100% relative humidity, differences in the hydration between protein and lipid areas are observed, accounting for an excess amount of about 100 molecules of water in the lipid domains per unit cell. A pronounced isotope effect was observed, reproducibly showing an increase in the lamellar spacing from 60 A in 2H2O to 68 A in H2O. At 15% relative humidity, the positions of exchangeable protons became visible. A dominant difference density peak corresponding to 11 +/- 2 exchangeable protons was detected in the central part of the projected structure of bacteriorhodopsin at the Schiff's base end of the chromophore. A difference density map obtained from data on purple membrane films at 15% relative humidity in 2H2O, and the same sample after complete drying in vacuum, revealed that about eight of these protons belong to four water molecules. This is direct evidence for tightly bound water molecules close to the chromophore binding site of bacteriorhodopsin, which could participate in the active steps of H+ translocation as well as in the proton pathway across this membrane protein.  相似文献   

10.
Two-photon excitation-based near-infrared (NIR) laser scanning microscopy is currently emerging as a new and versatile alternative to conventional confocal laser scanning microscopy, particularly for vital cell imaging in life sciences. Although this innovative microscopy has several advantages such as highly localized excitation, higher penetration depth, reduced photobleaching and photodamage, and improved signal to noise ratio, it has, however, recently been evidenced that high-power NIR laser irradiation can drastically inhibit cell division and induce cell death. In the present study we have investigated the cellular responses of unlabeled rat kangaroo kidney epithelium (PtK2) cells to NIR femtosecond laser irradiation. We demonstrate that NIR 170-fs laser pulses operating at 80-MHz pulse repetition frequency and at mean power of > or = 7 mW evoke generation of reactive oxygen species (ROS) such as H2O2 that can be visualized in situ by standard in vivo cytochemical analysis using Ni-3,3'-diaminobenzidine (Ni-DAB) as well as with a recently developed fluorescent probe Jenchrom px blue. The formation of the Ni-DAB reaction product as well as that of Jenchrom was relatively more pronounced when irradiated cells were incubated in alkaline solution (pH 8) than in those incubated in acidic solution (pH 6), suggesting peroxisomal localization of these reaction products. Two-photon time-lapse imaging of the internalization of the cell impermeate fluorescent dye propidium iodide revealed that the integrity of the plasma membrane of NIR irradiated cells is drastically compromised. Visualization of the nuclei with DNA-specific fluorescent probes such as 4',6-diamidino-2-phenylindole 24 h postirradiation further provided tangible evidence that the nuclei of these cells undergo several deformations and eventual fragmentation. That these NIR irradiated cells die by apoptosis has been established by in situ detection of DNA strand breaks using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling method. Because the reactive oxygen species such as H2O2 and OH* can cause noxious effects such as cell membrane injury by peroxidation of polyunsaturated lipids and proteins and oxidative phosphorylation, and alterations of ATP-dependent Ca2+ pumps, these ROS are likely to contribute to drastic cytological alterations observed in this study following NIR irradiation. Taken together, we have established that NIR laser irradiations at mean power > or = 7 mW delivered at pulse duration time of 170 fs generally used in two- and multiphoton microscopes cause oxidative stress (1) evoking production of ROS, (2) resulting in membrane barrier dysfunction, (3) inducing structural deformations and fragmentation of the nuclei as well as DNA strand breaks, (4) leading to cell death by apoptosis.  相似文献   

11.
12.
Under biotic/abiotic stresses, the red alga Kappaphycus alvarezii reportedly releases massive amounts of H(2)O(2) into the surrounding seawater. As an essential redox signal, the role of chloroplast-originated H(2)O(2) in the orchestration of overall antioxidant responses in algal species has thus been questioned. This work purported to study the kinetic decay profiles of the redox-sensitive plastoquinone pool correlated to H(2)O(2) release in seawater, parameters of oxidative lesions and antioxidant enzyme activities in the red alga Kappaphycus alvarezii under the single or combined effects of high light, low temperature, and sub-lethal doses of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which are inhibitors of the thylakoid electron transport system. Within 24 h, high light and chilling stresses distinctly affected the availability of the PQ pool for photosynthesis, following Gaussian and exponential kinetic profiles, respectively, whereas combined stimuli were mostly reflected in exponential decays. No significant correlation was found in a comparison of the PQ pool levels after 24 h with either catalase (CAT) or ascorbate peroxidase (APX) activities, although the H(2)O(2) concentration in seawater (R=0.673), total superoxide dismutase activity (R=0.689), and particularly indexes of protein (R=0.869) and lipid oxidation (R=0.864), were moderately correlated. These data suggest that the release of H(2)O(2) from plastids into seawater possibly impaired efficient and immediate responses of pivotal H(2)O(2)-scavenging activities of CAT and APX in the red alga K. alvarezii, culminating in short-term exacerbated levels of protein and lipid oxidation. These facts provided a molecular basis for the recognized limited resistance of the red alga K. alvarezii under unfavorable conditions, especially under chilling stress.  相似文献   

13.
过氧化氢诱导酿酒酵母细胞膜透性和组成的变化   总被引:3,自引:0,他引:3  
以下简述了过氧化氢(H2O2)作为一种信号分子诱导并调节酿酒酵母(Saccharomyces cerevisiae)细胞膜的变化。H2O2是一种强氧化剂,可以跨膜扩散进入细胞中,形成跨膜梯度;当外源H2O2达到亚致死剂量时,酿酒酵母的细胞膜透性和流动性降低,产生跨膜梯度,从而限制H2O2向细胞内的扩散速率,保护细胞免受氧化胁迫的伤害。研究表明,由H2O2引起的膜透性和流动性的变化与膜的组成有关:当酵母细胞对H2O2产生适应时,与膜组成和微区域变化有关的几个基因的表达发生了改变。膜组成的变化和微区域的调整还可能与H2O2依赖的信号途径有关,即以H2O2为信号分子,调节膜的变化并赋予细胞对氧化压力更高的适应性,但这种信号分子的具体传递途径及机制还需要进一步研究。  相似文献   

14.
Vanadium bromoperoxidase (VBPO) from the marine red alga Corallina officinalis has been cloned and heterologously expressed in Esherichia coli. The sequence for the full-length cDNA of VBPO from C. officinalis is reported. Steady state kinetic analyses of monochlorodimedone bromination reveals the recombinant enzyme behaves similarly to native VBPO from the alga. The kinetic parameters (K(m)(Br-)=1.2 mM, K(m)(H(2)O(2))=17.0 microM) at the optimal pH 6.5 for recombinant VBPO are similar to reported values for enzyme purified from the alga. The first site-directed mutagenesis experiment on VBPO is reported. Mutation of a conserved active site histidine residue to alanine (H480A) results in the loss of the ability to efficiently oxidize bromide, but retains the ability to oxidize iodide. Kinetic parameters (K(m)(I-)=33 mM, K(m)(H(2)O(2))=200 microM) for iodoperoxidase activity were determined for mutant H480A. The presence of conserved consensus sequences for the active sites of VBPO from marine sources shows its usefulness in obtaining recombinant forms of VBPO. Furthermore, mutagenesis of the conserved extra-histidine residue shows the importance of this residue in the oxidation of halides by hydrogen peroxide.  相似文献   

15.
Aquaporins are integral membrane proteins that facilitate the transport of water and some small solutes across cellular membranes. X-ray crystallography of aquaporins indicates that four amino acids constitute an aromatic/arginine (ar/R) pore constriction known as the selectivity filter. On the basis of these four amino acids, tonoplast aquaporins called tonoplast intrinsic proteins (TIPs) are divided into three groups in Arabidopsis. Herein, we describe the characterization of two group I TIP1s (TgTIP1;1 and TgTIP1;2) from tulip (Tulipa gesneriana). TgTIP1;1 and TgTIP1;2 have a novel isoleucine in loop E (LE2 position) of the ar/R filter; the residue at LE2 is a valine in all group I TIPs from model plants. The homologs showed mercury-sensitive water channel activity in a fast kinetics swelling assay upon heterologous expression in Pichia pastoris. Heterologous expression of both homologs promoted the growth of P. pastoris on ammonium or urea as sole sources of nitrogen and decreased growth and survival in the presence of H(2)O(2). TgTIP1;1- and TgTIP1;2-mediated H(2)O(2) conductance was demonstrated further by a fluorescence assay. Substitutions in the ar/R selectivity filter of TgTIP1;1 showed that mutants that mimicked the ar/R constriction of group I TIPs could conduct the same substrates that were transported by wild-type TgTIP1;1. In contrast, mutants that mimicked group II TIPs showed no evidence of urea or H(2)O(2) conductance. These results suggest that the amino acid residue at LE2 position is critical for the transport selectivity of the TIP homologs and group I TIPs might have a broader spectrum of substrate selectivity than group II TIPs.  相似文献   

16.
We have applied the transition state theory of Eyring et al. (The Theory of Rate Processes, McGraw-Hill, 1941) to water transport across cell membranes. We have then evaluated free energy (Delta F(not equal)), enthalpy (Delta H(not equal)) and entropy (Delta S(not equal)) of activation for water permeation across membranes, such as Arbacia eggs, Xenopus oocytes with or without aquaporin water channels, mammalian erythrocytes, aquaporin proteoliposomes, liposomes and collodion membrane. Delta H(not equal) was found to be correlated with Delta S(not equal). This is so-called Delta H(not equal) and Delta S(not equal) compensation over the ranges of Delta H(not equal) and Delta S(not equal) from 2 to 22 kcal/mol and from -26 to 45 e.u., respectively, indicating that low Delta H(not equal) values correspond to negative Delta S(not equal). Large positive Delta S(not equal) and high Delta H(not equal) values might be accompanied by reversible breakage of secondary bonds in the membrane, presumably in membrane lipid bilayer. Largely negative Delta S(not equal) and low Delta H(not equal) values for aquaporin water channels, aquaporin proteoliposomes and porous collodion membrane could be explained by the immobilization of permeating water molecules in the membrane, i.e., the partial loss of rotational and/or translational freedoms of water molecules in water channels.  相似文献   

17.
The diffusional permeability of water across membranes from bovine and human erythrocyte ghosts was measured by a recently developed method which is based on the different indices of refraction of H2O and 2H2O. Resealed erythrocyte ghosts were prepared by a gel-filtration technique. Pd (2H2O/H2O) values of 1.2 X 10(-3) cm/s (human) and 1.7 X 10(-3) cm/s (bovine) were calculated at 20 degrees C. The activation energies of the water exchange were 23.5 kJ/mol (human) and 25.4 kJ/mol (bovine). Treatment of the ghosts with p-chloromercuribenzenesulfonic acid (PCMBS) led to a 60-70% inhibition of the diffusional water exchange. The pH equilibration across membranes of erythrocyte ghosts was measured by intracellular carboxyfluorescein. The rates of proton flux after pH-jumps (pH 7.3 to pH 6.1) were about 100-fold lower than those of the water exchange and dependent on the kind of anions present (Cl-, NO-3, SO2-4). The activation energies of proton flux were 60-70 kJ/mol. 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) inhibited the exchange by 97-98% and lowered the activation energy. The inhibitor of water exchange, PCMBS, increased the proton-permeation rate by a factor of 4-5. It is assumed that the rate-limiting step for the proton permeation is determined by the anion exchange. Under this condition our results are not in accord with one channel as a common pathway for both the passive water and anion transport.  相似文献   

18.
We have compared the response of proton and water transport to oxytocin treatment in isolated frog skin and urinary bladder epithelia to provide further insights into the nature of water flow and H+ flux across individual apical and basolateral cell membranes. In isolated spontaneous sodium-transporting frog skin epithelia, lowering the pH of the apical solution from 7.4 to 6.4, 5.5, or 4.5 produced a fall in pHi in principal cells which was completely blocked by amiloride (50 microM), indicating that apical Na+ channels are permeable to protons. When sodium transport was blocked by amiloride, the H+ permeability of the apical membranes of principal cells was negligible but increased dramatically after treatment with antidiuretic hormone (ADH). In the latter condition, lowering the pH of the apical solution caused a voltage-dependent intracellular acidification, accompanied by membrane depolarization, and an increase in membrane conductance and transepithelial current. These effects were inhibited by adding Hg2+ (100 microM) or dicyclohexylcarbodiimide (DCCD, 10(-5) M) to the apical bath. Net titratable H+ flux across frog skin was increased from 30 +/- 8 to 115 +/- 18 neq.h-1.cm-2 (n = 8) after oxytocin treatment (at apical pH 5.5 and serosal pH 7.4) and was completely inhibited by DCCD (10(-5) M). The basolateral membranes of the principal cells in frog skin epithelium were found to be spontaneously permeable to H+ and passive electrogenic H+ transport across this membrane was not affected by oxytocin. Lowering the pH of the basolateral bathing solution (pHb) produced an intracellular acidification and membrane depolarization (and an increase in conductance when the normal dominant K+ conductance of this membrane was abolished by Ba2+ 1 mM). These effects of low pHb were blocked by micromolar concentrations of heavy metals (Zn2+, Ni2+, Co2+, Cd2+, and Hg2+). Lowering pHb in the presence of oxytocin (50 mU/ml) produced a transepithelial current (3 microA.cm-2 at pHb 5.5) which was blocked by 100 microM of Hg2+, Zn2+, or Ni2+ at the basolateral side, and by DCCD (10(-5) M) or Hg2+ (100 microM) from the apical side. The net hydroosmotic water flux (JH2O) induced by oxytocin in frog bladder sacs was blocked by inhibitors of H(+)-adenosine triphosphatase (ATPase). Diethylstilbestrol (DES 10(-5) M), oligomycin (10(-8) M), and DCCD (10(-5) M) prevented JH2O when present in the lumen. These effects cannot be attributed to inhibition of metabolism since cyanide (10(-4) M), or 2-deoxyglucose (10(-3) M) had no effect on JH2O.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
BACKGROUND INFORMATION: In silico both orthodox aquaporins and aquaglyceroporins are shown to exclude protons. Supporting experimental evidence is available only for orthodox aquaporins. In contrast, the subset of the aquaporin water channel family that is permeable to glycerol and certain small, uncharged solutes has not yet been shown to exclude protons. Moreover, different aquaglyceroporins have been reported to conduct ions when reconstituted in planar bilayers. RESULTS: To clarify these discrepancies, we have measured proton permeability through the purified Escherichia coli glycerol facilitator (GlpF). Functional reconstitution into planar lipid bilayers was demonstrated by imposing an osmotic gradient across the membrane and detecting the resulting small changes in ionic concentration close to the membrane surface. The osmotic water flow corresponds to a GlpF single channel water permeability of 0.7x10(-14) cm(3).subunit(-1).s(-1). Proton conductivity measurements carried out in the presence of a pH gradient (1 unit) revealed an upper limit of the H(+) (OH(-)) to H(2)O molecules transport stoichiometry of 2x10(-9). A significant GlpF-mediated ion conductivity was also not detectable. CONCLUSIONS: The lack of a physiologically relevant GlpF-mediated proton conductivity agrees well with predictions made by molecular dynamics simulations.  相似文献   

20.
Heme-copper oxidases are membrane-bound proteins that catalyze the reduction of O(2) to H(2)O, a highly exergonic reaction. Part of the free energy of this reaction is used for pumping of protons across the membrane. The ba(3) oxidase from Thermus thermophilus presumably uses a single proton pathway for the transfer of substrate protons used during O(2) reduction as well as for the transfer of the protons that are pumped across the membrane. The pumping stoichiometry (0.5 H(+)/electron) is lower than that of most other (mitochondrial-like) oxidases characterized to date (1?H(+)/electron). We studied the pH dependence and deuterium isotope effect of the kinetics of electron and proton transfer reactions in the ba(3) oxidase. The results from these studies suggest that the movement of protons to the catalytic site and movement to a site located some distance from the catalytic site [proposed to be a "proton-loading site" (PLS) for pumped protons] are separated in time, which allows individual investigation of these reactions. A scenario in which the uptake and release of a pumped proton occurs upon every second transfer of an electron to the catalytic site would explain the decreased proton pumping stoichiometry compared to that of mitochondrial-like oxidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号