首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physicochemical and biological water quality, including the microcystin concentration, was investigated from spring to autumn 1999 in the Daechung Reservoir, Korea. The dominant genus in the cyanobacterial blooming season was Microcystis. The microcystin concentration in particulate form increased dramatically from August up to a level of 200 ng liter(-1) in early October and thereafter tended to decrease. The microcystin concentration in dissolved form was about 28% of that of the particulate form. The microcystins detected using a protein phosphatase (PP) inhibition assay were highly correlated with those microcystins detected by a high-performance liquid chromatograph (r = 0.973; P < 0.01). Therefore, the effectiveness of a PP inhibition assay for microcystin detection in a high number of water samples was confirmed as easy, quick, and convenient. The microcystin concentration was highly correlated with the phytoplankton number (r = 0.650; P < 0.01) and chlorophyll-a concentration (r = 0.591; P < 0.01). When the microcystin concentration exceeded about 100 ng liter(-1), the ratio of particulate to dissolved total nitrogen (TN) or total phosphorus (TP) converged at a value of 0.6. Furthermore, the microcystin concentration was lower than 50 ng liter(-1) at a particulate N/P ratio below 8, whereas the microcystin concentration varied quite substantially from 50 to 240 ng liter(-1) at a particulate N/P ratio of >8. Therefore, it seems that the microcystin concentration in water can be estimated and indirectly monitored by analyzing the following: the phytoplankton number and chlorophyll-a concentration, the ratio of the particulate and the dissolved forms of N and P, and the particulate N/P ratio when the dominant genus is toxigenic Microcystis.  相似文献   

2.
This paper aims to compare the Cd, Cu, and Pb concentration in the bone, gills, and muscle of the seven fish species sampled during normal and dry seasons. Cadmium, Cu, and Pb concentrations varied significantly depending on the type of the tissue and season. Bone samples of the Osteochilus hasseltii showed the highest concentrations of Pb (6.08 μg/g dw) during September (the dry season), whereas bone samples of the Puntioplites bulu showed the lowest concentrations of Cd (0.08 μg/g dw) during September. Muscle samples of the P. bulu indicated the highest concentrations of Cu (2.58 μg/g dw) during March (the normal season). On the other hand, muscle samples of Channa straitus sowed the lowest concentrations of Cd (0.04 μg/g dw) during July (the dry season). Gills samples of the O. hasseltii showed the highest concentration of Pb (6.56 μg/g dw) during March (the normal season), while gills samples of C. straitus indicated the lowest concentration of Cd (0.06 μg/g dw) during July (the dry season).  相似文献   

3.
Seasonal and diurnal changes in concentrations of airborne basidiomycete spores (basidiospores, rusts, smuts) were studied, using Burkard volumetric spore traps, in two areas of Mexico City with different degrees of urbanization and related to changes in climatic variables through 1991. Basidiomycete spores formed a large component of the total airborne fungal spore load in the atmosphere of Mexico City. They were the second most abundant spore type after Deuteromycotina (Hyphomycetes), forming 32% of the total fungal spores trapped in an urban-residential area and 28% in an urban-commercial area. The most abundant basidiomycete spores were basidiospores although smut-type spores were trapped on more days than basidiospores and rusts on fewer. Basidiospores occurred in concentrations up to 2,000 spores m-3 in the urban-residential area. Basidiospores showed a marked seasonal distribution, especially in the southern area, with their greatest abundance during the wet season. The correlation coefficients associated with regressions between basidiospore concentration and some environmental factors were increased when a lag period of 2 to 4 days was used between environmental measurements and the day of spore collection. Basidiospore concentrations exceeded the 75 percentile concentration (>400 spores m-3) most often when rainfall was up to 6 mm and relative humidity was >70%. Basidiospores showed a diurnal periodicity with greatest concentrations in the early morning. The most common basidiospore type was Coprinus which formed 67% of basidiospores trapped in the southern area and 63% in the central area. Smut spores were trapped on 87% of days through the year while rust spores occurred in only 35%. Both rusts and smuts were present in only small concentrations.  相似文献   

4.
Cyanobacterial harmful algal blooms (cyanoHABs) are a primary source of water quality degradation in eutrophic lakes. The occurrence of cyanoHABs is ubiquitous and expected to increase with current climate and land use change scenarios. However, it is currently unknown what environmental parameters are important for indicating the presence of cyanoHAB toxins making them difficult to predict or even monitor on time-scales relevant to protecting public health. Using qPCR, we aimed to quantify genes within the microcystin operon (mcy) to determine which cyanobacterial taxa, and what percentage of the total cyanobacterial community, were responsible for microcystin production in four eutrophic lakes. We targeted Microcystis-16S, mcyA, and Microcystis, Planktothrix, and Anabaena-specific mcyE genes. We also measured microcystins and several biological, chemical, and physical parameters—such as temperature, lake stability, nutrients, pigments and cyanobacterial community composition (CCC)—to search for possible correlations to gene copy abundance and MC production. All four lakes contained Microcystis-mcyE genes and high percentages of toxic Microcystis, suggesting Microcystis was the dominant microcystin producer. However, all genes were highly variable temporally, and in few cases, correlated with increased temperature and nutrients as the summer progressed. Interestingly, toxin gene abundances (and biomass indicators) were anti-correlated with microcystin in all lakes except the largest lake, Lake Mendota. Similarly, gene abundance and microcystins differentially correlated to CCC in all lakes. Thus, we conclude that the presence of microcystin genes are not a useful tool for eliciting an ecological role for toxins in the environment, nor are microcystin genes (e.g. DNA) a good indicator of toxins in the environment.  相似文献   

5.
This study was conducted to determine the environmental factors affecting the level of potentially toxic Microcystis. The long-term tendencies of temperature, precipitation, and water quality factors were analyzed to determine the environmental characteristics of the Daechung Reservoir in Korea, and water samples were directly collected to analyze the dynamics of toxic and non-toxic Microcystis at weekly intervals from May to October 2012. Microcystis was the dominant genus during the study period, and it was composed of potentially toxic and non-toxic Microcystis. The fraction of potentially toxic Microcystis ranged from 6.0% to 61.1%. The amount of toxic Microcystis was highly related to the intracellular microcystin concentration (r = 0.760, P < 0.01). Therefore, the fraction of potentially toxic Microcystis is an important concern in Microcystis blooming because the intracellular microcystin concentration may reflect microcystin levels in the water. The prevalence of potentially toxic Microcystis was highly related to water temperature in Daechung Reservoir (r = 0.585, P < 0.01). Thus, temperature increase during Microcystis blooming may lead to more frequent toxic Microcystis blooms in eutrophic water bodies.  相似文献   

6.
Sediment samples were collected monthly from Acton Lake, a eutrophic reservoir located in an agricultural region of southwestern Ohio, from three stations (River, Middle, and Dam) during the period May 1995 through January 1997. Sedimentary microbial biomass and community structures from these stations were studied using phospholipid analysis. At the River and Middle stations, the water column remained aerobic throughout the year, whereas the water overlying the Dam station sediments became anaerobic during summer stratification. Sedimentary microbial biomass at the River and Middle stations, as measured by the phospholipid phosphate (PLP) method, ranged from 225 to 450 nmol PLP g?1 d.w. (dry weight). Sedimentary microbial biomass at the Dam station was typically greater and ranged from 500 to 1,500 nmol PLP g?1 d.w. Principal component analysis of phospholipid fatty acid (PLFA) profiles indicated that the sedimentary microbial communities at all three stations displayed seasonal patterns of change. Among these patterns of change was a shift from aerobic microorganisms during times of cold water to anaerobic microorganisms during times of warm water. The Dam station differed from the River and Middle stations in that sediments from this station had disproportionately more polyenoic fatty acids, whereas sediments from the River and Middle stations had disproportionately more bacterial fatty acids. These data suggest that the Dam station may be a depositional zone for microeukaryotic phytoplankton produced in the overlying water column. These findings have implications for the understanding of carbon flux in reservoirs and preservation of organic matter in aquatic systems.  相似文献   

7.
8.
9.
With the aim of explaining the variations in microcystin (MC) concentrations during cyanobacterial blooms, we studied several Microcystis aeruginosa populations blooming in different freshwater ecosystems located in the same geographical area. As assessed by real-time PCR, it appeared that the potentially MC-producing cells (mcyB+) were predominant (70 to 100%) in all of these M. aeruginosa populations, with the exception of one population in which non-MC-producing cells always dominated. Apart from the population in the Grangent Reservoir, we found that the proportions of potentially MC-producing and non-MC-producing cells varied little over time, which was consistent with the fact that according to a previous study of the same populations, the intergenic transcribed spacer (ITS) genotype composition did not change (38). In the Grangent Reservoir, the MC-RR variant was the dominant microcystin variant throughout the bloom season, despite changes in the ITS composition and in the proportions of mcyB+ cells. Finally, the variations in total MC concentrations (0.3 to 15 μg liter−1) and in the MC cellular quotas (0.01 to 3.4 pg cell−1) were high both between and within sites, and no correlation was found between the MC concentrations and the proportion of mcyB+ cells. All of these findings demonstrate that very different results can be found for the proportions of potentially MC-producing and non-MC-producing cells and MC concentrations, even in M. aeruginosa populations living in more or less connected ecosystems, demonstrating the importance of the effect of very local environmental conditions on these parameters and also the difficulty of predicting the potential toxicity of Microcystis blooms.Microcystins (MCs) are the most common cyanotoxins and have been involved in several animal and human poisoning episodes (8). These hepatotoxic cyclic heptapeptides are synthesized by a multifunctional enzyme complex (10, 40), and the discovery of the gene cluster encoding this complex has made it possible in recent years to develop molecular tools for studying the relative proportions of MC-producing and non-MC-producing cells in natural cyanobacterial populations. Potentially MC-producing and non-MC-producing cells can coexist in these populations, but the factors and processes governing the dynamics of these subpopulations remain unclear.Some recent papers on the Microcystis genus have shown that the proportions of potentially MC-producing cells can differ considerably from lake to lake. For example, in Lake Wannsee, Germany, this proportion was between 0 and 40% (28), as it was in Lake Oneida, United States (18), and in Lake Mikata, Japan (48). In contrast, large variations over time (6 to 93%) of potentially MC-producing cells were found in the Grangent Reservoir, France (4). Major variations (30 to 80%) were also found in a natural French population of Planktothrix agardhii (3), and the variations in the proportions of potentially MC-producing cells reflected those of the MC concentrations. However, only 54% of the variation in MC concentrations could be explained by changes in the proportion of MC-producing cells, suggesting that a considerable part of the MC concentrations was also due to variations in MC cell quotas. These findings suggest that the toxic risks during cyanobacterial proliferations are due to variations in both the proportion of MC-producing cells and the production of MC by the toxic cells.Numerous papers have already investigated the impact of various biotic and abiotic environmental factors on microcystin production by toxic cells. These studies demonstrate that MC production can be influenced by temperature (35), light (46), nutrients such as nitrogen and phosphorus (12, 32), pH (39), iron (42), xenobiotics (17, 34, 45), and predators (22, 23, 47). Despite inconsistent results, the production of microcystins by the cells does seems to be linked to their growth rate (11, 31, 33), which is itself affected by environmental conditions. On the other hand, several studies of variations in the proportions of MC-producing cells have demonstrated the potential influence of nutrient concentrations (9, 48) and light and temperature (5), and two papers (3, 5) have suggested that there is a negative correlation between the proportions of MC-producing cells and the abundance of cyanobacterial cells. These findings are consistent with the data of Kardinaal and Visser (26), showing that in Dutch lakes there is a negative relationship between the densities of cyanobacterial cells and the mean MC concentration in the cells.In an overall attempt to explain the variations of toxicity during cyanobacterial blooms, we studied the spatiotemporal variations in MC concentrations and in the proportions of MC-producing and non-MC-producing cells in several Microcystis aeruginosa populations blooming in different freshwater ecosystems located in the same geographical area. The point of this study was to analyze these variations in terms of the characteristics of these ecosystems and the population dynamics of the M. aeruginosa populations. In addition, these data were compared to the variations in the intergenic transcribed spacer (ITS) composition of the same populations recently reported by Sabart et al. (38). The proportion of potentially MC-producing cells was estimated by a real-time quantitative PCR approach, the change in threshold cycle (ΔCT) method recently developed by Briand et al. for Planktothrix (3) and Microcystis (4) and targeting the mcyB (mcyA for Planktothrix) and phycocyanin (PC) genes.  相似文献   

10.
Seasonal Variation in Pathogenicity of Phytophthora infestans   总被引:2,自引:0,他引:2  
During a four year study it was shown that the mean lesion area (M.L.A.) developed on leaflets of different potato cultivars by isolates of P. infestans after artificial inoculation varied periodically during the year. Disease symptoms observed changed from pinpoint necroses to regular sporulating lesions depending on the season and the cultivar. Analysis of variance revealed that differences in lesion size between experiments performed in different seasons were significant. The largest M.L.A. was found in late spring or in autumn but autumnal increase of M.L.A. was usually significantly lower than that in spring. Periodicity of M.L.A. was accompanied by a similar phenomenon in sporulation density of P. infestans isolates cultured in vitro. However, the peaks of sporulation, in comparison with peaks of M.L.A. appeared in different seasons. The highest disease level coincided with a decline in sporulation density of P. infestans cultured in vitro and the decrease of M.L.A. corresponded with an increase in sporulation density per cm2 of medium. Variation in M.L.A. found in this study seemed not to be related to variability in plant reaction. In this connection a hypothesis has been proposed that the changes of M.L.A. were due to variation in pathogenicity of the fungus.  相似文献   

11.
Seasonal Variation in Sporulation of Phytophthora infestans   总被引:1,自引:0,他引:1  
Sporulation ability of two isolates of Phytophthora infestans maintained on potato tuber slices of a susceptible cv. ‘Bintje’ and on-rye agar medium was studied for four years (1981–1984). This feature of the fungus was shown to vary in particular seasons during the year. Significantly higher sporulation density per cm2 of aerial mycelium on potato tuber slices was observed in winter and late autumn while significantly lower sporulation was found in spring. Similar tendencies were observed when one of the isolates was cultivated on rye agar medium under controlled conditions. Positive correlation was found between sporulation patterns of isolates of the fungus maintained on rye agar and on tuber slices. Hypothesis has been proposed that these changes are due, to a biorhythm in the fungus.  相似文献   

12.
The potential contribution by ear photosynthesis to yield ofwheat grain was estimated to be greater in summer than winterin glasshouse conditions, and to be light-dependent in controlledenvironment. These results offer an explanation for variationsin published results.  相似文献   

13.
从2005年11月至2006年12月,共捡到死鸟866只.澳门地区所捡死鸟数量在各区域分布非常不均匀(F2,39=9.824, P=0.003),以澳门半岛发现的死鸟数量最多,占总数量的73.2%,而氹仔和路环发现的死鸟数量分别占总数量的14.3%和12.5%.澳门地区死鸟平均密度为3±0.5只/ km2·yr (1~6只/ km2·yr).死鸟在一年中的分布不均匀,以2~7月死鸟数量多,而8~12月死鸟少,但差异不显著(F13,28=0.598,P=0.825).每月死鸟总数量与月平均最高气温、月平均相对湿度相关(F2,11=5.466, P=0.022),回归方程是Y=3.624X1-4.321X2(X1=月平均湿度,X2=月平均最高气温).表明每月死鸟数量与月平均湿度正相关,即湿度越大、死亡的鸟数量越多;而与月平均最高气温负相关,即平均最高气温越高,鸟类死亡数量越少.鸟类死亡数量与风速和降雨量没有关系.分析认为,目前澳门地区死鸟平均密度可能被低估,但澳门半岛死鸟密度(61只/ km2·yr)基本能反映该环境下的野生鸟类死亡密度.  相似文献   

14.
Several reasons have been offered in the recent literature toexplain the disagreement in experimental results on the effectsof SO2 on plants. The tacit assumption that each research groupis monitoring exposure concentration in a comparable manneris challenged. For example, in well-stirred chambers exposureconcentrations are identical with outlet concentrations, yetseveral studies have interpreted plant response in terms ofsupply (i.e. inlet) concentrations. Experiments are presentedthat illustrate the extent to which supply concentrations canbe depleted within chambers, and the magnitude of error in assumingsupply to represent exposure concentrations. Definitions forexposure concentration in chamber, wind tunnel, and glasshousesystems are suggested.  相似文献   

15.
In order to understand the environmental variables which promote the proliferation of cyanobacteria and variation in microcystin concentrations in the Nui Coc reservoir, Vietnam, physicochemical parameters, the occurrence, and abundance of phytoplankton, cyanobacteria, and microcystin concentration were monitored monthly through the year 2009–2010. The relationships between these parameters were explored using principal component analysis (PCA) and Pearson correlation analysis. The phytoplankton community was mainly dominated by the cyanobacterium Microcystis with higher cyanobacteria abundance during summer and autumn season. PCA and Pearson correlation results showed that water temperature and phosphate concentration were the most important variables accounting for cyanobacteria, Microcystis, and microcystin occurrence. Analysis of the toxins by high-performance liquid chromatography demonstrated the presence of two microcystin variants: microcystin-LR (MC-RR) and microcystin-ddRR (MC-ddRR) with total concentrations of the toxins in filtered samples from surface water ranging from 0.11 to 1.52 μg MC-LR equiv L?1. The high concentrations of microcystin in the Nui Coc reservoir highlighted the potential risk for human health in the basin. Our study underlined the need for regular monitoring of cyanobacteria and toxins in lakes and reservoirs, which are used for drinking water supplies, not only in Vietnam but also in tropical countries.  相似文献   

16.
The apple ermine moth, Yponomeuta malinellus Zeller (Lepidoptera: Yponomeutidae), is a tent caterpillar that feeds on Malus spp. in Korea. Populations of the moth in native areas appeared to be regulated by the assemblage of parasitoids. Phenological associations between host stages and parasitoids, susceptible stage(s) of the host for each parasitoid, and stage‐specific parasitism were studied. The egg larval parasitoid Ageniaspis fuscicollis (Dalman) had highest parasitism of first instar larvae (24%), with 14% parasitism of other larval stages. Dolichogenidea delecta (Haliday) was recovered from all larval instars with the highest parasitism rate of second instar larvae (20.1%), followed by 19.9% parasitism of mid‐larval hosts. Herpestomus brunicornis Gravenhorst was reared from second instar larvae through to pupal collection, and had the highest parasitism rate (29.9%) at the pupal stage. The larval pupal parasitoid Zenillia dolosa (Meigen) was recovered from mid‐larval to pupal stages with the highest parasitism rate (5.5%) occurring in third to fourth instar larvae. The host stages for developing A. fuscicollis completely overlap with those of D. delecta, and with those of H. brunicornis to some degree. A statistically significant negative correlation exists between A. fuscicollis and these dominant parasitoids, indicating competitive interaction within the host.  相似文献   

17.
The growth and intracellular microcystin concentration of two hepatotoxic and two nontoxic axenic Microcystis strains were measured in batch cultures with variable nitrogen (0.84-84 mg L(-1)) and phosphorus (0.05-5.5 mg L(-1)) concentrations. Growth was estimated by measuring dry weight, optical density, chlorophyll a, and cellular protein concentration. Microcystin concentrations in cells and in culture medium were measured by HPLC analysis. Both nontoxic strains needed less nutrients for their growth at low nutrient concentrations. With high nutrient concentrations the toxic strains grew better than the nontoxic strains. Growth and intracellular microcystin concentration did not correlate in the hepatotoxic strains. Multivariate regression analysis together with mathematical modeling revealed a significant interactive effect of nitrogen and phosphorus, which partly explains the controversial results obtained in previous studies. In this study we have shown that variation of nitrogen and phosphorus concentrations influence the growth and the microcystin production of Microcystis strains and that the strains differ in their response to nutrients. High levels of nitrogen and phosphorus in freshwaters may favor the growth of toxic Microcystis strains over nontoxic ones.  相似文献   

18.
Abstract Cyanobacterial blooms were sampled at five locations in Lake Grand-Lieu on seven different occasions during May–October 1994. Strains of Microcystis aeruginosa and Anabaena circinalis were isolated from the samples. Microcystins were detected in freeze-dried field samples and the isolated strains by HPLC. The toxins were present in the blooms sampled between June and October. The microcystin content in the blooms varied with site and time, from undetectable concentrations to 0.23 mg g−1. The highest concentrations of microcystin were found in blooms sampled in September. Microcystin-LR and microcystins with retention times close to the retention time of [Dha7]microcystin-RR (probably varieties of microcystin-RR) were found in the field samples. Sixteen of the 98 isolated M. aeruginosa strains and 2 of the 24 A. circinalis strains produced microcystins. The total amount of microcystins varied from undetectable concentrations to 5.06 mg g−1 in the M. aeruginosa isolates, and from undetectable concentrations to 1.86 mg g−1 in the A. circinalis strains. Microcystin-LR was the main toxin found in strains of M. aeruginosa, but was not present in strains of A. circinalis. Both microcystin-producing strains and strains that did not produce microcystin coexisted in the bloom samples. Received: 23 January 1997; Accepted: 25 March 1997  相似文献   

19.
During the transformation of grapes to wine, wine fermentations are exposed to a large area of specialized equipment surfaces within wineries, which may serve as important reservoirs for two-way transfer of microbes between fermentations. However, the role of winery environments in shaping the microbiota of wine fermentations and vectoring wine spoilage organisms is poorly understood at the systems level. Microbial communities inhabiting all major equipment and surfaces in a pilot-scale winery were surveyed over the course of a single harvest to track the appearance of equipment microbiota before, during, and after grape harvest. Results demonstrate that under normal cleaning conditions winery surfaces harbor seasonally fluctuating populations of bacteria and fungi. Surface microbial communities were dependent on the production context at each site, shaped by technological practices, processing stage, and season. During harvest, grape- and fermentation-associated organisms populated most winery surfaces, acting as potential reservoirs for microbial transfer between fermentations. These surfaces harbored large populations of Saccharomyces cerevisiae and other yeasts prior to harvest, potentially serving as an important vector of these yeasts in wine fermentations. However, the majority of the surface communities before and after harvest comprised organisms with no known link to wine fermentations and a near-absence of spoilage-related organisms, suggesting that winery surfaces do not overtly vector wine spoilage microbes under normal operating conditions.  相似文献   

20.
We have used molecular biological methods to study the distribution of microbial small-subunit rRNAs (SSU rRNAs), in relation to chemical profiles, in offshore Lake Michigan sediments. The sampling site is at a depth of 100 m, with temperatures of 2 to 4°C year-round. RNA extracted from sediment was probed with radiolabeled oligonucleotides targeting bacterial, archaeal, and eukaryotic SSU rRNAs, as well as with a universal probe. The coverage of these probes in relation to the present sequence database is discussed. Because ribosome production is growth rate regulated, rRNA concentrations are an indicator of the microbial populations active in situ. Over a 1-year period, changes in sedimentary SSU rRNA concentrations followed seasonal changes in surface water temperature and SSU rRNA concentration. Sedimentary depth profiles of oxygen, reduced manganese and iron, and sulfate changed relatively little from season to season, but the nitrate concentration was approximately fivefold higher in April and June 1997 than at the other times sampling was done. We propose that sediment microbial SSU rRNA concentrations at our sampling site are influenced by seasonal inputs from the water column, particularly the settling of the spring diatom bloom, and that the timing of this input may be modulated by grazers, such that ammonia becomes available to sediment microbes sooner than fresh organic carbon. Nitrate production from ammonia by autotrophic nitrifying bacteria, combined with low activity of heterotrophic denitrifying bacteria in the absence of readily degradable organic carbon, could account for the cooccurrence of high nitrate and low SSU rRNA concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号