共查询到20条相似文献,搜索用时 0 毫秒
1.
Yoshida M Niwa M Ishisaki A Hirade K Ito H Shimizu K Kato K Kozawa O 《Prostaglandins, leukotrienes, and essential fatty acids》2004,71(6):351-362
As for the pathogenesis of rheumatoid arthritis (RA), prostaglandins (PGs) act as important mediators of inflammation and joint destruction. Among them, PGD2 is well recognized as a potent regulator of osteoblastic functions. We previously showed that PGD2 stimulates the induction of heat shock protein 27 (HSP27) via protein kinase C (PKC)-dependent p38 mitogen-activated protein (MAP) kinase and p44/p42 MAP kinase in osteoblast-like MC3T3-E1 cells. Therefore, it is a current topic to clarify how HSP27 plays a role for regulating osteoblastic functions in the lesion of RA. On the other hand, methotrexate (MTX) is one of the most effective medicines for the treatment of RA. Here, we examined the effect of MTX on PGD2-stimulated HSP27 induction in MC3T3-E1 cells. The cells were pretreated with various doses of MTX including therapeutic dosage for RA, and then stimulated by PGD2. MTX significantly enhanced the PGD2- increased levels of HSP27 in a dose-dependent manner, although MTX alone had no effect on the levels of HSP27. In addition, MTX amplified the PGD2-increased levels of HSP27 mRNA. On the contrary, MTX had little effect on PGD2-induced formation of inositol phosphates, PKC activation and phosphorylations of MAP kinases. Our results strongly suggest that MTX enhances PGD2-stimulated HSP27 induction at a point downstream from MAP kinases in osteoblasts. 相似文献
2.
Kozawa O Tokuda H Miwa M Ito H Matsuno H Niwa M Kato K Uematsu T 《Journal of cellular biochemistry》1999,75(4):610-619
We previously reported that prostaglandin F(2alpha) (PGF(2alpha)) activates both phosphoinositide-hydrolyzing phospholipase C and phosphatidylcholine-hydrolyzing phospholipase D in osteoblast-like MC3T3-E1 cells and then induces the activation of protein kinase C (PKC). In this study, we investigated the effect of PGF(2alpha) on the induction of heat shock protein 27 (HSP27), a low-molecular-weight heat shock protein, in these cells. PGF(2alpha) significantly induced the accumulation of HSP27 dose-dependently within the range of 10 nM to 10 microM. PGF(2alpha) stimulated the increase in the levels of mRNA for HSP27. A total of 10 nM 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of PKC, induced the accumulation of HSP27. The stimulative effect of PGF(2alpha) was reduced in the PKC down-regulated cells. Calphostin C, a specific inhibitor of PKC, suppressed the PGF(2alpha)-induced HSP27 accumulation as well as that induced by TPA. HSP27 induction by PGF(2alpha) was reduced by U-73122, a phospholipase C inhibitor, or propranolol, a phosphatidic acid phosphohydrolase inhibitor. PGF(2alpha) and TPA stimulated p42/p44 mitogen-activated protein (MAP) kinase. PD98059, an inhibitor of the upstream kinase that activates p42/p44 MAP kinase, suppressed the induction of HSP27 stimulated by PGF(2alpha) or TPA. PD98059 and calphostin C reduced the levels of mRNA for HSP27 increased by PGF(2alpha). These results indicate that PGF(2alpha) stimulates the induction of HSP27 via p42/p44 MAP kinase activation, which depends on upstream PKC activation in osteoblasts. 相似文献
3.
Kozawa O Niwa M Hatakeyama D Tokuda H Oiso Y Matsuno H Kato K Uematsu T 《Journal of cellular biochemistry》2002,86(2):357-364
It is generally recognized that osteoporosis is a common complication of patients with glucocorticoid excess and that glucocorticoid receptor is associated with heat shock protein (HSP) 70 and HSP90 in a heterocomplex. In the present study, we investigated whether glucocorticoid induces HSP27, HSP70, and HSP90 in osteoblast-like MC3T3-E1 cells. Dexamethasone time-dependently increased the levels of HSP27, while having no effect on the levels of HSP70 or HSP90. The effect of dexamethasone was dose-dependent in the range between 0.1 nM and 0.1 microM. Dexamethasone induced an increase of the levels of mRNA for HSP27. Dexamethasone induced the phosphorylation of p38 mitogen-activated protein (MAP) kinase. SB203580 and PD169316, inhibitors of p38 MAP kinase, suppressed the HSP27 accumulation by dexamethasone. In addition, SB203580 reduced the dexamethasone-stimulated increase of the mRNA levels for HSP27. The dexamethasone-induced phosphorylation of p38 MAP kinase was reduced by SB203580. These results strongly suggest that glucocorticoid stimulates the induction of neither HSP70 nor HSP90, but HSP27 in osteoblasts, and that p38 MAP kinase is involved in the induction of HSP27. 相似文献
4.
Wang X Tokuda H Hatakeyama D Hirade K Niwa M Ito H Kato K Kozawa O 《Archives of biochemistry and biophysics》2003,415(1):6-13
It has recently been reported that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) stimulate bone formation. However, the mechanism of stimulation of bone metabolism by statins is not precisely clarified. In this study, we investigated whether simvastatin induces heat shock protein (HSP) 27, HSP70, and HSP90 in osteoblast-like MC3T3-E1 cells. Simvastatin increased the levels of HSP27 while having little effect on the levels of HSP70 or HSP90. The effect of simvastatin on HSP27 accumulation was dose dependent. Cycloheximide reduced the accumulation. Simvastatin induced an increase in the levels of mRNA for HSP27. Actinomycin D suppressed the mRNA levels. Simvastatin induced the phosphorylation of p38 mitogen-activated protein (MAP) kinase among the MAP kinase superfamily. SB203580 and PD169316, inhibitors of p38 MAP kinase, suppressed the HSP27 accumulation by simvastatin while SB202474, a negative control of p38 MAP kinase inhibitor, had no effect. SB203580 reduced the simvastatin-increased mRNA levels for HSP27. Lovastatin, another statin, also induced the HSP27 accumulation and SB203580 suppressed the HSP27 accumulation. These results strongly suggest that statins such as simvastatin do not stimulate the induction of HSP70 and HSP90, but do stimulate the induction of HSP27 in osteoblasts and that p38 MAP kinase plays a role in this induction. 相似文献
5.
Tokuda H Niwa M Ishisaki A Nakajima K Ito H Kato K Kozawa O 《Prostaglandins, leukotrienes, and essential fatty acids》2004,70(5):441-447
We have reported that prostaglandin F2(alpha) (PGF2(alpha)) activates p44/p42 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells, and that p44/p42 MAP kinase plays a role in the PGF2(alpha)-induced heat shock protein 27 (HSP27). In the present study, we investigated the involvement of stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), a member of the MAP kinase superfamily, in PGF2(alpha)-induced HSP27 in MC3T3-E1 cells. PGF2(alpha) time dependently induced the phosphorylation of SAPK/JNK. SP600125, a specific inhibitor of SAPK/JNK, markedly reduced the PGF2(alpha)-stimulated HSP27 accumulation. The inhibitory effect of SP600125 was dose dependent in the range between 0.1 and 30 microM. SP600125 reduced the PGF2(alpha)-increased level of HSP27 mRNA. SP600125 suppressed the phosphorylation of SAPK/JNK induced by PGF2(alpha), but did not affect the PGF2(alpha)-induced phosphorylation of p44/p42 MAP kinase. On the other hand, PD98059, a specific inhibitor of the upstream kinase of p44/p42 MAP kinase, which reduced the phosphorylation of p44/p42 MAP kinase stimulated by PGF2(alpha), had little effect on the PGF2(alpha)-induced phosphorylation of SAPK/JNK. These results strongly suggest that SAPK/JNK plays a part in PGF2(alpha)-induced HSP27 in addition to p44/p42 MAP kinase in osteoblasts. 相似文献
6.
Yamauchi J Takai S Matsushima-Nishiwaki R Hanai Y Doi T Kato H Ogura S Kato K Tokuda H Kozawa O 《Prostaglandins, leukotrienes, and essential fatty acids》2007,77(3-4):173-179
We previously reported that prostaglandin D2 (PGD2) stimulates heat shock protein 27 (HSP27) induction through p38 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) and p44/p42 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether (-)-epigallocatechin gallate (EGCG), the major polyphenol found in green tea, affects the induction of HSP27 in these cells and the mechanism. EGCG significantly reduced the HSP27 induction stimulated by PGD2 without affecting the levels of HSP70. The PGD2-induced phosphorylation of p38 MAP kinase or SAPK/JNK was not affected by EGCG. On the contrary, EGCG markedly suppressed the PGD2-induced phosphorylation of p44/p42 MAP kinase and MEK1/2. However, the PGD2-induced phosphorylation of Raf-1 was not inhibited by EGCG. These results strongly suggest that EGCG suppresses the PGD2-stimulated induction of HSP27 at the point between Raf-1 and MEK1/2 in osteoblasts. 相似文献
7.
Hatakeyama D Kozawa O Niwa M Matsuno H Ito H Kato K Tatematsu N Shibata T Uematsu T 《Biochimica et biophysica acta》2002,1589(1):15-30
We investigated whether transforming growth factor-beta (TGF-beta) stimulates the induction of heat shock protein (HSP) 27 and HSP70 in osteoblast-like MC3T3-E1 cells and the mechanism underlying the induction. TGF-beta increased the level of HSP27 but had no effect on the HSP70 level. TGF-beta stimulated the accumulation of HSP27 dose-dependently, and induced an increase in the level of mRNA for HSP27. TGF-beta induced the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase. The HSP27 accumulation induced by TGF-beta was significantly suppressed by PD98059, an inhibitor of the upstream kinase of p44/p42 MAP kinase, or SB203580, an inhibitor of p38 MAP kinase. PD98059 and SB203580 suppressed the TGF-beta-stimulated increase in the level of mRNA for HSP27. Retinoic acid, a vitamin A (retinol) metabolite, which alone had little effect on the HSP27 level, markedly enhanced the HSP27 accumulation stimulated by TGF-beta. Retinoic acid enhanced the TGF-beta-induced increase of mRNA for HSP27. The amplification of TGF-beta-stimulated HSP27 accumulation by retinoic acid was reduced by PD98059 or SB203580. Retinoic acid failed to affect the TGF-beta-induced phosphorylation of p44/p42 MAP kinase or p38 MAP kinase. These results strongly suggest that p44/p42 MAP kinase and p38 MAP kinase take part in the pathways of the TGF-beta-stimulated HSP27 induction in osteoblasts, and that retinoic acid upregulates the TGF-beta-stimulated HSP27 induction at a point downstream from p44/p42 MAP kinase and p38 MAP kinase. 相似文献
8.
Kozawa O Niwa M Matsuno H Ishisaki A Kato K Uematsu T 《Archives of biochemistry and biophysics》2001,388(2):237-242
In a previous study we showed that basic fibroblast growth factor (bFGF) stimulates activation of protein kinase C through phosphoinositide hydrolysis by phospholipase C and phosphatidylcholine hydrolysis by phospholipase D in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether bFGF stimulates the induction of heat shock protein (HSP) 27, a low-molecular-weight HSP, and HSP70, a high-molecular-weight HSP, in MC3T3-E1 cells and the mechanism behind the induction. bFGF increased the level of HSP27 while having little effect on HSP70 level. bFGF stimulated the accumulation of HSP27 dose-dependently in the range between 1 and 30 ng/ml. bFGF induced an increase in the level of the mRNA for HSP27. The bFGF-stimulated accumulation of HSP27 was reduced by inhibitors of protein kinase C. The bFGF-induced HSP27 accumulation was reduced in protein kinase C-downregulated MC3T3-E1 cells. U-73122, an inhibitor of phospholipase C, and propranolol, a phosphatidic acid phosphohydrolase inhibitor, suppressed the bFGF-stimulated HSP27 accumulation. These results strongly suggest that bFGF stimulates HSP27 induction through protein kinase C activation in osteoblasts. 相似文献
9.
Tokuda H Kozawa O Uematsu T 《Prostaglandins, leukotrienes, and essential fatty acids》2002,66(4):427-433
We previously showed that prostaglandin F(2alpha) (PGF(2alpha)) and endothelin-1 (ET-1) induce interleukin (IL)-6 through the activation of protein kinase C-dependent p44/p42 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells. It has recently been reported that tumor necrosis factor-alpha-induced IL-6 synthesis is amplified by IL-17 in these cells. In the present study, we investigated the effect of IL-17 on the IL-6 synthesis stimulated by PGF(2alpha) in MC3T3-E1 cells. IL-17 significantly enhanced the PGF(2alpha)-induced IL-6 synthesis in a dose-dependent manner in the range between 0.1 and 10 ng/ml. IL-17 also enhanced the IL-6 synthesis stimulated by 12- O -tetradecanoylphorbol-13-acetate, a direct activator of protein kinase C. In addition, IL-17 amplified the IL-6 synthesis induced by ET-1. However, IL-17 hardly affected the phosphorylation of p44/p42 MAP kinase induced by PGF(2alpha) or ET-1. These results strongly suggest that IL-17 enhances the IL-6 synthesis stimulated by PGF(2alpha) as well as ET-1 in osteoblasts, and that the effect is exerted at a point downstream from p44/p42 MAP kinase. 相似文献
10.
热休克蛋白27(HSP27)作为热应激蛋白表达于各种生理或是环境损伤之后,保护细胞生存,其具有多种功能包括:分子伴侣,抗凋亡,参与细胞运动等。近年来发现HSP27在多种肿瘤中过度表达,参与肿瘤的发生发展,分化,耐药以及转移等方面,因而抑制HSP27成为一种新的肿瘤治疗策略。本文就相关研究进展进行综述。 相似文献
11.
Anti-vpr activities of heat shock protein 27 总被引:2,自引:0,他引:2
Liang D Benko Z Agbottah E Bukrinsky M Zhao RY 《Molecular medicine (Cambridge, Mass.)》2007,13(5-6):229-239
HIV-1 Vpr plays a pivotal role in viral pathogenesis and is preferentially targeted by the host immune system. In this report, we demonstrate that a small heat shock protein, HSP27, exhibits Vpr-specific antiviral activity, as its expression is specifically responsive to vpr gene expression and increased levels of HSP27 inhibit Vpr-induced cell cycle G2 arrest and cell killing. We further show that overexpression of HSP27 reduces viral replication in T-lymphocytes in a Vpr-dependent manner. Mechanistically, Vpr triggers HSP27 expression through heat shock factor (HSF) 1, but inhibits prolonged expression of HSP27 under heat-shock conditions. Together, these data suggest a potential dynamic and antagonistic interaction between HIV-1 Vpr and a host cell HSP27, suggesting that HSP27 may contribute to cellular intrinsic immunity against HIV infection. 相似文献
12.
热休克蛋白27(HSP27)作为热应激蛋白表达于各种生理或是环境损伤之后,保护细胞生存,其具有多种功能包括:分子伴侣,抗凋亡,参与细胞运动等。近年来发现HSP27在多种肿瘤中过度表达,参与肿瘤的发生发展,分化,耐药以及转移等方面,因而抑制HSP27成为一种新的肿瘤治疗策略。本文就相关研究进展进行综述。 相似文献
13.
Hino M Kurogi K Okubo MA Murata-Hori M Hosoya H 《Biochemical and biophysical research communications》2000,271(1):164-169
One of the monoclonal antibodies raised against mitotic HeLa cells (termed as mH3) recognized a 27-kDa protein and stained microtubules in the mitotic spindles of HeLa cells. Immunoscreening of a HeLa cDNA library revealed that mH3 antigen is a small heat shock protein, HSP27. Immunoprecipitation analysis using mH3 suggested that both alpha- and beta-tubulin are associated with HSP27. Further, sucrose-cushioned ultra centrifugation revealed that HSP27 is co-sedimented with taxol-stabilized microtubules. These results indicate that HSP27 associates with tubulin/microtubules in HeLa cells. 相似文献
14.
Kenji Kato Haruhiko Tokuda Seiji Adachi Hideo Natsume Kengo Yamakawa Takanobu Otsuka 《Biochemical and biophysical research communications》2010,400(1):123-127
AMP-activated protein kinase (AMPK) is recognized as a regulator of energy homeostasis. We have previously reported that basic fibroblast growth factor (FGF-2) stimulates vascular endothelial growth factor (VEGF) release through the activation of p44/p42 mitogen-activated protein (MAP) kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the involvement of AMPK in FGF-2-stimulated VEGF release in these cells. FGF-2 time-dependently induced the phosphorylation of AMPK α-subunit (Thr-172). Compound C, an AMPK inhibitor, which suppressed the FGF-2-induced phosphorylation of AMPK, significantly inhibited the VEGF release stimulated by FGF-2. The AMPK inhibitor also reduced the mRNA expression of VEGF induced by FGF-2. The FGF-2-induced phosphorylation of both p44/p42 MAP kinase and SAPK/JNK was attenuated by compound C. These results strongly suggest that AMPK positively regulates the FGF-2-stimulated VEGF synthesis via p44/p42 MAP kinase and SAPK/JNK in osteoblasts. 相似文献
15.
J R Strahler R Kuick S M Hanash 《Biochemical and biophysical research communications》1991,175(1):134-142
We have previously reported lack of expression of a polypeptide designated L3 in infant acute lymphoblastic leukemia (ALL). Expression of L3 occurred predominantly in older children with pre-B ALL. We have recently reported the expression during B cell ontogeny of two other polypeptides, designated L2 and L4 with a similar Mr as L3, which were identified as phosphorylated and non-phosphorylated forms respectively of the low Mr heat shock protein. hsp27. In this study we have characterized L3 and identified it as another phosphorylated form of hsp27. The two phosphorylated forms appear to be differentially expressed in acute leukemia. L3 levels in infants who expressed hsp27 isoforms L2 and L4 were significantly diminished compared to levels in older children with an equivalent amount of hsp27. We conclude that leukemic cells in infant ALL exhibit a unique pattern of phosphorylation of hsp27 expressed at a pre-B cell stage of differentiation. 相似文献
16.
Tanioka T Nakatani Y Kobayashi T Tsujimoto M Oh-ishi S Murakami M Kudo I 《Biochemical and biophysical research communications》2003,303(4):1018-1023
Cytosolic prostaglandin (PG) E(2) synthase (cPGES) is constitutively expressed in a wide variety of cells and converts cyclooxygenase (COX)-1-derived PGH(2) to PGE(2). Given the fact that cPGES is identical to p23, a heat shock protein 90 (Hsp90)-binding protein, we herein examined the effect of Hsp90 on PGE(2) generation by cPGES. Incubation of cPGES with Hsp90 resulted in a significant increase in PGES activity in vitro. Association of cPGES with Hsp90 was increased in cells stimulated with A23187 or bradykinin, accompanied by concomitant increases in cPGES activity and PGE(2) production. Moreover, treatment of cells with Hsp90 inhibitors, which destabilized the cPGES/Hsp90 complex, reduced cPGES activity and PGE(2) production to basal levels. These results suggest that the regulation of cPGES activity in cells depends on its association with Hsp90 and provide the first line of evidence that eicosanoid biosynthesis is under the control of the molecular chaperone. 相似文献
17.
R. Sreedharan M. Riordan G. ThullinS. Van Why N.J. SiegelM. Kashgarian 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2011,1813(1):129-135
Endogenous heat shock proteins (HSPs) 70 and 25/27 are induced in renal cells by injury from energy depletion. Transfected over-expression of HSPs 70 or 27 (human analogue of HSP25), provide protection against renal cell injury from ATP deprivation. This study examines whether over-expressed HSP27 depends on induction of endogenous HSPs, in particular HSP70, to afford protection against cell injury. LLC-PK1 cells transfected with HSP27 (27OE cells) were injured by ATP depletion for 2 h and recovered for 4 h in the presence of HSF decoy, HSP70 specific siRNA (siRNA-70) and their respective controls. Injury in the presence of HSF decoy, a synthetic oligonucleotide identical to the heat shock element, the nuclear binding site of HSF, decreased HSP70 induction by 80% without affecting the over-expression of transfected HSP27. The HSP70 stress response was completely ablated in the presence of siRNA-70. Protection against injury, provided by over-expression of HSP27, was reduced by treatment with HSF decoy and abolished by treatment with siRNA-70. Immunoprecipitation studies demonstrated association of HSP27 with actin that was not affected by either treatment with HSF decoy or siRNA. Therefore, HSP27 is dependent on HSP70 to provide its maximal cytoprotective effect, but not for its interaction with actin. This study suggests that, while it has specific action on the cytoskeleton, HSP 25/27 must have coordinated activity with other HSP classes, especially HSP70, to provide the full extent of resistance to injury from energy depletion. 相似文献
18.
Heat shock protein 27 (HSP27) confers cellular protection against a variety of cytotoxic stresses and also against physiological stresses associated with growth arrest or receptor-mediated apoptosis. Phosphorylation modulates the activity of HSP27 by causing a major change in the supramolecular organization of the protein, which shifts from oligomers to dimers. Here we show that phosphorylated dimers of HSP27 interact with Daxx, a mediator of Fas-induced apoptosis, preventing the interaction of Daxx with both Ask1 and Fas and blocking Daxx-mediated apoptosis. No such inhibition was observed with an HSP27 phosphorylation mutant that is only expressed as oligomers or when apoptosis was induced by transfection of a Daxx mutant lacking its HSP27 binding domain. HSP27 expression had no effect on Fas-induced FADD- and caspase-dependent apoptosis. However, HSP27 blocked Fas-induced translocation of Daxx from the nucleus to the cytoplasm and Fas-induced Daxx- and Ask1-dependent apoptosis. The observations revealed a new level of regulation of the Fas pathway and suggest a mechanism for the phosphorylation-dependent protective function of HSP27 during stress and differentiation. 相似文献
19.
20.
K Tanabe O Kozawa M Niwa T Yamomoto H Matsuno H Ito K Kato S Dohi T Uematsu 《Journal of cellular biochemistry》2001,84(1):39-46
We previously showed that vasopressin stimulates the induction of heat shock protein (HSP) 27, a low molecular-weight HSP, through protein kinase C activation in aortic smooth muscle A10 cells. In the present study, we examined the effects of midazolam, an intravenous anesthetic, on the HSP27 induction stimulated by vasopressin, heat, or sodium arsenite (arsenite) in A10 cells. Midazolam inhibited the accumulation of HSP27 induced by vasopressin or 12-O-tetradecanoylphorbol 13-acetate (TPA), a direct activator of protein kinase C. Midazolam also reduced the vasopressin-induced level of the mRNA for HSP27. In contrast, midazolam enhanced the HSP27-accumulation induced by heat or arsenite. Midazolam also enhanced the heat-increased level of the mRNA for HSP27. However, midazolam had no effect on the dissociation of the aggregated form of HSP27 following stimulation by vasopressin, heat, or arsenite. These results suggest that midazolam suppresses vasopressin-stimulated HSP27 induction in vascular smooth muscle cells, and that this inhibitory effect is exerted at a point downstream from protein kinase C. In contrast, midazolam enhanced heat- or arsenite-stimulated HSP27 induction. Thus, midazolam has dual effects on the HSP27 induction stimulated by various stresses in vascular smooth muscle cells. 相似文献