首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Anti-inflammatory effects of tocopherol metabolites   总被引:7,自引:0,他引:7  
Our objective was to assess the anti-inflammatory effects of alpha-tocopherol, gamma-tocopherol, and their metabolites 2,5,7,8-tetramethyl-2-(beta-carboxyethyl)-6-hydroxychroman (alpha-CEHC) and 2,7,8-trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman (gamma-CEHC) in defined cell culture systems. Rat aortic endothelial cells and mouse microglial cultures were treated with tumor necrosis factor TNFalpha or bacterial lipopolysaccharide (LPS) and nitrite and prostaglandin E(2) (PGE(2)) were measured. alpha-CEHC suppressed TNFalpha-stimulated nitrite production in both cell types, whereas both CEHC derivatives inhibited LPS-stimulated microglial nitrite efflux. Both alpha-CEHC and gamma-CEHC inhibited microglial PGE(2) production, but neither alpha- nor gamma-tocopherol was effective at inhibiting cytokine-stimulated inflammatory processes. These results show that the anti-inflammatory effects of tocopherols are highly cell type-, stimulus-, and endpoint-dependent.  相似文献   

2.
Parturition is associated with changes in the production of inflammatory mediators by gestational tissues. An explant system was established to study the change in response of human amnion to various regulating factors during labour. Disks of tissue (6 mm) were excised from amnion membranes obtained either at term by Caesarian section before labour (n = 5-6) or after spontaneous vaginal delivery (n = 3-7). After 24 h equilibration in media, the tissues were treated with interleukin 1 beta (10 ng ml-1), tumour necrosis factor alpha (100 ng ml-1), lipopolysaccharide (5 micrograms ml-1) and dexamethasone (1 mumol l-1) or an appropriate vehicle control for 24 h (n = 3 wells per treatment). Media were harvested and interleukin 10, interleukin 6 and prostaglandin E2 concentrations were determined by immunoassay. In tissues taken both before and after the onset of labour, basal interleukin 10 production by amnion explants was near to the limit of detection. Basal production rates of PGE2 by amnion explants were significantly higher (P < 0.0012; Mann-Whitney U test) in tissues taken during labour than in tissues taken before the onset of labour, while interleukin 6 production was not significantly altered by labour. Production rates of interleukin 6 and prostaglandin E2 were significantly increased by interleukin 1 beta, tumour necrosis factor alpha and lipopolysaccharide in explants from tissues taken during and before labour, while the responsiveness of interleukin 10 production to these treatments was inconsistent. Dexamethasone had no effect on interleukin 6 production by amnion explants, but significantly inhibited prostaglandin E2 production, although this inhibition was approximately 30% lower in tissues obtained after the onset of labour. These results support the presence of inflammatory positive feedback cycles, coincident with a deficiency of an anti-inflammatory factor within gestational tissue, which may be involved in the progression or maintenance of labour.  相似文献   

3.
Previous reports have indicated that the administration of granulocyte colony-stimulating factor (G-CSF) decreases ex vivo tumor necrosis factor (TNF) production in humans. In this study, we report that daily pretreatment of mice with G-CSF for three days decreases ex vivo lipopolysaccharide (LPS)-induced TNF production in whole blood. Conversely, production of interleukin-10 (IL-10) and prostaglandin E(2) (PGE(2)) is increased. The inhibitory effect of G-CSF pretreatment on TNF production is partially reversed by addition of an anti-IL-10 antibody, and completely reversed by combined addition of anti-IL-10 antibody and the cyclooxygenase (COX) inhibitor, ketoprofen. These results suggest that G-CSF decreases TNF production in this experimental model by increasing production of IL-10 and PGE(2), which are both known inhibitors of TNF production.  相似文献   

4.
Arachidonic acid metabolites regulate interleukin-1 production   总被引:5,自引:0,他引:5  
We have investigated the role of arachidonic acid metabolites in the regulation of interleukin-1 production by murine peritoneal macrophages. Indomethacin a potent inhibitor of prostaglandin synthesis caused a dose-dependent augmentation of lipopolysaccharide induced interleukin production (up to 7-fold at 5 microM). In contrast, lipoxygenase inhibitors, nordihydroguarietic acid and nafazatrom had no effect at doses that did not significantly decrease prostaglandin synthesis. Added to lipopolysaccharide stimulated cultures, PGE2 was also augmented by indomethacin but unlike lipopolysaccharide treated cultures was suppressed by nordihydroguarietic acid. These data suggest that arachidonate metabolites may be potent autoregulators of macrophage interleukin-1 production.  相似文献   

5.
Mouse resident peritoneal macrophages stimulated in vitro by purified bacterial lipopolysaccharide (LPS) produced both prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2), the latter detected as its stable metabolite, 6-keto PGF1 alpha. Maximum production, induced in each case by 1 ng/ml purified LPS, was in the range of 10(-7)M for PGI2 and 3 x 10(-8)M for PGE2. A quantitatively similar increase in intracellular levels of macrophage cyclic AMP (measured on a whole cell basis), with a similar duration of effect, was stimulated by PGE2 and PGI2; however, only PGE2 had a negative regulatory effect on macrophage activation for tumor cell killing. These data confirm that more than a whole cell increase in the concentration of cyclic AMP is needed to shut off nonspecific tumor cell killing mediated by LPS-activated resident peritoneal macrophages.  相似文献   

6.
J G Betts  P J Hansen 《Life sciences》1992,51(14):1171-1176
Bovine endometrium was obtained on day 16 of pregnancy (estrus = 0) and separated into epithelial and stromal cell populations. When confluent, the two cell populations were treated for 24 h with cytokines at 1, 10 and 100 ng/ml. Prostaglandin (PG) E2 was the major prostaglandin produced by both cell types. For control cultures, more PGE2 was secreted into medium by stromal cells than by epithelial cells, whereas secretion of PGF was similar for epithelial and stromal cells. Interleukin-1 beta had no effect on prostaglandin production by stromal cell cultures but increased epithelial production of PGE2 and, to a lesser extent, PGF. Conversely, granulocyte-macrophage colony stimulating factor had no effect on epithelial cells but reduced secretion of PGE2 and PGF from stromal cells. There were no effects of interleukin-2 or tumor necrosis factor-alpha on prostaglandin secretion. Results indicate that certain cytokines can regulate endometrial prostaglandin secretion in a cell type-restricted manner.  相似文献   

7.
In neoplasic cachexia, chemical mediators seem to act as initiators or perpetuators of this process. Walker 256 cells, whose metabolic properties have so far been little studied with respect to cancer cachexia, are used as a model for the study of this syndrome. The main objective of this research was to pinpoint the substances secreted by these cells that may contribute to the progression of the cachectic state. Since inflammatory mediators seem to be involved in the manifestation of this syndrome, the in vitro production of nitric oxide (NO), cytokines (tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6)), and prostaglandin E2 (PGE2) was evaluated in Walker 256 cells isolated from ascitic tumors. After 4 or 5 h, a significant increase in NO production was observed (2.55 +/- 1.56 and 4.05 +/- 1.99 nmol NO per 10(7) cells, respectively). When isolated from a 6-day-old tumor, a significantly lower production of IL-6 and higher production of TNF-alpha than in cells from a 4-day-old tumor were observed, indicating a relationship between the production of cytokines and the time of tumor development after implantation. Considerable production of PGE(2) by Walker 256 cells isolated from the 6-day-old tumor was also observed. Polyamines were also determined in Walker 256 cells. Levels of putrescine, spermidine, and spermine did not show significant differences in tumors developed during 4 or 6 days. Direct evidence of the release of proinflammatory cytokines and PGE2 by Walker 256 cells suggests that these mediators can drive the cachectic syndrome in the host, the effect being dependent on tumor development time.  相似文献   

8.
In the present study we have examined the effect of centrally administered non-steroidal anti-inflammatory drugs (NSAIDS), nitric oxide synthase (NOS) inhibitor and melatonin on lipopolysaccharide (LPS)-induced hyperthermia and its anti-dipsogenic effect. Intracerebroventricular (i.c.v.) administration of LPS (100-200 ng/rat) induces a dose dependent elevation in body temperature and decreases water consumption in 24 h water deprived rats. Coadministration of NSAIDS (indomethacin and nimesulide: 10 nM/rat each) with LPS (100 ng) reversed, whereas NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME: 10-20 microg/rat) enhanced LPS-induced hyperthermia. In contrast L-NAME reversed the LPS-induced anti-dipsogenic effect in a dose dependent manner, whereas NSAIDS showed no change in the effect of LPS. Further, centrally administered prostaglandin E2 (PGE2, 0.5-1 microg/rat) produced hyperthermia without affecting the drinking behavior, suggesting that two independent mechanisms operate in LPS-induced hyperthermia and in the anti-dipsogenic effect. The pineal hormone melatonin is known to inhibit cellular damage caused by LPS, produced dose dependent (5-10 nM i.c.v.) inhibition of LPS-induced hyperthermia and adipsia, but failed to reverse the PGE2-induced hyperthermia, shows reversal of LPS-induced hyperthermia by melatonin is due to inhibition of prostaglandin synthesis rather than antagonism of prostaglandin action. The overall study reveals that inhibition of both NO and prostaglandin production by melatonin might be responsible for its reversal of LPS-induced hyperthermia and adipsia.  相似文献   

9.
Effects of phorbol esters and epidermal growth factor (EGF) on prostaglandin E2 production by cultured porcine thyroid cells were examined. Both phorbol 12-myristate 13-acetate (PMA) and EGF stimulated prostaglandin E2 production by the cells in dose related fashion. PMA stimulated prostaglandin E2 production over fifty-fold with the dose of 10(-7) M compared with control. EGF (10(-7) M) also stimulated it about ten-fold. The ED50 values of PMA and EGF were respectively around 1 X 10(-9) M and 5 X 10(-10) M. Thyroid stimulating hormone (TSH), however, did not stimulate prostaglandin E2 production from 1 to 24-h incubation. The release of radioactivity from [3H]-arachidonic acid prelabeled cells was also stimulated by PMA and EGF, but not by TSH. These results indicate that both PMA and EGF are potent stimulators of prostaglandin E2 production, associated with the activity to stimulate arachidonic acid release in porcine thyroid cells.  相似文献   

10.
Recent evidence has implicated cytokines and growth factors in the initiation of parturition in women. In the present study, the amnion-derived cell line WISH was used to determine whether proinflammatory cytokines (interleukins 1 beta, 6, and 8, tumor necrosis factor-alpha, and granulocyte/macrophage colony stimulating factor) could amplify epidermal growth factor-induced prostaglandin E2 production. WISH cells were preincubated with cytokines (0.0001-10 ng/ml) for 60 min and then challenged with EGF (10 ng/ml) for 4 hrs after which PGE2 production was measured by radioimmunoassay. EGF, IL-1 beta and TNF-alpha alone caused a dose-dependent increase in PGE2 production, while IL-6, IL-8 and GM-CSF were ineffective over the dose range tested. When cells were preincubated with IL-1 beta or TNF-alpha, there was a dose-dependent potentiation of EGF-induced PGE2 production that was greater than the sum of EGF alone and IL-1 beta or TNF-alpha alone. In each case, the minimum dose of IL-1 beta or TNF-alpha which amplified EGF-induced PGE2 production was 0.1 ng/ml (p less than 0.05, Student's t-test). These data show that low concentrations of IL-1 beta or TNF-alpha may serve to amplify EGF-mediated PGE2 biosynthesis in amnion-derived cells and suggest that cytokines may modulate EGF function in responsive cells.  相似文献   

11.
Using HSDM1 C1 cell line derived from the mouse fibrosarcoma which synthesizes and secretes prostaglandin (PG) E2, specific binding sites for epidermal growth factor (EGF), a potent growth stimulator of many tissues, and its effect on PGE2 production by cultured tumor cells were studied. HSDM1 C1 cell line possessed specific, high-affinity receptors for EGF: Kd (5.5 X 10(-10 M) and binding capacity (17,650 sites/cell). EGF significantly stimulated PGE2 production in HSDM1 C1 line cultured in serum-free medium for 24 h in a dose-dependent manner; a 2.5-fold increase over control was induced by as little as 0.1 ng/ml and the maximal effect (3.5-fold increase) by 1 ng/ml. Its stimulatory effect on PGE2 production was completely blocked by indomethacin, an inhibitor of PG biosynthesis. These data suggest that EGF may be involved in modulation of synthesis and/or secretion of PGE2, a potent bone-resorbing factor, by the tumors which may partly contribute to hypercalcemia in certain types of neoplasms.  相似文献   

12.
Effects of prostaglandins on adrenal steroidogenesis in the rat   总被引:3,自引:0,他引:3  
To elucidate the role of prostaglandins in adrenal steroidogenesis, we studied aldosterone and corticosterone responses to 3 x 10(-8) M--3 x 10(-4) M of prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha), prostacyclin (PGI2), and arachidonic acid (AA) in collagenase dispersed rat adrenal capsular and decapsular cells. Whereas adrenocorticotrophic hormone (ACTH) and angiotensin II (AII) stimulated aldosterone production in capsular cells and ACTH stimulated corticosterone production in decapsular cells in a dose dependent fashion, aldosterone and corticosterone production were not stimulated significantly by PGE2, PGF2 alpha, PGI2, and AA. Although preincubation of dispersed adrenal cells with indomethacin (3 x 10(-5) M) markedly inhibited PGE2 synthesis, ACTH- and AII-stimulated aldosterone production and ACTH-stimulated corticosterone production were not attenuated despite prostaglandin blockade. These results indicate that prostaglandins are unlikely to play an important role in adrenal steroidogenesis.  相似文献   

13.
In resting mesangial cells, angiotensin II and the calcium ionophore A23187 stimulated prostaglandin E2 (PGE2) formation. After pretreatment with interleukin 1 beta (IL-1 beta) or tumor necrosis factor alpha (TNF alpha), which are themselves potent stimuli for PGE2 synthesis, mesangial cells displayed an amplified response to angiotensin II and A23187. The cytokine-induced effects occurred in a time- and dose-dependent manner and were attenuated by actinomycin D, cycloheximide and dexamethasone. IL-1 beta and TNF alpha treatment also increased the amount of arachidonic acid released after stimulation of cells with angiotensin II and A23187. In addition, IL-1 beta but not TNF alpha treatment augmented the formation of PGE2 from exogenous arachidonic acid by mesangial cells. Furthermore, the conversion of prostaglandin H2 to PGE2 was not changed by IL-1 beta and TNF alpha. These results suggest that IL-1 beta and TNF alpha exert a priming effect on PGE2 production in mesangial cells.  相似文献   

14.
Pro-inflammatory pathways participate in the pathogenesis of atherosclerosis. However, the role of endogenous anti-inflammatory pathways in atheroma has received much less attention. Therefore, using cDNA microarrays, we screened for genes regulated by prostaglandin E(2) (PGE(2)), a potential endogenous anti-inflammatory mediator, in lipopolysaccharide (LPS)-treated human macrophages (MPhi). PGE(2) (50 nm) attenuated LPS-induced mRNA and protein expression of chemokines including monocyte chemoattractant protein-1, interleukin-8, macrophage inflammatory protein-1alpha and -1beta, and interferon-inducible protein-10. PGE(2) also inhibited the tumor necrosis factor-alpha-, interferon-gamma-, and interleukin-1beta-mediated expression of these chemokines. In contrast to the case of MPhi, PGE(2) did not suppress chemokine expression in human endothelial and smooth muscle cells (SMC) treated with LPS and pro-inflammatory cytokines. To assess the potential paracrine effect of endogenous PGE(2) on macrophage-derived chemokine production, we co-cultured MPhi with SMC in the presence of LPS. In these co-cultures, cyclooxygenase-2-dependent PGE(2) production exceeded that in the mono-cultures, and MIP-1beta declined significantly compared with MPhi cultured without SMC. We further documented prominent expression of the PGE(2) receptor EP4 in MPhi in both culture and human atheroma. Moreover, a selective EP4 antagonist completely reversed PGE(2)-mediated suppression of chemokine production. Thus, endogenous PGE(2) may modulate inflammation during atherogenesis and other inflammatory diseases by suppressing macrophage-derived chemokine production via the EP4 receptor.  相似文献   

15.
Group V secretory phospholipase A2 (sPLA2) rather than Group IIA sPLA2 is involved in short term, immediate arachidonic acid mobilization and prostaglandin E2 (PGE2) production in the macrophage-like cell line P388D1. When a new clone of these cells, P388D1/MAB, selected on the basis of high responsivity to lipopolysaccharide plus platelet-activating factor, was studied, delayed PGE2 production (6-24 h) in response to lipopolysaccharide alone occurred in parallel with the induction of Group V sPLA2 and cyclooxygenase-2 (COX-2). No changes in the level of cytosolic phospholipase A2 (cPLA2) or COX-1 were observed, and Group IIA sPLA2 was not detectable. Use of a potent and selective sPLA2 inhibitor, 3-(3-acetamide 1-benzyl-2-ethylindolyl-5-oxy)propanesulfonic acid (LY311727), and an antisense oligonucleotide specific for Group V sPLA2 revealed that delayed PGE2 was largely dependent on the induction of Group V sPLA2. Also, COX-2, not COX-1, was found to mediate delayed PGE2 production because the response was completely blocked by the specific COX-2 inhibitor NS-398. Delayed PGE2 production and Group V sPLA2 expression were also found to be blunted by the inhibitor methylarachidonyl fluorophosphonate. Because inhibition of Ca2+-independent PLA2 by an antisense technique did not have any effect on the arachidonic acid release, the data using methylarachidonyl fluorophosphonate suggest a key role for the cPLA2 in the response as well. Collectively, the results suggest a model whereby cPLA2 activation regulates Group V sPLA2 expression, which in turn is responsible for delayed PGE2 production via COX-2.  相似文献   

16.
We have investigated the effect of tumor necrosis factor on the release of interleukin-1 and PGE2 from murine resident peritoneal macrophages. Tumor necrosis factor causes an increase in the production of interleukin-1 and PGE2 with a maximum induction for both noted at 5.9 X 10(-8) M. While indomethacin decreased tumor necrosis factor induced PGE2 production, this cyclooxygenase inhibitor augmented tumor necrosis factor induced interleukin-1 production. Our data suggests that tumor necrosis factor may be an important immunopotentiating agent in addition to its previously described cytolytic and metabolic activities.  相似文献   

17.
Combinatorial chemopreventive strategies, in contrast to those with individual agents, show potential in terms of potentially lower toxicity and higher efficacy. In this study, we combined several agents and examined their suppressive effects on the combined lipopolysaccharide (LPS)- and interferon(IFN)-gamma-induced formation of proinflammatory mediators, including prostaglandin (PG) E2 and tumor necrosis factor (TNF)-alpha, in RAW264.7 murine macrophages. The combinatorial effects of indomethacin/genistein (GEN) and aspirin/GEN were found to be synergistic for PGE2 suppression, while the nimesulide/GEN combination was antagonistic. Further, while (-)-epigallocatechin gallate (EGCG) alone increased LPS/IFM-gamma-induced production of PGE2 and TNF-alpha as well as cyclooxygenase-2 expression, the EGCG/GEN combination markedly suppressed these parameters. Our results suggest that certain chemopreventive agents act complexly and that, when used in combination, they affect the intracellular signaling pathways of the paired agents to exert additive, synergistic, or antagonistic effects.  相似文献   

18.
In the present study the human monoblast cell line U937 has been used as a model to study the function of human mononuclear phagocytes in asthma. The kinetics of the production of eicosanoids and cytokines, which are thought to play a role in the pathogenesis of asthma, were studied. In addition, the effects of glucocorticosteroids were investigated, as these drugs are of great importance for the treatment of asthmatic patients. After stimulation with phorbol-12 myristate acetate (PMA) for 24 h, U937 cells were cultured in the absence or presence of lipopolysaccharide (LPS: 1 and 5 microg ml(-1)) and glucocorticosteroids (budesonide, fluticasone propionate and prednisolone: 10(-11), 10(-9) and 10(-7) M) for 96 h. The production of interleukin-1beta (IL-1beta), interleukin-6 (IL-6), prostaglandin E2 (PGE2) and thromboxane B2 (TxB2) gradually increased in time after stimulation with LPS, whereas the transient production of tumor necrosis factor alpha (TNF-alpha) reached its maximum between 6 and 12 h. Interferon-gamma (IFN-gamma), interleukin-10 (IL-10) and leukotriene B4 (LTB4) were not detectable. All three glucocorticosteroids (budesonide, fluticasone propionate and prednisolone) completely inhibited the production of both eicosanoids and cytokines. The production of eicosanoids was more sensitive to these glucocorticoids than the production of cytokines. The observed differences in the kinetics of the production of eicosanoids and cytokines stress the importance of time course experiments in studies on the effect of drugs on mononuclear cells.  相似文献   

19.
20.
Activation of the prostaglandin E(2) (PGE(2)) EP(4) receptor, a G-protein-coupled receptor (GPCR), results in increases in intracellular cyclic AMP (cAMP) levels via stimulation of adenylate cyclase. Here we describe the in vitro pharmacological characterization of a novel EP(4) receptor antagonist, CJ-042794 (4-{(1S)-1-[({5-chloro-2-[(4-fluorophenyl)oxy]phenyl}carbonyl)amino]ethyl}benzoic acid). CJ-042794 inhibited [(3)H]-PGE(2) binding to the human EP(4) receptor with a mean pK(i) of 8.5, a binding affinity that was at least 200-fold more selective for the human EP(4) receptor than other human EP receptor subtypes (EP(1), EP(2), and EP(3)). CJ-042794 did not exhibit any remarkable binding to 65 additional proteins, including GPCRs, enzymes, and ion channels, suggesting that CJ-042794 is highly selective for the EP(4) receptor. CJ-042794 competitively inhibited PGE(2)-evoked elevations of intracellular cAMP levels in HEK293 cells overexpressing human EP(4) receptor with a mean pA(2) value of 8.6. PGE(2) inhibited the lipopolysaccharide (LPS)-induced production of tumor necrosis factor alpha (TNFalpha) in human whole blood (HWB); CJ-042794 reversed the inhibitory effects of PGE(2) on LPS-induced TNFalpha production in a concentration-dependent manner. These results suggest that CJ-042794, a novel, potent, and selective EP(4) receptor antagonist, has excellent pharmacological properties that make it a useful tool for exploring the physiological role of EP(4) receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号