共查询到20条相似文献,搜索用时 15 毫秒
1.
Intraspecific phenotypic variability of plant functional traits in contrasting mountain grasslands habitats 总被引:2,自引:0,他引:2
Camilla Wellstein Stefano Chelli Giandiego Campetella Sandor Bartha Marco Galiè Francesco Spada Roberto Canullo 《Biodiversity and Conservation》2013,22(10):2353-2374
Empirical studies that link plants intraspecific variation to environmental conditions are almost lacking, despite their relevance in understanding mechanisms of plant adaptation, in predicting the outcome of environmental change and in conservation. Here, we investigate intraspecific trait variation of four grassland species along with abiotic environmental variation at high spatial resolution (n = 30 samples per species trait and environmental factor per site) in two contrasting grassland habitats in Central Apennines (Italy). We test for phenotypic adaptation between habitats, intraspecific trait-environment relationships within habitats, and the extent of trait and environmental variation. We considered whole plant, clonal, leaf, and seed traits. Differences between habitats were tested using ANOVA and ANCOVA. Trait-environment relationships were assessed using multiple regression models and hierarchical variance partitioning. The extent of variation was calculated using the coefficient of variation. Significant intraspecific differences in trait attributes between the contrasting habitats indicate phenotypic adaptation to in situ environmental conditions. Within habitats, light, soil temperature, and the availability of nitrate, ammonium, magnesium and potassium were the most important factors driving intraspecific trait-environment relationships. Leaf traits and height growth show lower variability than environment being probably more regulated by plants than clonal traits which show much higher variability. We show the adaptive significance of key plant traits leading to intraspecific adaptation of strategies providing insights for conservation of extant grassland communities. We argue that protecting habitats with considerable medium- and small-scale environmental heterogeneity is important to maintain large intraspecific variability within local populations that finally can buffer against uncertainty of future climate and land use scenarios. 相似文献
2.
Transgenic plants have increased interest in the study of crop gene introgression in wild populations. Genes (or transgenes) conferring adaptive advantages persist in introgressed populations, enhancing competitiveness of wild or weedy plants. This represents an ecological risk that could increase problems of weed control. Introgression of cultivar alleles into wild plant populations via crop–wild hybridisations is primarily governed by their fitness effect. To evaluate this, we studied the second generation of seven wild–crop interspecific hybrids between weedy Helianthus petiolaris and cultivated sunflower, H. annuus var. macrocarpus. The second generation comprised open‐pollinated progeny and backcrosses to the wild parent, mimicking crosses that occur in natural situations. We compared a number of morphological, life history and fitness traits. Multivariate analysis showed that the parental species H. annuus and H. petiolaris differed in a number of morphological traits, while the second hybrid generation between them was intermediate. Sunflower crop introgression lowered fitness of interspecific hybrids, but fitness parameters tended to recover in the following generation. Relative frequency of wild/weedy and introgressed plants was estimated through four generations, based on male and female parent fitness. In spite of several negative selection coefficients observed in the second generation, introgressed plants could be detected in stands of <100 weedy H. petiolaris populations. The rapid recovery of fecundity parameters leads to prediction that any trait conferring an ecological advantage will diffuse into the wild or weedy population, even if F1 hybrids have low fitness. 相似文献
3.
R. Parkash D. Karan S. K. Kataria A. K. Munjal 《Journal of Zoological Systematics and Evolutionary Research》1999,37(1):13-18
Drosophila kikkawai, which has colonized the Indian subcontinent in the recent past, exhibits geographical variations for five quantitative traits among eight Indian populations (8.29–32.7°N). Body weight, wing length, thorax length, abdominal bristles and ovariole number exhibit significant clinal variation with increase in latitude, while sternopleural bristles do not demonstrate such a trend. For the female sex, the slope values for body weight (2.25) and wing length (2.40) are higher but they are lower for thorax length (0.64) and ovariole number (0.51 per degree latitude). There is significant sexual dimorphism for the slope values only for body weight and thorax length suggesting simultaneous action of latitudinal selection pressure on these traits. However, the two sexes do not differ statistically in the latitudinal slope values for the wing length. A regression analysis of different traits on body weight implies correlated selection response on wing length and wing/thorax ratio while thorax length corresponds to changes in body size and does not differ in the two sexes. Regression analysis, on the basis of temperature-related climatic variables, evidence significantly higher association between all the five size-related traits and coefficient of variation of mean annual temperature (seasonal thermal amplitude; T cv ), T min and relative humidity. Thus, genetic differentiation for quantitative traits in D. kikkawai are due to selective pressure from variable climatic conditions occurring on the Indian subcontinent. 相似文献
4.
Summary The evolution of disease resistance in plants may be constrained if genes conferring resistance to pathogens interfere with plant responses toward other, nonpathogenic organisms. To test for such effects, we compared symbiotic nitrogen fixation in Amphicarpaea bracteata plants that differed at a major locus controlling resistance to the pathogen Synchytrium decipiens. Both resistant and susceptible plant genotypes nodulated successfully and grew significantly better in the presence of Rhizobium, although growth enhancement by Rhizobium was altered by different levels of nitrate fertilization. Plants homozygous for disease resistance achieved 2% higher growth than susceptible homozygotes across all treatments, but this difference was not significant. Resistant and susceptible plant genotypes did not differ in the mean number of nodules formed per plant or in nodule diameter. However, there was highly significant variation among replicate families within each disease resistance category for both nodulation characteristics. These results imply that genetic variation exists among A. bracteata plants both for diease resistance and for traits affecting symbiotic nitrogen fixation. However, there were no evident pleiotropic effects of disease resistance genes on the plant-Rhizobium symbiosis. 相似文献
5.
Climate change is likely to spur rapid evolution, potentially altering integrated suites of life-history traits. We examined evolutionary change in multiple life-history traits of the annual plant Brassica rapa collected before and after a recent 5-year drought in southern California. We used a direct approach to examining evolutionary change by comparing ancestors and descendants. Collections were made from two populations varying in average soil moisture levels, and lines propagated from the collected seeds were grown in a greenhouse and experimentally subjected to conditions simulating either drought (short growing season) or high precipitation (long growing season) years. Comparing ancestors and descendants, we found that the drought caused many changes in life-history traits, including a shift to earlier flowering, longer duration of flowering, reduced peak flowering and greater skew of the flowering schedule. Descendants had thinner stems and fewer leaf nodes at the time of flowering than ancestors, indicating that the drought selected for plants that flowered at a smaller size and earlier ontogenetic stage rather than selecting for plants to develop more rapidly. Thus, there was not evidence for absolute developmental constraints to flowering time evolution. Common principal component analyses showed substantial differences in the matrix of trait covariances both between short and long growing season treatments and between populations. Although the covariances matrices were generally similar between ancestors and descendants, there was evidence for complex evolutionary changes in the relationships among the traits, and these changes depended on the population and treatment. These results show that a full appreciation of the impacts of global change on phenotypic evolution will entail an understanding of how changes in climatic conditions affect trait values and the structure of relationships among traits. 相似文献
6.
Background
Predicting the spatial and temporal patterns of marine larval dispersal and supply is a challenging task due to the small size of the larvae and the variability of oceanographic processes. Addressing this problem requires the use of novel approaches capable of capturing the inherent variability in the mechanisms involved.Methodology/Principal Findings
In this study we test whether dispersal and connectivity patterns generated from a bio-physical model of larval dispersal of the crab Carcinus maenas, along the west coast of the Iberian Peninsula, can predict the highly variable daily pattern of wind-driven larval supply to an estuary observed during the peak reproductive season (March–June) in 2006 and 2007. Cross-correlations between observed and predicted supply were significant (p<0.05) and strong, ranging from 0.34 to 0.81 at time lags of −6 to +5 d. Importantly, the model correctly predicted observed cross-shelf distributions (Pearson r = 0.82, p<0.001, and r = 0.79, p<0.01, in 2006 and 2007) and indicated that all supply events were comprised of larvae that had been retained within the inner shelf; larvae transported to the outer shelf and beyond never recruited. Estimated average dispersal distances ranged from 57 to 198 km and were only marginally affected by mortality.Conclusions/Significance
The high degree of predicted demographic connectivity over relatively large geographic scales is consistent with the lack of genetic structuring in C. maenas along the Iberian Peninsula. These findings indicate that the dynamic nature of larval dispersal can be captured by mechanistic biophysical models, which can be used to provide meaningful predictions of the patterns and causes of fine-scale variability in larval supply to marine populations. 相似文献7.
Can Dai Xijian Liang Jie Ren Minglin Liao Jiyang Li Laura F. Galloway 《Annals of botany》2016,117(3):421-429
Background and Aims Floral traits are essential for ensuring successful pollination and reproduction in flowering plants. In particular, style and anther positions are key for pollination accuracy and efficiency. Variation in these traits among individuals has been well studied, but less is known about variation within flowers and plants and its effect on pollination and reproductive success.Methods Style deflexion is responsible for herkogamy and important for pollen deposition in Passiflora incarnata. The degree of deflexion may vary among stigmas within flowers as well as among flowers. We measured the variability of style deflexion at both the flower and the plant level. The fitness consequences of the mean and variation of style deflexion were then evaluated under natural pollination by determining their relationship to pollen deposition, seed production and average seed weight using structural equation modelling. In addition, the relationship between style deflexion and self-pollen deposition was estimated in a greenhouse experiment.Key Results We found greater variation in style deflexion within flowers and plants than among plants. Variation of style deflexion at the flower and plant level was positively correlated, suggesting that variability in style deflexion may be a distinct trait in P. incarnata. Lower deflexion and reduced variation in that deflexion increased pollen deposition, which in turn increased seed number. However, lower styles also increased self-pollen deposition. In contrast, higher deflexion and greater variability of that deflexion increased variation in pollen deposition, which resulted in heavier seeds.Conclusions Variability of style deflexion and therefore stigma placement, independent from the mean, appears to be a property of individual P. incarnata plants. The mean and variability of style deflexion in P. incarnata affected seed number and seed weight in contrasting ways, through the quantity and potentially quality of pollen deposition. This antagonistic selection via different fitness components may maintain diverse style phenotypes. 相似文献
8.
Independent evolutionary origins of landlocked alewife populations and rapid parallel evolution of phenotypic traits 总被引:1,自引:1,他引:0
Alewife, Alosa pseudoharengus, populations occur in two discrete life-history variants, an anadromous form and a landlocked (freshwater resident) form. Landlocked populations display a consistent pattern of life-history divergence from anadromous populations, including earlier age at maturity, smaller adult body size, and reduced fecundity. In Connecticut (USA), dams constructed on coastal streams separate anadromous spawning runs from lake-resident landlocked populations. Here, we used sequence data from the mtDNA control region and allele frequency data from five microsatellite loci to ask whether coastal Connecticut landlocked alewife populations are independently evolved from anadromous populations or whether they share a common freshwater ancestor. We then used microsatellite data to estimate the timing of the divergence between anadromous and landlocked populations. Finally, we examined anadromous and landlocked populations for divergence in foraging morphology and used divergence time estimates to calculate the rate of evolution for foraging traits. Our results indicate that landlocked populations have evolved multiple times independently. Tests of population divergence and estimates of gene flow show that landlocked populations are genetically isolated, whereas anadromous populations exchange genes. These results support a 'phylogenetic raceme' model of landlocked alewife divergence, with anadromous populations forming an ancestral core from which landlocked populations independently diverged. Divergence time estimates suggest that landlocked populations diverged from a common anadromous ancestor no longer than 5000 years ago and perhaps as recently as 300 years ago, depending on the microsatellite mutation rate assumed. Examination of foraging traits reveals landlocked populations to have significantly narrower gapes and smaller gill raker spacings than anadromous populations, suggesting that they are adapted to foraging on smaller prey items. Estimates of evolutionary rates (in haldanes) indicate rapid evolution of foraging traits, possibly in response to changes in available resources. 相似文献
9.
HC Chiu CJ Marx D Segrè 《Proceedings. Biological sciences / The Royal Society》2012,279(1745):4156-4164
Epistasis between mutations in two genes is thought to reflect an interdependence of their functions. While sometimes epistasis is predictable using mechanistic models, its roots seem, in general, hidden in the complex architecture of biological networks. Here, we ask how epistasis can be quantified based on the mathematical dependence of a system-level trait (e.g. fitness) on lower-level traits (e.g. molecular or cellular properties). We first focus on a model in which fitness is the difference between a benefit and a cost trait, both pleiotropically affected by mutations. We show that despite its simplicity, this model can be used to analytically predict certain properties of the ensuing distribution of epistasis, such as a global negative bias, resulting in antagonism between beneficial mutations, and synergism between deleterious ones. We next extend these ideas to derive a general expression for epistasis given an arbitrary functional dependence of fitness on other traits. This expression demonstrates how epistasis relative to fitness can emerge despite the absence of epistasis relative to lower level traits, leading to a formalization of the concept of independence between biological processes. Our results suggest that epistasis may be largely shaped by the pervasiveness of pleiotropic effects and modular organization in biological networks. 相似文献
10.
Utilization of net photosynthate for nitrogen fixation and protein production in an annual legume 总被引:4,自引:13,他引:4
下载免费PDF全文

The economy of C and N in nodulated cowpea (Vigna unguiculata [L.] Walp.) was described in terms of fixation of CO2 and N2, respiratory losses of C, and the production of dry matter and protein. 相似文献
11.
R. S. Rana 《Genetica》1964,35(1):236-240
Variable expressivity of a mutant gene determining tubular flower form in annual chrysanthemum results in phenotypic variation approaching a continuous pattern. The analysis shows that this variability is primarily conditioned by variable genotypic background of the individual plants although environmental factors are also involved. It is suggested that regulation of phenotypic expressivity of qualitative genetic potentialities can lead to a pattern of continuous variation characteristic of the quantitative traits. 相似文献
12.
Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins
A considerable amount of phenotypic, genetic and symbiotic functional variability has been documented in arbuscular mycorrhizal fungi (AMF). However, little is known about whether distinct AMF ecotypes have evolved within their geographic range. We tested the hypothesis that AMF growing at temperatures closer to those prevalent within their origin would benefit their host and grow more than isolates distant from their native conditions. For each of six AMF species, we chose pairs of isolates that originated from distant areas with contrasting climates. Each isolate was grown in association with two grass species of different thermal optima at two temperature settings. Thus, we also tested whether AMF from different climatic origins were dependent on the thermal adaptation of the host plant species or to temperature per se. Although fungal growth was not directly affected by temperature, we found that AMF isolates originating from contrasting climates consistently and differentially altered plant growth. Our results suggest that AMF from contrasting climates have altered symbiotic function, thus linking an abiotic factor to ecotypic differentiation of putatively important symbionts. 相似文献
13.
14.
Plants infected with vertically transmitted fungal endophytes carry their microbial symbionts with them during dispersal into
new areas. Yet, whether seed-borne endophytes enhance the host plant’s ability to overcome colonisation barriers and to regenerate
within invaded sites remains poorly understood. We examined how symbiosis with asexual endophytic fungi (Neotyphodium) affected establishment and seed loss to predators in the invasive annual grass Lolium multiflorum (Italian ryegrass) across contrasting successional plots. Italian ryegrass seeds with high and low endophyte incidence were
sown into three communities: a 1-year-old fallow field, a 15-year-old grassland, and a 24-year-old forest, which conformed
to an old-field chronosequence in the eastern Inland Pampa, Argentina. We found that endophyte infection consistently increased
host population recruitment and reproductive output. Endophyte presence also enhanced aerial biomass production of ryegrass
in a low recruitment year but not in a high recruitment year, suggesting that symbiotic effects on growth performance are
density dependent. Endophyte presence reduced seed removal by rodents, although differential predation may not account for
the increased success of infected grass populations. Overall, there was no statistical evidence for an endophyte-by-site interaction,
indicating that the fungal endosymbiont benefitted host establishment regardless of large differences in biotic and abiotic
environment among communities. Our results imply that hereditary endophytes may increase the chances for host grass species
to pass various ecological filters associated with invasion resistance across a broad range of successional habitats. 相似文献
15.
Georgieva L Berkov S Kondakova V Bastida J Viladomat F Atanassov A Codina C 《Zeitschrift für Naturforschung. C, Journal of biosciences》2007,62(9-10):627-635
Leucojum aestivum (summer snowflake) is a plant species used for the extraction of galanthamine, an acetylcholinesterase inhibitor for the treatment of Alzheimer's disease. Extracts from bulbs collected from 18 Bulgarian populations and from shoot-clumps obtained in vitro from 8 different populations showed variations in their alkaloid composition. Nineteen alkaloids were detected in the studied samples by GC-MS. Typically, the alkaloid fractions of L. aestivum bulbs were dominated by galanthamine type compounds, but lycorine, haemanthamine and homolycorine type alkaloids were also found as dominant compounds in some of the samples. Extracts from the shoot-clumps obtained in vitro were found to contain galanthamine or lycorine as main alkaloids. The galanthamine content ranged from 28 to 2104 microg/g dry weight in the bulbs, and from traces to 454 microg/g dry weight in the shoot-clumps. 相似文献
16.
The avoidance of inbreeding is a primary goal of endangered species population management. In order to fully understand the effects of inbreeding on the fitness of natural and captive populations, it is necessary to consider fitness components which span the entire life cycle of the organism. Using Drosophila melanogaster as a model organism for conservation genetics studies, we constructed 18 experimental lines derived from wild-type stocks which were homozygous for chromosome 2 (this chromosome constitutes 38% of the genome or is equivalent to F = 0.38). For six of these lines which exhibited a reduced homozygous fitness, we estimated the relative values of fitness components operating at both the juvenile stage (pre-adult viability) and adult stage (female fecundity and male-mating ability) of the life cycle. Males in these lines showed a markedly reduced mating ability, while viability and female fecundity were much less affected. Equilibrium values of the wild-type chromosomes in these lines were accurately predicted using a model that incorporated into it these independently estimated fitness components. These results emphasize the importance of studying all fitness components directly to determine overall fitness. A reduced mating ability among inbred males of a captive population can have serious consequences for its future sustainability, and can further jeopardize reintroduction efforts; consequently, a program to carefully monitor the reproductive success of individual males, as well as other fitness components, is recommended. © 1993 Wiley-Liss, Inc. 相似文献
17.
18.
Virus and microbial loop dynamics over an annual cycle in three contrasting Antarctic lakes 总被引:5,自引:0,他引:5
NANETTE J. MADAN WILLIAM A. MARSHALL JOHANNA LAYBOURN-PARRY 《Freshwater Biology》2005,50(8):1291-1300
1. Viral and microbial loop dynamics were investigated over an annual cycle in three contrasting saline Antarctic lakes – Highway Lake (salinity 4‰), Pendant Lake (salinity 19‰) and Ace Lake, a meromictic system (with a mixolimnion salinity of 18‰) in order to assess the importance of viruses in extreme, microbially dominated systems. 2. Virus like particles (VLP) showed no clear seasonal pattern, with high concentrations occurring in both winter and summer (range 0.89 × 107 ± 0.038 to 12.017 × 107 ± 1.28 mL?1). VLP abundances reflected lake productivity based on chlorophyll a concentrations. Bacterial abundances and biomass did not correlate with VLP numbers except in Pendant Lake, the most productive of the three lakes studied. 3. Pendant Lake supported the highest bacterial biomass (range Highway: 18.44 ± 1.35 to 59.43 ± 2.80 ng C mL?1; Ace: 14.42 ± 2.69 to 68.39 ± 2.95 ng C mL?1; Pendant: 31.36 ± 3.94 to 115.95 ± 4.49 ng C mL?1) so that virus to bacteria ratios (VBR) (range 30.48 ± 7.96 to 96.67 ± 8.21) were higher in Ace Lake (range 30.58 ± 3.98 to 80.037 ± 1.60) and Highway Lake (range 18.63 ± 3.12 to 126.74 ± 6.50). 4. Negative correlations occurred between VLP and cryptophytes (dominant phototrophic nanoflagellates), suggesting that they were not hosts to lytic viruses. Among the other protists only the heterotrophic nanoflagellates of Highway Lake (dominated by the marine choanoflagellate Diaphanoeca grandis) showed a positive correlation with VLP. 5. The VLP was negatively correlated with photosynthetically active radiation (PAR) and temperature, both of which increased with ice thinning and breakout, increasing viral decay. In winter VLP probably persisted in cold, dark water. 6. High VLP concentrations and high VBR (values at the upper end of those reported for marine and lacustrine systems) indicated that viruses, most of which were probably bacteriophage, are a major element within the microbial communities in extreme, saline lakes. 相似文献
19.
Gregory P. Cheplick 《Plant Species Biology》2002,17(1):71-84
Abstract Plasticity of size and architectural traits, and their importance to reproductive fitness, were estimated in relation to nutrient availability in the annual Amaranthus albus . Seeds from seven field-collected genotypes were used to rear a first generation under uniform conditions. Seed families (inbred lines) from four first-generation plants per genotype were used to rear a second generation in a glasshouse for 10 weeks. Nine plants per family were regularly fertilized, while nine others were unfertilized. Size was estimated at 5, 8, and 10 weeks; architectural traits were recorded at 8 weeks (no. branches) and 10 weeks (no. branches and branch length). Fitness was assessed by the number of seeds per plant. Because traits were intercorrelated, size-scaled architectural traits were generated and allometric analyses performed. Genetic variation was analyzed for the second generation among inbred lines of the original genotypes, and among families within each genotype. For fertilized and unfertilized groups, early size (volume occupied at 5 weeks) and branch length per mass were significant determinants of fitness. The number of branches per size explained a smaller proportion of the variance in fitness. Genotype by treatment interaction was apparent for some traits, indicating genetic variation for plasticity, but plasticity of size did not change over ontogeny. Significant effects of genotype on size and architectural traits, and fitness, were detected mostly in the unfertilized group. Thus, selection is most likely to differentiate among genotypes in nutrient-poor environments. Lengthening of multiple branches increases seed output throughout the season, and genotypes with longer branches per unit mass have a selective advantage. Because early size is correlated with seed output, ontogenetic plasticity in response to improved soil resources allows opportunistic increases in fitness. 相似文献
20.
Kunsiri C. Grubbs Randall L. Small Edward E. Schilling 《Plant Systematics and Evolution》2009,279(1-4):151-161
Comparative analyses were made of agamospermous populations of Eupatorium sessilifolium, which have previously been documented to be polyploid, to determine whether they are alloploid or autoploid in origin and to assess the possibility that they have arisen more than once. There was no variability in ITS sequences among seven agamospermous and eight sexual diploid populations of E. sessilifolium, which is consistent with morphological observations in suggesting that the agamospermous populations were autoploids. The ITS sequence characteristic of E. sessilifolium differs from all other North American species by a minimum of 15 changes, and heterogeneity or polymorphism would be expected if the agamospermous populations were alloploids. Analysis of the chloroplast-based trnC-psbM spacer region showed variability among both sexual diploid and agamospermous populations of E. sessilifolium, which suggested that the agamospermous populations stem from multiple origins. Analysis of ISSR data revealed considerable intraspecific variability within E. sessilifolium, and the distribution of variability, with agamospermous populations showing variability from one another, added further evidence for multiple origins of agamospermous populations. The results in conjunction with distributional evidence that the sexual diploid populations of E. sessilifolium are geographically restricted and uncommon suggest that monitoring of populations might be warranted to evaluate whether measures are needed to enhance their continued survival. 相似文献