首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Nunavik Inuit (northern Quebec, Canada) reside along the arctic coastline where for generations their daily energy intake has mainly been derived from animal fat. Given this particular diet it has been hypothesized that natural selection would lead to population specific allele frequency differences and unique variants in genes related to fatty acid metabolism. A group of genes, namely CPT1A, CPT1B, CPT1C, CPT2, CRAT and CROT, encode for three carnitine acyltransferases that are important for the oxidation of fatty acids, a critical step in their metabolism.

Methods

Exome sequencing and SNP array genotyping were used to examine the genetic variations in the six genes encoding for the carnitine acyltransferases in 113 Nunavik Inuit individuals.

Results

Altogether ten missense variants were found in genes CPT1A, CPT1B, CPT1C, CPT2 and CRAT, including three novel variants and one Inuit specific variant CPT1A p.P479L (rs80356779). The latter has the highest frequency (0.955) compared to other Inuit populations. We found that by comparison to Asians or Europeans, the Nunavik Inuit have an increased mutation burden in CPT1A, CPT2 and CRAT; there is also a high level of population differentiation based on carnitine acyltransferase gene variations between Nunavik Inuit and Asians.

Conclusion

The increased number and frequency of deleterious variants in these fatty acid metabolism genes in Nunavik Inuit may be the result of genetic adaptation to their diet and/or the extremely cold climate. In addition, the identification of these variants may help to understand some of the specific health risks of Nunavik Inuit.  相似文献   

2.
A common variant of inherited deficiency of type 1A carnitine palmitoyltransferase (CPT1A) first detected in Canadian Inuits has also been detected in the indigenous populations of various regions of Alaska, northern Canada, and Greenland. However, the prevalence of the P479L genotype in neonates has not been evaluated to date. The frequency of the P479L allele in two populations of Taymyr Peninsula (Dolgan-Nganasan and Nenets) has been assessed in the study. Dried blood spots from newborns born in 2010–2013 were collected in two populations: 108 samples were collected from Dolgan-Nganasans (the settlements Syndasko, Kataryk, and Levinskie Peski) and 105 samples were collected from Nganasans (the Nosok settlement). Allelic variants c.1436C/T (rs 80356779) of the carnitine palmitoyltransferase (CPT1A) gene were investigated in these samples. Genotyping for the P479L mutation was based on analysis of restriction fragment length polymorphism. DNA extracted from the dried blood spots was initially amplified using polymerase chain reaction with the following primers: 5’-CTGGCCAGGTTTGGATTTT-3’ and 5’-TCCAGGATGAAGCAGAGAGG-3’. Restriction endonuclease BstMC (SibEnzim, Novosibirsk, Russia) was used for restriction of the amplicons obtained: a 252-bp fragment was obtained after restriction if the subject carried the T-allele, and an 83-bp fragment was obtained if the subject carried the C-allele. There was a distinct difference in the frequency of the P479L genotype between the two populations, with seven heterozygotes identified in the Dolgan-Nganasan population (7/108; 0.07; 95% confidence interval, 0.03–0.13) and no carriers of the mutant gene identified in the Nenets population (0/105), p = 0.006. The frequency of the rare T-allele in the Dolgan-Nganasan population was 0.03. The results of the study support the hypothesis of the influence of the traditional diet and “evolutionary advantage” for carriers of the P479L mutation residing in certain Arctic regions. We assume that a certain increase in the prevalence of the genetic variant P479L in the Dolgan population may be due to proximity of the area of residence to the coast and adherence to a high-fat diet. Furthermore, we believe that our data and the results of similar studies addressing the frequency of the P479L mutation can be successfully used for the analysis of the origin and migration of certain indigenous peoples of the Far North.  相似文献   

3.
Apolipoprotein A-II (apoA-II) is the second major apolipoprotein following apolipoprotein A-I (apoA-I) in HDL. ApoA-II has multiple physiological functions and can form senile amyloid fibrils (AApoAII) in mice. Most circulating apoA-II is present in lipoprotein A-I/A-II. To study the influence of apoA-I on apoA-II and AApoAII amyloidosis, apoA-I-deficient (C57BL/6J.Apoa1−/−) mice were used. Apoa1−/− mice showed the expected significant reduction in total cholesterol (TC), HDL cholesterol (HDL-C), and triglyceride (TG) plasma levels. Unexpectedly, we found that apoA-I deficiency led to redistribution of apoA-II in HDL and an age-related increase in apoA-II levels, accompanied by larger HDL particle size and an age-related increase in TC, HDL-C, and TG. Aggravated AApoAII amyloidosis was induced in Apoa1−/− mice systemically, especially in the heart. These results indicate that apoA-I plays key roles in maintaining apoA-II distribution and HDL particle size. Furthermore, apoA-II redistribution may be the main reason for aggravated AApoAII amyloidosis in Apoa1−/− mice. These results may shed new light on the relationship between apoA-I and apoA-II as well as provide new information concerning amyloidosis mechanism and therapy.  相似文献   

4.
To evaluate functional and compositional properties of HDL in subjects from a kindred of genetic apoA-I deficiency, two homozygotes and six heterozygotes, with a nonsense mutation at APOA1 codon -2, Q[-2]X, were recruited together with age- and sex-matched healthy controls (n = 11). Homozygotes displayed undetectable plasma levels of apoA-I and reduced levels of HDL-cholesterol (HDL-C) and apoC-III (5.4% and 42.6% of controls, respectively). Heterozygotes displayed low HDL-C (21 ± 9 mg/dl), low apoA-I (79 ± 24 mg/dl), normal LDL-cholesterol (132 ± 25 mg/dl), and elevated TG (130 ± 45 mg/dl) levels. Cholesterol efflux capacity of ultracentrifugally isolated HDL subpopulations was reduced (up to −25%, P < 0.01, on a glycerophospholipid [GP] basis) in heterozygotes versus controls. Small, dense HDL3 and total HDL from heterozygotes exhibited diminished antioxidative activity (up to −48%, P < 0.001 on a total mass basis) versus controls. HDL subpopulations from both homozygotes and heterozygotes displayed altered chemical composition, with depletion in apoA-I, GP, and cholesteryl ester; enrichment in apoA-II, free cholesterol, and TG; and altered phosphosphingolipidome. The defective atheroprotective activities of HDL were correlated with altered lipid and apo composition. These data reveal that atheroprotective activities of HDL particles are impaired in homozygous and heterozygous apoA-I deficiency and are intimately related to marked alterations in protein and lipid composition.  相似文献   

5.
Apolipoprotein A-I (apoA-I) Nichinan, a naturally occurring variant with ΔE235 in the C terminus, is associated with low plasma HDL levels. Here, we investigated the tertiary structure, lipid-binding properties, and ability to induce cellular cholesterol efflux of apoA-I Nichinan and its C-terminal peptide. Thermal and chemical denaturation experiments demonstrated that the ΔE235 mutation decreased the protein stability compared with wild type (WT). ApoA-I Nichinan exhibited capabilities to bind to or solubilize lipid vesicles that are intermediate to that of WT and a L230P/L233P/Y236P variant in which the C-terminal α-helix folding is completely disrupted and forms relatively larger and unstable discoidal complexes, indicating that perturbation of the C-terminal α-helical structure by the ΔE235 mutation leads to reduced lipid binding. Supporting this, apoA-I 209-241/ΔE235 peptide showed significantly decreased ability to form α-helix both in the lipid-free and lipid-bound states, and reduced efficiency to solubilize vesicles. In addition, both apoA-I Nichinan and its C-terminal peptide exhibited reduced activity in ABCA1-mediated cellular cholesterol efflux. Thus, the disruption of the ability of the C-terminal region to form α-helix caused by the E235 deletion appears to be the important determinant of impaired lipid binding and cholesterol efflux ability and, consequently, the low plasma HDL levels of apoA-I Nichinan probands.  相似文献   

6.
Our aim was to characterize HDL subspecies and fat-soluble vitamin levels in a kindred with familial apolipoprotein A-I (apoA-I) deficiency. Sequencing of the APOA1 gene revealed a nonsense mutation at codon -2, Q[-2]X, with two documented homozygotes, eight heterozygotes, and two normal subjects in the kindred. Homozygotes presented markedly decreased HDL cholesterol levels, undetectable plasma apoA-1, tuboeruptive and planar xanthomas, mild corneal arcus and opacification, and severe premature coronary artery disease. In both homozygotes, analysis of HDL particles by two-dimensional gel electrophoresis revealed undetectable apoA-I, decreased amounts of small alpha-3 migrating apoA-II particles, and only modestly decreased normal amounts of slow alpha migrating apoA-IV- and apoE-containing HDL, while in the eight heterozygotes, there was loss of large alpha-1 HDL particles. There were no significant decreases in plasma fat-soluble vitamin levels noted in either homozygotes or heterozygotes compared with normal control subjects. Our data indicate that isolated apoA-I deficiency results in marked HDL deficiency with very low apoA-II alpha-3 HDL particles, modest reductions in the separate and distinct plasma apoA-IV and apoE HDL particles, tuboeruptive xanthomas, premature coronary atherosclerosis, and no evidence of fat malabsorption.  相似文献   

7.
8.
9.
HDL is the primary mediator of cholesterol mobilization from the periphery to the liver via reverse cholesterol transport (RCT). A critical first step in this process is the uptake of cholesterol from lipid-loaded macrophages by HDL, a function of HDL inversely associated with prevalent and incident cardiovascular disease. We hypothesized that the dynamic ability of HDL to undergo remodeling and exchange of apoA-I is an important and potentially rate-limiting aspect of RCT. In this study, we investigated the relationship between HDL-apoA-I exchange (HAE) and serum HDL cholesterol (HDL-C) efflux capacity. We compared HAE to the total and ABCA1-specific cholesterol efflux capacity of 77 subjects. We found that HAE was highly correlated with both total (r = 0.69, P < 0.0001) and ABCA1-specific (r = 0.47, P < 0.0001) efflux, and this relationship remained significant after adjustment for HDL-C or apoA-I. Multivariate models of sterol efflux capacity indicated that HAE accounted for approximately 25% of the model variance for both total and ABCA1-specific efflux. We conclude that the ability of HDL to exchange apoA-I and remodel, as measured by HAE, is a significant contributor to serum HDL efflux capacity, independent of HDL-C and apoA-I, indicating that HDL dynamics are an important factor in cholesterol efflux capacity and likely RCT.  相似文献   

10.

Objective

High density lipoprotein (HDL) cholesterol levels are inversely related to cardiovascular disease risk and associated with a reduced risk of type 2 diabetes. Apolipoprotein A-I (apoA-I; major HDL protein) mimetics have been reported to reduce atherosclerosis and decrease adiposity. This study investigated the effect of L4F mimetic peptide and apoA-I overexpression on weight gain, insulin resistance, and atherosclerosis in an LDL receptor deficient (Ldlr-/-) model fed a high fat high sucrose with cholesterol (HFHSC) diet.

Methods

Studies in differentiated 3T3-L1 adipocytes tested whether L4F could inhibit palmitate-induced adipocyte inflammation. In vivo studies used male Ldlr-/- mice fed a HFHSC diet for 12 weeks and were injected daily with L4F (100 µg/mouse) subcutaneously during the last 8 weeks. Wild-type and apoA-I overexpressing Ldlr-/- mice were fed HFHSC diet for 16 weeks.

Results

Neither L4F administration nor apoA-I overexpression affected weight gain, total plasma cholesterol or triglycerides in our studies. While pre-treatment of 3T3-L1 adipocytes with either L4F or HDL abolished palmitate-induced cytokine expression in vitro, L4F treatment did not affect circulating or adipose tissue inflammatory markers in vivo. Neither L4F administration nor apoA-I overexpression affected glucose tolerance. ApoA-I overexpression significantly reduced atherosclerotic lesion size, yet L4F treatment did not affect atherosclerosis.

Conclusion

Our results suggest that neither L4F (100 µg/day/mouse) nor apoA-I overexpression affects adiposity or insulin resistance in this model. We also were unable to confirm a reduction in atherosclerosis with L4F in our particular model. Further studies on the effect of apoA-I mimetics on atherosclerosis and insulin resistance in a variety of dietary contexts are warranted.  相似文献   

11.
Paraoxonase-1 (PON1) and HDL are tightly associated in plasma, and this is generally assumed to reflect the need for the enzyme to associate with a hydrophobic complex. The association has been examined in coronary cases and age-matched controls. Highly significant (P < 0.0001), positive associations were observed between PON1 activities and concentrations and HDL-cholesterol and apolipoprotein A-I (apoA-I) concentrations in cases and controls. Corrected slopes were significantly different in cases (cases vs. controls: arylesterase, r = 0.19 vs. 0.38, P < 0.02 for apoA-I and r = 0.15 vs. 0.34, P < 0.02 for HDL-cholesterol) such that if PON1 should influence serum HDL, it would be less effective in coronary cases. When examined as a function of the PON1 gene promoter polymorphism C-107 T, highly significant differences (P < 0.001) in HDL-cholesterol and apoA-I were observed between genotypes for controls, with high expresser alleles having the highest HDL concentrations. This relationship was lost in cases with coronary disease. The coding region polymorphisms Q192R and L55M of the PON1 gene showed no association with HDL. The promoter polymorphism was an independent determinant of HDL concentrations in multivariate analyses. These data are consistent with an impact of PON1 on plasma concentrations of HDL, with detrimental modifications to the relationship in coronary cases.  相似文献   

12.
The effect of alloxan-induced insulin deficiency on high density lipoprotein (HDL) metabolism was studied in rabbits. Rabbits with alloxan-induced diabetes had significantly higher (P less than 0.001, mean +/- SEM) plasma concentrations of glucose (541 +/- 13 vs. 130 +/- 2 mg/dl), triglyceride (2851 +/- 332 vs. 101 +/- 10 mg/dl), and total plasma cholesterol (228 +/- 55 vs. 42 +/- 4 mg/dl) than did normal control rabbits. However, diabetic rabbits had lower plasma HDL-cholesterol (7.2 +/- 1 vs. 51.3 +/- 1.3 mg/dl, P less than 0.001) and HDL apoA-I (38.3 +/- 6.0 vs. 87.2 +/- 4.3 mg/dl, P less than 0.001) concentrations. HDL kinetics were compared in diabetic and normal rabbits, using either 125I-labeled HDL or HDL labeled with 125I-labeled apoA-I, and it was demonstrated that HDL fractional catabolic rate (FCR) was slower and residence time was longer in the diabetic rabbits when either tracer was used. The slow FCR and the low apoA-I pool size led to reduced apoA-I/HDL synthetic rate in diabetic rabbits (0.97 +/- 0.11 vs. 0.34 +/- 0.07 mg per kg per hr). Thus, the reduced plasma HDL-cholesterol concentrations seen in rabbits with alloxan-induced insulin deficiency was associated with a lower total apoA-I/HDL synthetic rate. Since insulin treatment restored to normal all of the changes in plasma lipoprotein concentration and kinetics seen in diabetic rabbits, it is unlikely that the phenomena observed were secondary to a nonspecific toxic effect of alloxan. These data strongly support the view that insulin plays an important role in regulation of HDL metabolism.  相似文献   

13.
Apolipoprotein M (apoM), a plasma sphingosine 1-phosphate (S1P) carrier, associates with plasma HDL via its uncleaved signal peptide. Hepatocyte-specific apoM overexpression in mice stimulates formation of both larger nascent HDL in hepatocytes and larger mature apoM/S1P-enriched HDL particles in plasma by enhancing hepatic S1P synthesis and secretion. Mutagenesis of apoM glutamine 22 to alanine (apoMQ22A) introduces a functional signal peptidase cleavage site. Expression of apoMQ22A in ABCA1-expressing HEK293 cells resulted in the formation of smaller nascent HDL particles compared with wild type apoM (apoMWT). When apoMQ22A was expressed in vivo, using recombinant adenoviruses, smaller plasma HDL particles and decreased plasma S1P and apoM were observed relative to expression of apoMWT. Hepatocytes isolated from both apoMWT- and apoMQ22A-expressing mice displayed an equivalent increase in cellular levels of S1P, relative to LacZ controls; however, relative to apoMWT, apoMQ22A hepatocytes displayed more rapid apoM and S1P secretion but minimal apoMQ22A bound to nascent lipoproteins. Pharmacologic inhibition of ceramide synthesis increased cellular sphingosine and S1P but not medium S1P in both apoMWT and apoMQ22A hepatocytes. We conclude that apoM secretion is rate-limiting for hepatocyte S1P secretion and that its uncleaved signal peptide delays apoM trafficking out of the cell, promoting formation of larger nascent apoM- and S1P-enriched HDL particles that are probably precursors of larger apoM/S1P-enriched plasma HDL.  相似文献   

14.
Numerous factors are known to affect the plasma metabolism of HDL, including lipoprotein receptors, lipid transfer protein, lipolytic enzymes and HDL apolipoproteins. In order to better define the role of HDL apolipoproteins in determining plasma HDL concentrations, the aims of the present study were: a) to compare the in vivo rate of plasma turnover of HDL apolipoproteins [i.e., apolipoprotein A-I (apoA-I), apoC-I, apoC-III, and apoE], and b) to investigate to what extent these metabolic parameters are related to plasma HDL levels. We thus studied 16 individuals with HDL cholesterol levels ranging from 0.56-1.66 mmol/l and HDL apoA-I levels ranging from 89-149 mg/dl. Plasma kinetics of HDL apolipoproteins were investigated using a primed constant (12 h) infusion of deuterated leucine. Plasma HDL apolipoprotein levels were 41.8 +/- 1.5, 9.7 +/- 0.5, 4.9 +/- 0.5, and 0.7 +/- 0.1 micromol/l for apoA-I, apoC-I, apoC-III and apoE. Plasma transport rates (TRs) were 388.6 +/- 24.7, 131.5 +/- 12.5, 66.5 +/- 9.1, and 31.4 +/- 3.3 nmol.kg-1.day-1; and residence times (RTs) were 5.1 +/- 0.4, 3.7 +/- 0.3, 3.6 +/- 0.3, and 1.1 +/- 0.1 days, respectively. HDL cholesterol and apoA-I levels were significantly correlated with HDL apoA-I RT (r = 0.69 and r = 0.56), and were not significantly correlated with HDL apoA-I TR. In contrast, HDL apoC-I, apoC-III, and apoB levels were all positively related to their TRs and not their RTs. HDL apoC-III TR was positively correlated with levels of HDL apoC-III (r = 0.73, P < 0.01), and with those of HDL cholesterol and apoA-I (r = 0.54 and r = 0.53, P < 0.05, respectively). HDL apoC-III TR was in turn related to HDL apoA-I RT (r = 0.51, P < 0.05). Together, these results provide in vivo evidence for a link between the metabolism of HDL apoC-III and apoA-I, and suggest a role for apoC-III in the regulation of plasma HDL levels.  相似文献   

15.
16.
Defects in the gene encoding for the ATP binding cassette (ABC) transporter A1 (ABCA1) were shown to be one of the genetic causes for familial hypoalphalipoproteinemia (FHA). We investigated the role of ABCA1-mediated cholesterol efflux in Dutch subjects suffering from FHA. Eighty-eight subjects (mean HDL cholesterol levels 0.63 +/- 0.21 mmol/l) were enrolled. Fibroblasts were cultured and loaded with [3H]cholesterol. ABCA1 and non-ABCA1-mediated efflux was studied by using apolipoprotein A-I (apoA-I), HDL, and methyl-beta-cyclodextrin as acceptors. Efflux to apoA-I was decreased in four patients (4/88, 4.5%), and in all cases, a mutation in the ABCA1 gene was found. In the remaining 84 subjects, no correlation between efflux and apoA-I or HDL cholesterol was found. Efflux to both HDL and cyclodextrin, in contrast, did correlate with HDL cholesterol plasma levels (r = 0.34, P = 0.01; and r = 0.27, P = 0.008, respectively). The prevalence of defects in ABCA1-dependent cholesterol efflux in Dutch FHA patients is low. The significant correlation between plasma HDL cholesterol levels and methyl-beta-cyclodextrin-mediated efflux in the FHA patients with normal ABCA1 function suggests that non-ABCA1-mediated efflux might also be important for plasma HDL cholesterol levels in these individuals.  相似文献   

17.
The objective of the present study was to examine the impact of the T111I missense mutation in exon 3 of the endothelial lipase (EL) gene on HDL and its potential interaction effect with dietary fat. The study sample included 281 women and 216 men aged between 17 and 76 years from the Québec Family Study. Plasma HDL3-C levels of I111I homozygote women were higher compared with those of women carrying the wild-type allele (P = 0.03). These differences were not attenuated when adjusted for levels of obesity and were not observed among men. Dietary PUFA interacted with the T111I mutation to modulate apolipoprotein A-I (apoA-I) and HDL3-C levels among women. Specifically, a diet rich in PUFA was associated with increased apoA-I levels among women carriers of the I111 allele and with decreased apoA-I among women homozygotes for the wild-type allele (P = 0.002). A similar interaction was observed with plasma HDL3-C levels (P = 0.003). These interactions were not observed among men. In conclusion, the EL T111I mutation appears to have a modest effect on plasma HDL levels. The gene-diet interaction among women, however, suggests that the T111I missense mutation may confer protection against the lowering effect of a high dietary PUFA intake on plasma apoA-I and HDL3-C levels.  相似文献   

18.
We investigated the significance of hydrophobic and charged residues 218–226 on the structure and functions of apoA-I and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of apoA-I[L218A/L219A/V221A/L222A] in apoA-I−/− mice decreased plasma cholesterol and apoA-I levels to 15% of wild-type (WT) control mice and generated pre-β- and α4-HDL particles. In apoA-I−/− × apoE−/− mice, the same mutant formed few discoidal and pre-β-HDL particles that could not be converted to mature α-HDL particles by excess LCAT. Expression of the apoA-I[E223A/K226A] mutant in apoA-I−/− mice caused lesser but discrete alterations in the HDL phenotype. The apoA-I[218–222] and apoA-I[E223A/K226A] mutants had 20% and normal capacity, respectively, to promote ABCA1-mediated cholesterol efflux. Both mutants had ∼65% of normal capacity to activate LCAT in vitro. Biophysical analyses suggested that both mutants affected in a distinct manner the structural integrity and plasticity of apoA-I that is necessary for normal functions. We conclude that the alteration of the hydrophobic 218–222 residues of apoA-I disrupts apoA-I/ABCA1 interactions and promotes the generation of defective pre-β particles that fail to mature into α-HDL subpopulations, thus resulting in low plasma apoA-I and HDL. Alterations of the charged 223, 226 residues caused milder but discrete changes in HDL phenotype.  相似文献   

19.
In the acute phase of the inflammatory response, secretory phospholipase A2 (sPLA2) reaches its maximum levels in plasma, where it is mostly associated with high density lipoproteins (HDL). Overexpression of human sPLA2 in transgenic mice reduces both HDL cholesterol and apolipoprotein A-I (apoA-I) plasma levels through increased HDL catabolism by an unknown mechanism. To identify unknown PLA2-mediated activities on the molecular components of HDL, we characterized the protein and lipid products of the PLA2 reaction with HDL. Consistent with previous studies, hydrolysis of HDL phospholipids by PLA2 reduced the particle size without changing its protein composition. However, when HDL was destabilized in the presence of PLA2 by the action of cholesteryl ester transfer protein or by guanidine hydrochloride treatment, a fraction of apoA-I, but no other proteins, dissociated from the particle and was rapidly cleaved. Incubation of PLA2 with lipid-free apoA-I produced similar protein fragments in the range of 6–15 kDa, suggesting specific and direct reaction of PLA2 with apoA-I. Mass spectrometry analysis of isolated proteolytic fragments indicated at least two major cleavage sites at the C-terminal and the central domain of apoA-I. ApoA-I proteolysis by PLA2 was Ca2+-independent, implicating a different mechanism from the Ca2+-dependent PLA2-mediated phospholipid hydrolysis. Inhibition of proteolysis by benzamidine suggests that the proteolytic and lipolytic activities of PLA2 proceed through different mechanisms. Our study identifies a previously unknown proteolytic activity of PLA2 that is specific to apoA-I and may contribute to the enhanced catabolism of apoA-I in inflammation and atherosclerosis.  相似文献   

20.
Chroni A  Duka A  Kan HY  Liu T  Zannis VI 《Biochemistry》2005,44(43):14353-14366
We have analyzed the effect of charged to neutral amino acid substitutions around the kinks flanking helices 4 and 6 of apoA-I and of the deletion of helix 6 on the in vivo activity of LCAT and the biogenesis of HDL. The LCAT activation capacity of apoA-I in vitro was nearly abolished by the helix 6 point (helix 6P-apoA-I[R160V/H162A]) and deletion {helix 6Delta-apoA-I[Delta(144-165)]} mutants, but was reduced to 50% in the helix 4 point mutant (helix 4P-apoA-I[D102A/D103A]). Following adenovirus-mediated gene transfer in apoA-I deficient mice, the level of plasma HDL cholesterol was greatly reduced in helix 6P and helix 6Delta mutants. Electron microscopy and two-dimensional gel electrophoresis showed that the helix 6P mutant formed predominantly high levels of apoA-I containing discoidal particles and had an increased prebeta1-HDL/alpha-HDL ratio. The helix 6Delta mutant formed few spherical particles and had an increased prebeta1-HDL/alpha-HDL ratio. Mice infected with adenovirus expressing the helix 4P mutant or wild-type apoA-I had normal HDL cholesterol and formed spherical alpha-HDL particles. Coinfection of mice with adenoviruses expressing human LCAT and the helix 6P mutant dramatically increased plasma HDL and apoA-I levels and converted the discoidal into spherical HDL, indicating that the LCAT activity was rate-limiting for the biogenesis of HDL. The LCAT treatment caused only a small increase in HDL cholesterol and apoA-I levels and in alpha-HDL particle numbers in the helix 6Delta mutant. The findings indicate a critical contribution of residue 160 of apoA-I to the in vivo activity of LCAT and the subsequent maturation of HDL and explain the low HDL levels in heterozygous subjects carrying this mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号