首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
During untreated human immunodeficiency virus type 1 (HIV-1) infection, virus-specific CD8+ T cells partially control HIV replication in peripheral lymphoid tissues, but host mechanisms of HIV control in the central nervous system (CNS) are incompletely understood. We characterized HIV-specific CD8+ T cells in cerebrospinal fluid (CSF) and peripheral blood among seven HIV-positive antiretroviral therapy-naïve subjects. All had grossly normal brain magnetic resonance imaging and spectroscopy and normal neuropsychometric testing. Frequencies of epitope-specific CD8+ T cells by direct tetramer staining were on average 2.4-fold higher in CSF than in blood (P = 0.0004), while HIV RNA concentrations were lower. Cells from CSF were readily expanded ex vivo and responded to a broader range of HIV-specific human leukocyte antigen class I restricted optimal peptides than did expanded cells from blood. HIV-specific CD8+ T cells, in contrast to total CD8+ T cells, in CSF and blood were at comparable maturation states, as assessed by CD45RO and CCR7 staining. The strong relationship between higher T-cell frequencies and lower levels of viral antigen in CSF could be the result of increased migration to and/or preferential expansion of HIV-specific T cells within the CNS. This suggests an important role for HIV-specific CD8+ T cells in control of intrathecal viral replication.Human immunodeficiency virus type 1 (HIV-1) invades the central nervous system (CNS) early during primary infection (21, 30, 35), and proviral DNA persists in the brain throughout the course of HIV-1 disease (7, 25, 29, 47, 77, 83). Limited data from human and nonhuman primate studies suggest that little or no viral replication occurs in the brain during chronic, asymptomatic infection, based on the absence of demonstrable viral RNA or proteins (8, 85). In contrast, cognitive impairment affects approximately 40% of patients who progress to advanced AIDS without highly active antiretroviral therapy (21, 30, 35, 65). During HIV-associated dementia, there is active HIV-1 replication in the brain (23, 52, 61, 81), and viral sequence differences between cerebrospinal fluid (CSF) and peripheral tissues suggest distinct anatomic compartments of replication (18, 19, 22, 53, 75, 76, 78). Host mechanisms that control viral replication in the CNS during chronic, asymptomatic HIV-1 infection are incompletely understood.Anti-HIV CD8+ T cells are present in blood and peripheral tissues throughout the course of chronic HIV-1 infection (2, 14). Multiple lines of evidence support a critical role for these cells in controlling HIV-1 replication. During acute HIV-1 infection, the appearance of CD8+ T-cell responses correlates temporally with a decline in viremia (11, 43), and a greater proliferative capacity of peripheral blood HIV-specific CD8+ T cells correlates with better control of viremia (36, 54). In addition, the presence of certain major histocompatibility complex class I human leukocyte antigen (HLA) alleles, notably HLA-B*57, predicts slower progression to AIDS and death during chronic, untreated HIV-1 infection (55, 62). Finally, in the simian immunodeficiency virus (SIV) model, macaques depleted of CD8+ T cells experience increased viremia and rapid disease progression (39, 51, 67).Little is known regarding the role of intrathecal anti-HIV CD8+ T cells in HIV neuropathogenesis. Nonhuman primate studies have identified SIV-specific CD8+ T cells in the CNS early after infection (16, 80). Increased infiltration of SIV antigen-specific CD8+ T cells and cytotoxic T lymphocytes has been detected only in CSF of slow progressors without neurological symptoms (72). In chronically infected macaques with little or no SIV replication in the brain, the frequency of HIV-specific T cells was higher in CSF than in peripheral blood but did not correlate with the level of plasma viremia or CD4+ T-cell counts (56). Although intrathecal anti-HIV CD8+ T cells may help control viral replication, a detrimental role in the neuropathogenesis of HIV-1 has also been postulated (38). Immune responses contribute to neuropathogenesis in models of other infectious diseases, and during other viral infections cytotoxic T lymphocytes can worsen disease through direct cytotoxicity or release of inflammatory cytokines such as gamma interferon (IFN-γ) (3, 17, 31, 37, 42, 44, 71).We tested the hypothesis that quantitative and/or qualitative differences in HIV-specific CD8+ T-cell responses are present in CSF compared to blood during chronic, untreated HIV-1 infection. We characterized HIV-specific CD8+ T-cell responses in CSF among seven antiretroviral therapy-naïve adults with chronic HIV-1 infection, relatively high peripheral blood CD4+ T-cell counts, and low plasma HIV-1 RNA concentrations. We show that among these HIV-positive individuals with no neurological symptoms and with little or no HIV-1 RNA in CSF, frequencies of HIV-specific T cells are significantly higher in CSF than in blood. These CSF cells are at a state of differentiation similar to that of T cells in blood and are functionally competent for expansion and IFN-γ production. The higher frequency of functional HIV-specific CD8+ T cells in CSF, in the context of low or undetectable virus in CSF, suggests that these cells play a role in the control of intrathecal viral replication.  相似文献   

3.
Developing an immunotherapy to keep human immunodeficiency virus type 1 (HIV-1) replication suppressed while discontinuing highly active antiretroviral therapy (HAART) is an important challenge. In the present work, we evaluated in vitro whether dendritic cells (DC) electroporated with gag mRNA can induce HIV-specific responses in T cells from chronically infected subjects. Monocyte-derived DC, from therapy-naïve and HAART-treated HIV-1-seropositive subjects, that were electroporated with consensus codon-optimized HxB2 gag mRNA efficiently expanded T cells, secreting gamma interferon (IFN-γ) and interleukin 2 (IL-2), as well as other cytokines and perforin, upon restimulation with a pool of overlapping Gag peptides. The functional expansion levels after 1 week of stimulation were comparable in T cells from HAART-treated and treatment-naïve patients and involved both CD4+ and CD8+ T cells, with evidence of bifunctionality in T cells. Epitope mapping of p24 showed that stimulated T cells had a broadened response toward previously nondescribed epitopes. DC, from HAART-treated subjects, that were electroporated with autologous proviral gag mRNA equally efficiently expanded HIV-specific T cells. Regulatory T cells did not prevent the induction of effector T cells in this system, whereas the blocking of PD-L1 slightly increased the induction of T-cell responses. This paper shows that DC, loaded with consensus or autologous gag mRNA, expand HIV-specific T-cell responses in vitro.Studies of immune responses generated in human immunodeficiency virus type 1 (HIV-1)-infected individuals suggest that CD8+ T cells play an important role in the defense against the virus. In acute HIV infection, the appearance of HIV-specific CD8+ T cells is associated with a decline in viremia (11, 32). More-direct evidence for the role of CD8+ T cells in viral control is deduced from studies of simian immune deficiency virus (SIV)-infected rhesus macaques in which the depletion of the CD8+ T cells results in an increase of the viral load and rapid disease progression (41, 55), although this is not always the case (35). Among HIV-infected humans, long-term nonprogressors (LTNP) with an undetectable viral load have higher levels of multifunctional HIV-specific CD8+ T cells in comparison to patients with rapidly progressive disease (53). Conversely, the HIV-specific CD8+ T cells from rapid progressors release low levels of interleukin 2 (IL-2) and high levels of gamma interferon (IFN-γ), they have a reduced proliferative capacity, and their perforin expression is impaired or exhausted (42, 69). Moreover, during primary and chronic infection, viral escape mutations are often observed as a consequence of immunological pressure mediated by SIV- and HIV-specific CD8+ T cells (3, 12, 20, 23, 50). During this process of viral adaptation, all the previous variants are stored as proviral DNA (46).Although current highly active antiretroviral therapy (HAART) may suppress viral replication and protect against disease progression, it is unable to eliminate the proviral latent reservoir. Moreover, as a consequence of low or absent HIV antigenic stimulation, HIV-1-specific cytotoxic T lymphocyte (CTL) responses tend to wane during HAART (16, 39). Therapy interruption invariably results in a viral rebound to pretreatment levels, indicating that no protective immunity has been built up during therapy (38). On the other hand, the partial immune reconstitution, induced by HAART, opens a window of opportunity to boost T-cell immunity by therapeutic vaccination. Clearly, it is not sufficient to enhance the response against the circulating virus. To minimize the risk of escape, it is equally important that immune responses against the entire latent reservoir are activated (49).Dendritic cells (DC) are the most powerful antigen-presenting cells (APC) that can stimulate effective immune responses both in vitro and in vivo (5, 9, 62). In the context of DC-based immunotherapy, many groups have used DC expressing HIV antigens (e.g., pulsed with peptides, transduced with different vectors, or loaded with apoptotic infected cells) to stimulate memory (19, 34, 59, 69) or even primary (13, 14, 33, 63, 66, 67) CD8+ T cells in vitro. In vivo, SIV-specific CD8+ and CD4+ T-cell responses were induced in macaques using DC expressing SIV antigen (63). Finally, Lu and Andrieu and Lu et al. (36, 37) showed that DC pulsed with chemically inactivated autologous virus specifically stimulated HIV-specific immune responses in vitro and in vivo in cells of HIV-1-seropositive individuals.Recently, we (47, 48, 61) and others (9, 15, 22, 28, 40, 54, 57) have shown that transfection with mRNA is more effective than mRNA lipofection, peptide pulsing, or viral transduction to generate primary (65) and memory (57) responses. Furthermore, we demonstrated that DC from treatment-naïve HIV-1-seropositive subjects can efficiently be transfected with HIV gag and env mRNA, derived either from consensus subtype B or autologous viral or proviral HIV, and that these DC readily trigger autologous CD4+ and CD8+ T cells to release IFN-γ and IL-2 in a short-term ex vivo enzyme-linked immunospot (ELISPOT) assay (60).Our previous study (60) considered only the direct ex vivo immune responses of untreated HIV-1-seropositive persons, who have, by definition, a rather damaged immune system (42). Therefore, with the ultimate aim to develop an immunotherapy based on DC, we decided to evaluate the responses of treatment-naïve and HAART-treated HIV-1-seropositive persons after 1 week of stimulation with electroporated DC. Besides IFN-γ production, other parameters were also evaluated, such as a series of other cytokines, measured in various ways (by ELISPOT, microbead assay, and intracellular cytometry), and the potential influence of regulatory T cells (Treg) on the response. Finally, because HIV escapes very easily from the immune system, we also investigated if it is possible to use autologous proviral gag mRNA and to broaden the immune response.  相似文献   

4.
The structural precursor polyprotein, Gag, encoded by all retroviruses, including the human immunodeficiency virus type 1 (HIV-1), is necessary and sufficient for the assembly and release of particles that morphologically resemble immature virus particles. Previous studies have shown that the addition of Ca2+ to cells expressing Gag enhances virus particle production. However, no specific cellular factor has been implicated as mediator of Ca2+ provision. The inositol (1,4,5)-triphosphate receptor (IP3R) gates intracellular Ca2+ stores. Following activation by binding of its ligand, IP3, it releases Ca2+ from the stores. We demonstrate here that IP3R function is required for efficient release of HIV-1 virus particles. Depletion of IP3R by small interfering RNA, sequestration of its activating ligand by expression of a mutated fragment of IP3R that binds IP3 with very high affinity, or blocking formation of the ligand by inhibiting phospholipase C-mediated hydrolysis of the precursor, phosphatidylinositol-4,5-biphosphate, inhibited Gag particle release. These disruptions, as well as interference with ligand-receptor interaction using antibody targeted to the ligand-binding site on IP3R, blocked plasma membrane accumulation of Gag. These findings identify IP3R as a new determinant in HIV-1 trafficking during Gag assembly and introduce IP3R-regulated Ca2+ signaling as a potential novel cofactor in viral particle release.Assembly of the human immunodeficiency virus (HIV) is determined by a single gene that encodes a structural polyprotein precursor, Gag (71), and may occur at the plasma membrane or within late endosomes/multivesicular bodies (LE/MVB) (7, 48, 58; reviewed in reference 9). Irrespective of where assembly occurs, the assembled particle is released from the plasma membrane of the host cell. Release of Gag as virus-like particles (VLPs) requires the C-terminal p6 region of the protein (18, 19), which contains binding sites for Alix (60, 68) and Tsg101 (17, 37, 38, 41, 67, 68). Efficient release of virus particles requires Gag interaction with Alix and Tsg101. Alix and Tsg101 normally function to sort cargo proteins to LE/MVB for lysosomal degradation (5, 15, 29, 52). Previous studies have shown that addition of ionomycin, a calcium ionophore, and CaCl2 to the culture medium of cells expressing Gag or virus enhances particle production (20, 48). This is an intriguing observation, given the well-documented positive role for Ca2+ in exocytotic events (33, 56). It is unclear which cellular factors might regulate calcium availability for the virus release process.Local and global elevations in the cytosolic Ca2+ level are achieved by ion release from intracellular stores and by influx from the extracellular milieu (reviewed in reference 3). The major intracellular Ca2+ store is the endoplasmic reticulum (ER); stores also exist in MVB and the nucleus. Ca2+ release is regulated by transmembrane channels on the Ca2+ store membrane that are formed by tetramers of inositol (1,4,5)-triphosphate receptor (IP3R) proteins (reviewed in references 39, 47, and 66). The bulk of IP3R channels mediate release of Ca2+ from the ER, the emptying of which signals Ca2+ influx (39, 51, 57, 66). The few IP3R channels on the plasma membrane have been shown to be functional as well (13). Through proteomic analysis, we identified IP3R as a cellular protein that was enriched in a previously described membrane fraction (18) which, in subsequent membrane floatation analyses, reproducibly cofractionated with Gag and was enriched in the membrane fraction only when Gag was expressed. That IP3R is a major regulator of cytosolic calcium concentration (Ca2+) is well documented (39, 47, 66). An IP3R-mediated rise in cytosolic Ca2+ requires activation of the receptor by a ligand, inositol (1,4,5)-triphosphate (IP3), which is produced when phospholipase C (PLC) hydrolyzes phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] at the plasma membrane (16, 25, 54). Paradoxically, PI(4,5)P2 binds to the matrix (MA) domain in Gag (8, 55, 59), and the interaction targets Gag to PI(4,5)P2-enriched regions on the plasma membrane; these events are required for virus release (45). We hypothesized that PI(4,5)P2 binding might serve to target Gag to plasma membrane sites of localized Ca2+ elevation resulting from PLC-mediated PI(4,5)P2 hydrolysis and IP3R activation. This idea prompted us to investigate the role of IP3R in Gag function.Here, we show that HIV-1 Gag requires steady-state levels of IP3R for its efficient release. Three isoforms of IP3R, types 1, 2, and 3, are encoded in three independent genes (39, 47). Types 1 and 3 are expressed in a variety of cells and have been studied most extensively (22, 39, 47, 73). Depletion of the major isoforms in HeLa or COS-1 cells by small interfering RNA (siRNA) inhibited viral particle release. Moreover, we show that sequestration of the IP3R activating ligand or blocking ligand formation also inhibited Gag particle release. The above perturbations, as well as interfering with receptor expression or activation, led to reduced Gag accumulation at the cell periphery. The results support the conclusion that IP3R activation is required for efficient HIV-1 viral particle release.  相似文献   

5.
6.
We wanted to examine the cellular locations of four Neurospora crassa proteins that transport calcium. However, the structure and distribution of organelles in live hyphae of N. crassa have not been comprehensively described. Therefore, we made recombinant genes that generate translational fusions of putative organellar marker proteins with green or red fluorescent protein. We observed putative endoplasmic reticulum proteins, encoded by grp-78 and dpm, in the nuclear envelope and associated membranes. Proteins of the vacuolar membrane, encoded by vam-3 and vma-1, were in an interconnected network of small tubules and vesicles near the hyphal tip, while in more distal regions they were in large and small spherical vacuoles. Mitochondria, visualized with tagged ARG-4, were abundant in all regions of the hyphae. Similarly, we tagged the four N. crassa proteins that transport calcium with green or red fluorescent protein to examine their cellular locations. NCA-1 protein, a homolog of the SERCA-type Ca2+-ATPase of animal cells, colocalized with the endoplasmic reticulum markers. The NCA-2 and NCA-3 proteins are homologs of Ca2+-ATPases in the vacuolar membrane in yeast or in the plasma membrane in animal cells. They colocalized with markers in the vacuolar membrane, and they also occurred in the plasma membrane in regions of the hyphae more than 1 mm from the tip. The cax gene encodes a Ca2+/H+ exchange protein found in vacuoles. As expected, the CAX protein localized to the vacuolar compartment. We observed, approximately 50 to 100 μm from the tip, a few spherical organelles that had high amounts of tagged CAX protein and tagged subunits of the vacuolar ATPase (VMA-1 and VMA-5). We suggest that this organelle, not described previously in N. crassa, may have a role in sequestering calcium.All cells maintain intracellular concentrations of calcium at precise levels, typically about 0.1 μM in the cytosol. Calcium is often present at high levels in the environment, significantly above the level that is tolerated within the cell. Nevertheless, high concentrations are maintained in some organelles because calcium has an essential role in signaling physiological processes (3, 7, 29). In root hairs, pollen tubes, and the hyphae of filamentous fungi calcium has been postulated to have a central role in directing the growth at the tips of these cells (30, 32, 34, 38, 41, 49). Investigators have reported that in filamentous fungi the concentration of calcium is highest at the hyphal tip (56, 59). Disruption of the calcium gradient by ionophores inhibits growth (52). Mutations in some genes that affect hyphal morphology, e.g., frost and spray, can be suppressed by raising the concentration of calcium in the medium (4, 16). However, the growth of wild-type strains is not significantly affected by the external concentration of calcium, which suggests that cytosolic calcium is controlled by regulating calcium uptake and release from organelles (36, 55, 59).The proteins that transport calcium into organelles have been studied extensively in Saccharomyces cerevisiae. In this organism, more than 90% of the intracellular calcium is in the vacuole (19, 22), transported there by a protein that facilitates Ca2+/H+ exchange,Vcx1p, and by a calcium-pumping ATPase, Pmc1p (13, 14, 47). Another calcium-pumping ATPase, Pmr1p, can transport calcium or manganese into the Golgi bodies (1, 51, 57). S. cerevisiae has not been reported to have a calcium-pumping ATPase in the plasma membrane or a SERCA-type ATPase in the endoplasmic reticulum (ER). Pmr1p may have a dual function in Golgi body- and ER-associated processes (20).In plant and animal cells, three types of calcium-pumping ATPases have been described (3, 7, 9, 58). The PMCA type (most closely related to the Pmc1p ATPase of S. cerevisiae) primarily pumps calcium across the plasma membrane, removing excess calcium from the cytosol. The SERCA type, named by its location in the smooth ER, has a major role in transporting calcium in muscle cells but is also present in the ER in many types of cells. S. cerevisiae has no homolog to the SERCA ATPase. The SPCA type (secretory pathway Ca2+-ATPases) is found in the Golgi bodies and is homologous to the Pmr1p ATPase of S. cerevisiae (3, 42). The mitochondria also contain a significant share of intracellular calcium. No calcium-pumping ATPase has been identified in this organelle, and transport has been hypothesized to occur through a channel protein, driven by the same electrochemical gradient that drives the synthesis of ATP (18, 35). In addition, calcium is sequestered in small vesicles and in lysosomelike compartments, presumably transported by Ca2+/H+ exchange proteins (29).The availability of the complete genomes for N. crassa and other filamentous fungi has allowed us to assess the number and types of calcium transport proteins in these organisms (62). Focusing on N. crassa, we found that all three types of calcium-pumping ATPases are present. These genes had been identified earlier in a PCR-based search for P-type ATPases (2). The N. crassa gene nca-1 encodes a SERCA type ATPase. The nca-2 and nca-3 genes are closely related to each other and appear to encode PMCA type ATPases. The pmr gene is a SPCA type. We also identified the cax gene as a homolog of VCX1, the gene encoding the Ca2+/H+ exchanger that plays a key role in vacuolar transport in S. cerevisiae.Our long-term goal is to use these five genes (nca-1, nca-2, nca-3, pmr, and cax) to find out where calcium is localized in cells and how it gets there. We first wanted to determine the intracellular location of each transporter, using proteins tagged with green and red fluorescent proteins (GFP and RFP, respectively). For N. crassa and most other filamentous fungi a comprehensive analysis of the structure and distribution of organelles in living cells is lacking. GFP and fluorescent dyes have been used successfully to examine nuclei and mitochondria (24, 26). Several reports have shown that “the vacuole” is far more dynamic and complex than the textbook presentation of a large spherical organelle (10, 24, 31, 33, 54). Our understanding of the structure and abundance of the ER and the Golgi body is limited.In this report, we have fused GFP and RFP to proteins predicted to be localized to nuclei, mitochondria, the ER, the Golgi body, and the vacuole. Similarly, we have made GFP- and RFP-tagged forms of each of the five calcium transport proteins described above. We have examined the abundance and structures of the organelles and have observed (as have others) that these change with distance from the hyphal tip. We have tried to determine whether each of the calcium transport proteins is associated with a unique organelle or with the plasma membrane. In studies parallel to those reported here, we are measuring the amount of calcium in cell organelles and characterizing the phenotypes of strains in which the calcium transport genes have been deleted.  相似文献   

7.
Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria. Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-induced alteration of the MAM protein composition.The human cytomegalovirus (HCMV) UL37 immediate early (IE) locus expresses multiple products, including the predominant UL37 exon 1 protein, pUL37x1, also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), during lytic infection (16, 22, 24, 39, 44). The UL37 glycoprotein (gpUL37) shares UL37x1 sequences and is internally cleaved, generating pUL37NH2 and gpUL37COOH (2, 22, 25, 26). pUL37x1 is essential for the growth of HCMV in humans (17) and for the growth of primary HCMV strains (20) and strain AD169 (14, 35, 39, 49) but not strain TownevarATCC in permissive human fibroblasts (HFFs) (27).pUL37x1 induces calcium (Ca2+) efflux from the endoplasmic reticulum (ER) (39), regulates viral early gene expression (5, 10), disrupts F-actin (34, 39), recruits and inactivates Bax at the mitochondrial outer membrane (MOM) (4, 31-33), and inhibits mitochondrial serine protease at late times of infection (28).Intriguingly, HCMV UL37 proteins localize dually in the ER and in the mitochondria (2, 9, 16, 17, 24-26). In contrast to other characterized, similarly localized proteins (3, 6, 11, 23, 30, 38), dual-trafficking UL37 proteins are noncompetitive and sequential, as an uncleaved gpUL37 mutant protein is ER translocated, N-glycosylated, and then imported into the mitochondria (24, 26).Ninety-nine percent of ∼1,000 mitochondrial proteins are synthesized in the cytosol and directly imported into the mitochondria (13). However, the mitochondrial import of ER-synthesized proteins is poorly understood. One potential pathway is the use of the mitochondrion-associated membrane (MAM) as a transfer waypoint. The MAM is a specialized ER subdomain enriched in lipid-synthetic enzymes, lipid-associated proteins, such as sigma-1 receptor, and chaperones (18, 45). The MAM, the site of contact between the ER and the mitochondria, permits the translocation of membrane-bound lipids, including ceramide, between the two organelles (40). The MAM also provides enriched Ca2+ microdomains for mitochondrial signaling (15, 36, 37, 43, 48). One macromolecular MAM complex involved in efficient ER-to-mitochondrion Ca2+ transfer is comprised of ER-bound inositol 1,4,5-triphosphate receptor 3 (IP3R3), cytosolic Grp75, and a MOM-localized voltage-dependent anion channel (VDAC) (42). Another MAM-stabilizing protein complex utilizes mitofusin 2 (Mfn2) to tether ER and mitochondrial organelles together (12).HCMV UL37 proteins traffic into the MAM of transiently transfected HFFs and HeLa cells, directed by their NH2-terminal leaders (8, 47). To determine whether the MAM is targeted by UL37 proteins during infection, we fractionated HCMV-infected cells and examined pUL37x1 trafficking in microsomes, mitochondria, and the MAM throughout all temporal phases of infection. Because MAM domains physically bridge two organelles, multiple markers were employed to verify the purity and identity of the fractions (7, 8, 19, 46, 47).(These studies were performed in part by Chad Williamson in partial fulfillment of his doctoral studies in the Biochemistry and Molecular Genetics Program at George Washington Institute of Biomedical Sciences.)HFFs and life-extended (LE)-HFFs were grown and not infected or infected with HCMV (strain AD169) at a multiplicity of 3 PFU/cell as previously described (8, 26, 47). Heavy (6,300 × g) and light (100,000 × g) MAM fractions, mitochondria, and microsomes were isolated at various times of infection and quantified as described previously (7, 8, 47). Ten- or 20-μg amounts of total lysate or of subcellular fractions were resolved by SDS-PAGE in 4 to 12% Bis-Tris NuPage gels (Invitrogen) and examined by Western analyses (7, 8, 26). Twenty-microgram amounts of the fractions were not treated or treated with proteinase K (3 μg) for 20 min on ice, resolved by SDS-PAGE, and probed by Western analysis. The blots were probed with rabbit anti-UL37x1 antiserum (DC35), goat anti-dolichyl phosphate mannose synthase 1 (DPM1), goat anti-COX2 (both from Santa Cruz Biotechnology), mouse anti-Grp75 (StressGen Biotechnologies), and the corresponding horseradish peroxidase-conjugated secondary antibodies (8, 47). Reactive proteins were detected by enhanced chemiluminescence (ECL) reagents (Pierce), and images were digitized as described previously (26, 47).  相似文献   

8.
9.
We show that poliovirus (PV) infection induces an increase in cytosolic calcium (Ca2+) concentration in neuroblastoma IMR5 cells, at least partly through Ca2+ release from the endoplasmic reticulum lumen via the inositol 1,4,5-triphosphate receptor (IP3R) and ryanodine receptor (RyR) channels. This leads to Ca2+ accumulation in mitochondria through the mitochondrial Ca2+ uniporter and the voltage-dependent anion channel (VDAC). This increase in mitochondrial Ca2+ concentration in PV-infected cells leads to mitochondrial dysfunction and apoptosis.Poliovirus (PV), the prototype member of the Picornaviridae family, is the etiological agent of paralytic poliomyelitis (26, 27). This acute human disease of the central nervous system results from the destruction of motor neurons associated with PV replication. In PV-infected mice, motor neurons die through apoptosis (16). However, the mechanisms involved are poorly understood (5).Apoptosis is an active cell death process triggered by various stimuli, including viral infections (18). This process leads to DNA fragmentation and is triggered by two main pathways (22): (i) the extrinsic pathway, mediated by the activation of cell surface death receptors such as Fas/CD95, and (ii) the intrinsic pathway, characterized notably by mitochondrial membrane permeabilization (MMP). In many models, this process implies a loss of mitochondrial transmembrane potential (Δψm) and the release of proapoptotic molecules, including cytochrome c, from the mitochondrial intermembrane space into the cytosol. The apoptotic program initiated by PV infection has been shown to involve mitochondrial dysfunction in several cell lines (2-4, 17).The intrinsic pathway also can originate from the endoplasmic reticulum (ER) (30). The ER participates in protein synthesis and folding, cellular responses to stress, and intracellular calcium (Ca2+) homeostasis. Nevertheless, under stress conditions, it may induce apoptosis via several different mechanisms, one of which involves ER cross-talk with mitochondria, mediated by Ca2+ release from ER stores through the inositol 1,4,5-triphosphate receptor (IP3R) and ryanodine receptor (RyR) channels (7, 12, 15). Several recent studies have identified Ca2+ signaling as a key cellular target for viral infection (for a review, see reference 8). Upon PV infection, cells display an increase in cytosolic Ca2+ concentration (20). Phospholipase C also is activated, leading to an increase in IP3 concentration in PV-infected cells (19), potentially accounting for the observed increase in cytosolic Ca2+ concentration. However, the role of Ca2+ efflux from the ER in PV-induced apoptosis has yet to be studied.Here, we postulated that an increase in cytosolic Ca2+ following PV infection can have an impact on cell fate and investigated the cellular response in terms of mitochondrial function and apoptosis in neuroblastoma IMR5 cells.  相似文献   

10.
We previously reported that CD4C/human immunodeficiency virus (HIV)Nef transgenic (Tg) mice, expressing Nef in CD4+ T cells and cells of the macrophage/dendritic cell (DC) lineage, develop a severe AIDS-like disease, characterized by depletion of CD4+ T cells, as well as lung, heart, and kidney diseases. In order to determine the contribution of distinct populations of hematopoietic cells to the development of this AIDS-like disease, five additional Tg strains expressing Nef through restricted cell-specific regulatory elements were generated. These Tg strains express Nef in CD4+ T cells, DCs, and macrophages (CD4E/HIVNef); in CD4+ T cells and DCs (mCD4/HIVNef and CD4F/HIVNef); in macrophages and DCs (CD68/HIVNef); or mainly in DCs (CD11c/HIVNef). None of these Tg strains developed significant lung and kidney diseases, suggesting the existence of as-yet-unidentified Nef-expressing cell subset(s) that are responsible for inducing organ disease in CD4C/HIVNef Tg mice. Mice from all five strains developed persistent oral carriage of Candida albicans, suggesting an impaired immune function. Only strains expressing Nef in CD4+ T cells showed CD4+ T-cell depletion, activation, and apoptosis. These results demonstrate that expression of Nef in CD4+ T cells is the primary determinant of their depletion. Therefore, the pattern of Nef expression in specific cell population(s) largely determines the nature of the resulting pathological changes.The major cell targets and reservoirs for human immunodeficiency virus type 1 (HIV-1)/simian immunodeficiency virus (SIV) infection in vivo are CD4+ T lymphocytes and antigen-presenting cells (macrophages and dendritic cells [DC]) (21, 24, 51). The cell specificity of these viruses is largely dependent on the expression of CD4 and of its coreceptors, CCR5 and CXCR-4, at the cell surface (29, 66). Infection of these immune cells leads to the severe disease, AIDS, showing widespread manifestations, including progressive immunodeficiency, immune activation, CD4+ T-cell depletion, wasting, dementia, nephropathy, heart and lung diseases, and susceptibility to opportunistic pathogens, such as Candida albicans (1, 27, 31, 37, 41, 82, 93, 109). It is reasonable to assume that the various pathological changes in AIDS result from the expression of one or many HIV-1/SIV proteins in these immune target cells. However, assigning the contribution of each infected cell subset to each phenotype has been remarkably difficult, despite evidence that AIDS T-cell phenotypes can present very differently depending on the strains of infecting HIV-1 or SIV or on the cells targeted by the virus (4, 39, 49, 52, 72). For example, the T-cell-tropic X4 HIV strains have long been associated with late events and severe CD4+ T-cell depletion (22, 85, 96). However, there are a number of target cell subsets expressing CD4 and CXCR-4, and identifying which one is responsible for this enhanced virulence has not been achieved in vivo. Similarly, the replication of SIV in specific regions of the thymus (cortical versus medullary areas), has been associated with very different outcomes but, unfortunately, the critical target cells of the viruses were not identified either in these studies (60, 80). The task is even more complex, because HIV-1 or SIV can infect several cell subsets within a single cell population. In the thymus, double (CD4 CD8)-negative (DN) or triple (CD3 CD4 CD8)-negative (TN) T cells, as well as double-positive (CD4+ CD8+) (DP) T cells, are infectible by HIV-1 in vitro (9, 28, 74, 84, 98, 99, 110) and in SCID-hu mice (2, 5, 91, 94). In peripheral organs, gut memory CCR5+ CD4+ T cells are primarily infected with R5 SIV, SHIV, or HIV, while circulating CD4+ T cells can be infected by X4 viruses (13, 42, 49, 69, 70, 100, 101, 104). Moreover, some detrimental effects on CD4+ T cells have been postulated to originate from HIV-1/SIV gene expression in bystander cells, such as macrophages or DC, suggesting that other infected target cells may contribute to the loss of CD4+ T cells (6, 7, 32, 36, 64, 90).Similarly, the infected cell population(s) required and sufficient to induce the organ diseases associated with HIV-1/SIV expression (brain, heart, and kidney) have not yet all been identified. For lung or kidney disease, HIV-specific cytotoxic CD8+ T cells (1, 75) or infected podocytes (50, 95), respectively, have been implicated. Activated macrophages have been postulated to play an important role in heart disease (108) and in AIDS dementia (35), although other target cells could be infected by macrophage-tropic viruses and may contribute significantly to the decrease of central nervous system functions (11, 86, 97), as previously pointed out (25).Therefore, because of the widespread nature of HIV-1 infection and the difficulty in extrapolating tropism of HIV-1/SIV in vitro to their cell targeting in vivo (8, 10, 71), alternative approaches are needed to establish the contribution of individual infected cell populations to the multiorgan phenotypes observed in AIDS. To this end, we developed a transgenic (Tg) mouse model of AIDS using a nonreplicating HIV-1 genome expressed through the regulatory sequences of the human CD4 gene (CD4C), in the same murine cells as those targeted by HIV-1 in humans, namely, in immature and mature CD4+ T cells, as well as in cells of the macrophage/DC lineages (47, 48, 77; unpublished data). These CD4C/HIV Tg mice develop a multitude of pathologies closely mimicking those of AIDS patients. These include a gradual destruction of the immune system, characterized among other things by thymic and lymphoid organ atrophy, depletion of mature and immature CD4+ T lymphocytes, activation of CD4+ and CD8+ T cells, susceptibility to mucosal candidiasis, HIV-associated nephropathy, and pulmonary and cardiac complications (26, 43, 44, 57, 76, 77, 79, 106). We demonstrated that Nef is the major determinant of the HIV-1 pathogenicity in CD4C/HIV Tg mice (44). The similarities of the AIDS-like phenotypes of these Tg mice to those in human AIDS strongly suggest that such a Tg mouse approach can be used to investigate the contribution of distinct HIV-1-expressing cell populations to their development.In the present study, we constructed and characterized five additional mouse Tg strains expressing Nef, through distinct regulatory elements, in cell populations more restricted than in CD4C/HIV Tg mice. The aim of this effort was to assess whether, and to what extent, the targeting of Nef in distinct immune cell populations affects disease development and progression.  相似文献   

11.
It has been suggested that vaccination prior to infection may direct the mutational evolution of human immunodeficiency virus type 1 (HIV-1) to a less fit virus, resulting in an attenuated course of disease. The present study was initiated to explore whether prior immunization might prevent the reversion of the virus to the wild-type form. Mamu-A*01 monkeys were vaccinated to generate a cytotoxic T-lymphocyte response to the immunodominant Gag p11C epitope and were then challenged with a cloned pathogenic CXCR4-tropic simian-human immunodeficiency virus (SHIV) expressing a mutant Gag p11C sequence (Δp11C SHIV). The epitopic and extraepitopic compensatory mutations introduced into gag of Δp11C SHIV resulted in attenuated replicative capacity and eventual reversions to the wild-type Gag p11C sequence in naïve rhesus monkeys. However, in vaccinated rhesus monkeys, no reversions of the challenge virus were observed, an effect that may have been a consequence of significantly decreased viral replication rather than a redirection of the mutational evolution of the virus. These findings highlight the multifactorial pressures that affect the evolution of primate immunodeficiency viruses.CD8+ cytotoxic T-lymphocyte (CTL) responses are important for controlling replication of human immunodeficiency virus type 1 (HIV-1) in humans and simian immunodeficiency virus (SIV) in rhesus monkeys (6, 15, 19, 25, 32, 37, 39-41). However, the accumulation of mutations in dominant epitopes of these viruses can undermine this immune control (1, 8, 13, 18, 28). It has been proposed that a preexisting memory-specific CTL response elicited by vaccination prior to HIV-1/SIV infection might change the epitope specificity or the mutational pattern of the infecting virus (9). It is also possible that vaccine-induced cellular immunity might diminish the level of virus replication in individuals following infection and in doing so decrease the rate of accumulation of viral mutations and the likelihood of emergence of viruses that can escape CTL recognition.Our laboratory has previously described a rare SHIV-89.6P escape virus that contains a mutation in the dominant Mamu-A*01-restricted Gag p11C C-M (CTPYDINQM) epitope (3, 4). The emergence of this viral variant was associated with an increase in viral load and the eventual death of the previously vaccinated rhesus monkey 798. Analysis of the escape virus demonstrated a threonine-to-isoleucine mutation at amino acid position 47 (T47I) of the SIV capsid protein, which corresponds to position 2 of the Gag p11C epitope. This T47I mutation abrogated binding to the Mamu-A*01 class I molecule, allowing the virus to escape from recognition by the dominant epitope-specific CTL population (4). In addition to the T47I mutation, a downstream isoleucine-to-valine (I71V) substitution was found to be required for the viability of the escape virus in vitro (12, 29, 30, 42).The present studies were initiated to study the effects of prior vaccination on Gag p11C sequence reversion by infecting monkeys with a simian-human immunodeficiency virus (SHIV) clone containing the gag mutations found in the escape virus that evolved in monkey 798. We first explored the effects of these mutations in vivo by infecting naïve Mamu-A*01+ rhesus monkeys with a cloned SHIV (Δp11C SHIV) containing both the Gag p11C T47I mutation and the downstream I71V compensatory substitutions. We then determined whether vaccination prior to infection could generate a cellular immune response that might alter the expected pattern of virus mutation in the immunodominant Mamu-A*01-restricted Gag p11C epitope of Δp11C SHIV.  相似文献   

12.
Previous studies have suggested that coxsackievirus B (CVB) activates CD8+ T cells in vivo, but the extent of this activation and the antigen specificity of the CD8+ T cells remain uncertain. Furthermore, CVB-induced CD4+ T-cell responses have not been carefully investigated. Herein, we evaluate CD8+ and CD4+ T-cell responses both in a secondary lymphoid organ (spleen) and in peripheral tissues (heart and pancreas), using a recombinant CVB3 (rCVB3.6) that encodes well-characterized CD8+ and CD4+ T-cell epitopes. Despite reaching high levels in vivo, rCVB3.6 failed to trigger a marked expansion of CD8+ or CD4+ T cells, and T-cell activation was surprisingly limited. Furthermore, epitope-specific effector functions could not be detected using highly sensitive in vivo and ex vivo assays. Moreover, major histocompatibility complex (MHC) class I tetramer analysis indicated that our inability to detect CVB3-specific CD8+ T-cell responses could not be explained by the cells being dysfunctional. In contrast to naïve T cells, epitope-specific memory CD8+ and CD4+ T cells proliferated markedly, indicating that both of the rCVB3.6-encoded epitopes were presented by their respective MHC molecules in vivo. These data are consistent with the observation that several CVB3 proteins can limit the presentation of viral epitopes on the surface of infected cells and suggest that the level of MHC/peptide complex is sufficient to trigger memory but not naïve T cells. Finally, our findings have implications for the biological significance of cross-priming, a process thought by some to be important for the induction of antiviral CD8+ T-cell responses.Coxsackieviruses are members of the picornavirus family and enterovirus genus, which includes type A and B coxsackieviruses, polioviruses, echoviruses, and other unclassified enteroviruses. Although the majority of type B coxsackievirus (CVB) infections in humans are subclinical or cause relatively mild disease (including rash, myalgia, or upper respiratory complications), CVB are important human pathogens, and a substantial proportion of infections can lead to severe—even lethal—acute and chronic diseases. In particular, CVB is the most common infectious cause of myocarditis, which can lead to dilated cardiomyopathy and cardiac failure (38, 44, 45). CVB also targets cells of the central nervous system and the pancreas, frequently leading to aseptic meningitis and pancreatitis (7, 12, 33, 35, 40). Overall, CVB infection can cause considerable morbidity and mortality, particularly in newborns and in young or immunocompromised individuals (35, 52).The murine model of CVB3 infection is a valuable system for studying CVB pathogenesis and immunity, as mice infected with CVB develop diseases similar to those observed in humans (52, 53). Intraperitoneal inoculation of adult C57BL/6 mice with CVB3 results in systemic acute infection; viremia peaks on day 2 to 3 postinfection (p.i.), and infectious virus is cleared by 2 weeks p.i. (33, 34). Control of CVB3 infection depends on both cell-mediated and humoral components of the immune response. Agammaglobulinemic individuals are particularly susceptible to CVB3-associated encephalitis (15, 18), and mice lacking B cells develop a chronic infection and remain viremic for at least 2 months; viremia can be alleviated by the adoptive transfer of B cells from CVB3-immune wild-type mice (34). CD8+ T cells also play an important role in controlling virus replication. T cells are present in the inflammatory infiltrates associated with myocarditis and pancreatitis (17, 20, 41), and CD8+ T-cell depletion of CVB3-infected mice simultaneously increases viral titers and reduces myocarditis, suggesting that T-cell-mediated protection is associated with elevated immunopathology (17). This immunopathology can be uncoupled from antiviral efficacy; mice lacking perforin control cardiac infection just as well as wild-type mice but show markedly diminished myocarditis (14).Many—probably most—acute viral infections trigger extensive CD8+ T-cell activation and division; these responses can readily be detected directly ex vivo, without any need for extensive restimulation. The convincing evidence that CD8+ T cells can contribute to control of CVB3 in mice, together with the fact that CVB3 replicates to high titers in many mouse tissues, led us to surmise that CVB3—like most other viruses—would induce readily detectable CD8+ T-cell responses in mice. Indeed, early studies had identified cytolytic T-cell activity in CVB3-infected mice, although the precise antigen specificity of the cells was unknown (16, 21, 22). Subsequent elegant work showed that synthetic peptides representing CVB3 VP1 sequences could drive in vitro T-cell proliferation, but neither the phenotype of the proliferating T cells (CD4+ or CD8+) nor the precise epitope specificity was determined (19). Therefore, we undertook a preliminary analysis of epitope-specific CD8+ T-cell responses against CVB3; contrary to our expectations, we found that CVB3-induced epitope-specific CD8+ T-cell responses were difficult to detect (42). However, those studies were incomplete: they relied on ex vivo detection methods of rather limited sensitivity, and they were limited to cells from the spleen. Furthermore, those studies focused only on CD8+ T cells, and it is clear that regulation of antiviral CD8+ T cells differs from that of CD4+ T cells. Therefore, herein we have extended our previous analysis in five ways: first, we evaluate general T-cell activation in CVB3-infected mice; second, we use more sensitive in vivo approaches to detect epitope-specific T-cell responses; third, we investigate the possibility that the virus induces the expansion of dysfunctional T cells; fourth, we extend our analyses of CVB3 epitope-specific T-cell responses to major targets of infection, such as the heart, where CD8+ T cells are present in the virus-induced infiltrate; and, fifth, we investigate CD4+ T-cell responses induced by CVB3. Our studies employ a new recombinant CVB3 (rCVB3) that encodes both a CD8 and CD4 T-cell epitope derived from lymphocytic choriomeningitis virus (LCMV). Our data are not only relevant to understanding the T-cell responses induced by coxsackievirus in particular but also have broader implications for the mechanism(s) by which CD4+ and CD8+ T cells are induced by viruses in general.  相似文献   

13.
The Na+-dependent K+ uptake KtrABE system is essential for the adaptation of Synechocystis to salinity stress and high osmolality. While KtrB forms the K+-translocating pore, the role of the subunits KtrA and KtrE for Ktr function remains elusive. Here, we characterized the role of KtrA and KtrE in Ktr-mediated K+ uptake and in modulating Na+ dependency. Expression of KtrB alone in a K+ uptake-deficient Escherichia coli strain conferred low K+ uptake activity that was not stimulated by Na+. Coexpression of both KtrA and KtrE with KtrB increased the K+ transport activity in a Na+-dependent manner. KtrA and KtrE were found to be localized to the plasma membrane in Synechocystis. Site-directed mutagenesis was used to analyze the role of single charged residues in KtrB for Ktr function. Replacing negatively charged residues facing the extracellular space with residues of the opposite charge increased the apparent Km for K+ in all cases. However, none of the mutations eliminated the Na+ dependency of Ktr-mediated K+ transport. Mutations of residues on the cytoplasmic side had larger effects on K+ uptake activity than those of residues on the extracellular side. Further analysis revealed that replacement of R262, which is well conserved among Ktr/Trk/HKT transporters in the third extracellular loop, by Glu abolished transport activity. The atomic-scale homology model indicated that R262 might interact with E247 and D261. Based on these data, interaction of KtrA and KtrE with KtrB increased the K+ uptake rate and conferred Na+ dependency.Cyanobacterium Synechocystis sp. strain PCC 6803 contains a number of different K+ uptake systems that may contribute to satisfying its requirement of K+ (3, 19, 36). Among these systems, Ktr has been shown to have a major role not only in K+ uptake but also in adaptation against high-osmolarity stress (3, 19). Inactivation of the ktr gene renders the cells hypersensitive to high concentrations of NaCl and the nonionic compound sorbitol. Ktr-mediated K+ uptake depends on the presence of Na+ in the medium, which is likely to be an adaptation to salinity stress. A requirement of Na+ for K+ transport activity has also been found in the homologous protein from Vibrio alginolyticus (21). This dependency on Na+ is a unique property of Ktr-type transporters and has not been found in other types of K+ transporters or channels (32). The structure and function of Ktr-type transporters have been studied in a number of organisms (3, 6, 7, 9, 11-14, 18-20, 30, 32-34). The Ktr system from Synechocystis consists of three subunits, KtrA, KtrB, and KtrE (19). The KtrE gene and the KtrB gene form a cistron, whereas the KtrA gene resides at a site distant from the KtrEB genes in the Synechocystis genome (19). KtrB, the K+-translocating subunit, is a member of the Ktr/Trk/HKT family of K+ transporters. These transporters have been proposed to have evolved from two membrane-spanning K+ channels (6, 7). According to the model, this type of transporter contains eight transmembrane domains, which consist of a 4-fold-repeated membrane-pore-membrane (M1-P-M2) motif (6, 7, 13, 18). An intramolecular electrostatic interaction of Synechocystis KtrB has been proposed to stabilize the protein in its active configuration (12). In addition, a conserved His in the external region in Synechocystis KtrB has been shown to be crucial for KtrB function (39). The region of the Vibrio Ktr protein responsible for gating of ion permeation has been identified (9). However, not much is known about the mechanism of Na+ binding to KtrB in Synechocystis.The KtrA subunit belongs to the family of KTR (K+-transport nucleotide binding)/RCK (regulating the conductance of K+ channels) proteins, which contain a Rossmann-fold sequence encoding β-α protein structure for NAD+/NADH binding (17). Accordingly KtrA has been proposed to regulate the K+ transport activity of KtrB by changing its binding from NAD+ to NADH through a ligand-mediated conformational switch mechanism (25). It has also been shown that ATP promotes complex formation between KtrA and KtrB and that KtrAB from V. alginolyticus when expressed in Escherichia coli cells requires both ATP and the membrane potential for its activity (17).KtrE is a unique subunit found only in Synechocystis; it is not involved in KtrB-mediated K+ transport in V. alginolyticus and Bacillus subtilis (11, 32). The termination codon of ktrE overlaps the initiation codon of ktrB in the same cistron, which has not been found in other bacterial ktrB-related genes. Coexpression of KtrA with KtrB alone does not complement the growth defect of an E. coli K+ uptake mutant. However, introduction of KtrE into the same mutant background in addition to KtrA and KtrB complements the mutation of the K+ uptake system (19). Interestingly, the KtrE protein has been shown to function as a digalactosyldiacylglycerol (DGDG) synthase (EC 2.4.6.241), an enzyme that produces DGDG from monogalactosyldiacylglycerol (MGDG). KtrE has therefore also been designated DgdA (1). Under nonstress conditions, DGDG is found in the thylakoid membranes, which helps stabilize the photosystem II complex in Synechocystis (29). Under phosphate-limited conditions, DGDG is synthesized instead of phospholipids in Synechocystis (1). However, KtrB functions as a major K+-conducting transport pore in the Synechocystis plasma membrane. The subcellular localization of KtrE has not been identified directly. Inactivation of ktrE (also called dgdA) in Synechocystis does not result in sensitivity to osmotic stress imposed by 300 mM sorbitol (1). This may be inconsistent with the requirement of KtrE for KtrB-mediated K+ uptake in the presence of KtrA in the E. coli expression system (19).Because of these uncertainties about the roles of the KtrA and KtrE subunits in K+ uptake by KtrB in Synechocystis and about the identity of the Na+ binding site in KtrB, we examined the subcellular localization and membrane association of KtrA and KtrE, the requirement of these subunits for KtrB-mediated K+ uptake, and the primary target for Na+ binding in KtrB.  相似文献   

14.
15.
16.
The respiratory chain of Escherichia coli is usually considered a device to conserve energy via the generation of a proton motive force, which subsequently may drive ATP synthesis by the ATP synthetase. It is known that in this system a fixed amount of ATP per oxygen molecule reduced (P/O ratio) is not synthesized due to alternative NADH dehydrogenases and terminal oxidases with different proton pumping stoichiometries. Here we show that P/O ratios can vary much more than previously thought. First, we show that in wild-type E. coli cytochrome bo, cytochrome bd-I, and cytochrome bd-II are the major terminal oxidases; deletion of all of the genes encoding these enzymes results in a fermentative phenotype in the presence of oxygen. Second, we provide evidence that the electron flux through cytochrome bd-II oxidase is significant but does not contribute to the generation of a proton motive force. The kinetics support the view that this system is as an energy-independent system gives the cell metabolic flexibility by uncoupling catabolism from ATP synthesis under non-steady-state conditions. The nonelectrogenic nature of cytochrome bd-II oxidase implies that the respiratory chain can function in a fully uncoupled mode such that ATP synthesis occurs solely by substrate level phosphorylation. As a consequence, the yield with a carbon and energy source can vary five- to sevenfold depending on the electron flux distribution in the respiratory chain. A full understanding and control of this distribution open new avenues for optimization of biotechnological processes.The aerobic respiratory chain of Escherichia coli can function with a variety of different membrane-bound NADH dehydrogenases, including NDH-I, NDH-II, and WrbA (8, 26-28), as well as YhdH and QOR (15, 38, 39), on the electron input side and three ubiquinol oxidases (cytochromes bd-I, bd-II, and bo) (12, 14, 19, 22, 29) on the output side (Fig. (Fig.1).1). The stoichiometry for the number of protons pumped for each two electrons transferred (H+/2e ratio) has unequivocally been determined for NDH-I (H+/2e, 4) and NDH-II (H+/2e, 0) (10, 23, 41). Although no specific data are available for WrbA, YhdH, and QOR, it is generally assumed that these NADH:quinone oxidoreductases are not electrogenic because of the absence of (predicted) transmembrane alpha-helices (15, 38, 39). Similarly, the energy-conserving efficiencies of the cytochrome bd-I oxidase and the cytochrome bo oxidase are different; the cytochrome bd-I complex does not actively pump protons, but due to the oxidation of the quinol on the periplasmic side of the membrane and subsequent uptake of protons from the cytoplasmic side of the membrane, which are used in the formation of water, net electron transfer results in proton translocation with an H+/2e stoichiometry of 2 (32). In contrast, the cytochrome bo complex actively pumps protons over the membrane, resulting in an H+/2e stoichiometry of 4 (33, 42). The stoichiometry of proton translocation of the cytochrome bd-II complex is unknown.Open in a separate windowFIG. 1.Diagram of all NADH:quinone oxidoreductases and quinol:oxygen oxidoreductases in E. coli and their proton translocation properties. Cyt, cytochrome; Q, quinone.Due to the differences in the H+/e ratios of the dehydrogenases involved, two-electron transfer from NADH to the quinone pool may be accompanied by the translocation of any number of protons between 0 and 4, and subsequent reoxidation of the quinol pool may contribute to proton translocation again with a stoichiometry that depends on the relative activities of the terminal oxidases. The loose coupling between energy conservation and electron flow in respiration has been interpreted as a physiological means for the cell to cope with sudden changes in the rate of electron influx into the respiratory chain and/or in the availability of terminal electron acceptors on its terminal side (10). The fact that this energetic efficiency can vary is of great interest, both for understanding the physiological adaptive responses of the microbial cell and for biotechnological applications (e.g., synthesis of any oxidized compound with minimal biomass production). For this, it is important to quantify the flux distribution over and the efficiencies of the components of the respiratory machinery in relation to environmental conditions.Previous studies (10) have shown that NDH-I, NDH-II, and the two well-characterized cytochrome oxidases contribute significantly to the overall electron flux and furthermore that the distribution of fluxes over these components depends on environmental conditions, such as the growth rate in glucose-limited chemostats (10). In addition, it has been suggested that the flux distribution over the terminal oxidases of E. coli is dependent on the culture pH (40). However, the cytochrome bd-II oxidase was not taken into account in these previous studies.Here we present data that show that cytochrome bd-II oxidase participates significantly in oxygen reduction both during nonlimited growth in batch cultures and in glucose-limited chemostat cultures. For further quantification of the contribution of the respiratory chain to oxidative phosphorylation, it is essential to assess the in vivo H+/2e stoichiometry of the cytochrome bd-II oxidase (4, 37). Essentially, the approach used in previous studies by Calhoun et al. (10) was followed: strains with respiratory chains that were modified such that their H+/2e stoichiometry was fixed and known were grown under identical, glucose-limited conditions in chemostat culture. A flux analysis with respect to glucose catabolism and respiration allowed calculation of the rate of ATP synthesis for these strains. The data were then used as reference flux data for a strain that contained the cytochrome bd-II oxidase as the sole terminal oxidase. This strain showed a decreased yield with respect to oxygen and glucose. In this way we demonstrated that electron flow through the cytochrome bd-II oxidase does not contribute to the generation of a proton motive force. The results are discussed in view of the biochemical characterization of the enzyme and its physiological importance to adaptive responses by E. coli to an ever-changing environment.  相似文献   

17.
A broad Gag-specific CD8+ T-cell response is associated with effective control of adult human immunodeficiency virus (HIV) infection. The association of certain HLA class I molecules, such as HLA-B*57, -B*5801, and -B*8101, with immune control is linked to mutations within Gag epitopes presented by these alleles that allow HIV to evade the immune response but that also reduce viral replicative capacity. Transmission of such viruses containing mutations within Gag epitopes results in lower viral loads in adult recipients. In this study of pediatric infection, we tested the hypothesis that children may tend to progress relatively slowly if either they themselves possess one of the protective HLA-B alleles or the mother possesses one of these alleles, thereby transmitting a low-fitness virus to the child. We analyzed HLA type, CD8+ T-cell responses, and viral sequence changes for 61 mother-child pairs from Durban, South Africa, who were monitored from birth. Slow progression was significantly associated with the mother or child possessing one of the protective HLA-B alleles, and more significantly so when the protective allele was not shared by mother and child (P = 0.007). Slow progressors tended to make CD8+ T-cell responses to Gag epitopes presented by the protective HLA-B alleles, in contrast to progressors expressing the same alleles (P = 0.07; Fisher''s exact test). Mothers expressing the protective alleles were significantly more likely to transmit escape variants within the Gag epitopes presented by those alleles than mothers not expressing those alleles (75% versus 21%; P = 0.001). Reversion of transmitted escape mutations was observed in all slow-progressing children whose mothers possessed protective HLA-B alleles. These data show that HLA class I alleles influence disease progression in pediatric as well as adult infection, both as a result of the CD8+ T-cell responses generated in the child and through the transmission of low-fitness viruses by the mother.Human immunodeficiency virus (HIV)-specific CD8+ T cells play a central role in controlling viral replication (12). It is the specificity of the CD8+ T-cell response, particularly the response to Gag, that is associated with low viral loads in HIV infection (7, 17, 34). Although immune control is undermined by the selection of viral mutations that prevent recognition by the CD8+ T cells, evasion of Gag-specific responses mediated by protective class I HLA-B alleles typically brings a reduction in viral replicative capacity, facilitating subsequent immune control of HIV (2, 20, 21). The same principle has been demonstrated in studies of simian immunodeficiency virus infection (18, 22).Recent studies showed that the class I HLA-B alleles that protect against disease progression present more Gag-specific CD8+ T-cell epitopes and drive the selection of more Gag-specific escape mutations than those alleles that are associated with high viral loads (23). These protective HLA-B alleles not only are beneficial to infected individuals expressing those alleles but also benefit a recipient following transmission, since the transmitted virus carrying multiple Gag escape mutations may have substantially reduced fitness (3, 4, 8). However, there is no benefit to the recipient if he or she shares the same protective allele as the donor because the transmitted virus carries escape mutations in the Gag epitopes that would otherwise be expected to mediate successful immune control in the recipient (8, 11).The sharing of HLA alleles between donor and recipient occurs frequently in mother-to-child transmission (MTCT). The risk of MTCT is related to viral load in the mother, and a high viral load is associated with nonprotective alleles, such as HLA-B*18 and -B*5802. This may contribute in two distinct ways to the more rapid progression observed in pediatric HIV infection (24, 26, 27). First, because infected children share 50% or more of their HLA alleles with the transmitting mother, they are less likely than adults to carry protective HLA alleles (16). Thus, infected children as a group carry fewer protective HLA alleles and more nonprotective HLA alleles. Second, even when the child has a protective allele, such as HLA-B*27, this allele does not offer protection if the maternally transmitted virus carries escape mutations within the key Gag epitopes that are presented by the protective allele (11, 19).However, it is clear that infected children who possess protective alleles, such as HLA-B*27 or HLA-B*57, can achieve durable immune control of HIV infection if the virus transmitted from the mother is not preadapted to those alleles (6, 10). HIV-specific CD8+ T-cell responses are detectable from birth in infected infants (32). Furthermore, as in adult infection (3, 8), HIV-infected children have the potential to benefit from transmission of low-fitness viruses in the situation where the mother possesses protective HLA alleles and the child does not share those protective alleles. MTCT of low-fitness viruses carrying CD8+ T-cell escape mutations was recently documented (28; J. Prado et al., unpublished data).In this study, undertaken in Durban, South Africa, we set out to test the hypothesis that HIV-infected children are less likely to progress rapidly to disease if either the infected child or the transmitting mother possesses a protective HLA allele that is not shared. The HLA alleles most strongly associated with low viral loads and high CD4 counts in a cohort of >1,200 HIV-infected adults in Durban are HLA-B*57 (-B*5702 and -B*5703), HLA-B*5801, and HLA-B*8101 (16; A. Leslie et al., unpublished data). These four alleles all present Gag-specific CD8+ T-cell epitopes, and in each case the escape mutations selected in these epitopes reduce viral replicative capacity (2-4, 8, 21, 23).Analyzing a previously described cohort of 61 HIV-infected children in Durban (24, 26, 32), South Africa, who were all monitored from birth, we first addressed the question of whether possession of any of these four alleles by either mother or child is associated with slower disease progression in the child and then determined whether sharing of protective alleles by mother and child affects the ability of the child to make the Gag-specific CD8+ T-cell responses restricted by the shared allele.  相似文献   

18.
The kinetics of CD8+ T cell epitope presentation contribute to the antiviral efficacy of these cells yet remain poorly defined. Here, we demonstrate presentation of virion-derived Vpr peptide epitopes early after viral penetration and prior to presentation of Vif-derived epitopes, which required de novo Vif synthesis. Two Rev epitopes exhibited differential presentation kinetics, with one Rev epitope presented within 1 h of infection. We also demonstrate that cytolytic activity mirrors the recognition kinetics of infected cells. These studies show for the first time that Vpr- and Rev-specific CD8+ T cells recognize and kill simian immunodeficiency virus (SIV)-infected CD4+ T cells early after SIV infection.The antiviral activity of AIDS virus-specific CD8+ T cells is well documented in both in vivo (1, 4, 21) and in vitro (8, 24, 29) studies. Accordingly, human immunodeficiency virus (HIV) vaccine modalities that focus on engendering antiviral CD8+ T cells are being developed (13, 26, 28). Ideally, a CD8+ T cell-based vaccine would stimulate responses against epitopes that are presented by major histocompatibility complex class I (MHC-I) molecules early after infection of a target cell. However, successful selection of antigenic sequences for a CD8+ T cell-based vaccine has been frustrated in part by an incomplete understanding of the properties of effective CD8+ T cell responses (25).  相似文献   

19.
Ascorbate peroxidase from Leishmania major (LmAPX) is one of the key enzymes for scavenging of reactive oxygen species generated from the mitochondrial respiratory chain. We have investigated whether mitochondrial LmAPX has any role in oxidative stress-induced apoptosis. The measurement of reduced glutathione (GSH) and protein carbonyl contents in cellular homogenates indicates that overexpression of LmAPX protects Leishmania cells against depletion of GSH and oxidative damage of proteins by H2O2 or camptothecin (CPT) treatment. Confocal microscopy and fluorescence spectroscopy data have revealed that the intracellular elevation of Ca2+ attained by the LmAPX-overexpressing cells was always below that attained in control cells. Flow cytometry assay data and confocal microscopy observation strongly suggest that LmAPX overexpression protects cells from H2O2-induced mitochondrial membrane depolarization as well as ATP decrease. Western blot data suggest that overexpression of LmAPX shields against H2O2- or CPT-induced cytochrome c and endonuclease G release from mitochondria and subsequently their accumulation in the cytoplasm. Caspase activity assay by flow cytometry shows a lower level of caspase-like protease activity in LmAPX-overexpressing cells under apoptotic stimuli. The data on phosphatidylserine exposed on the cell surface and DNA fragmentation results show that overexpression of LmAPX renders the Leishmania cells more resistant to apoptosis provoked by H2O2 or CPT treatment. Taken together, these results indicate that constitutive overexpression of LmAPX in the mitochondria of L. major prevents cells from the deleterious effects of oxidative stress, that is, mitochondrial dysfunction and cellular death.In multicellular organisms, mitochondria are the major physiological source of reactive oxygen species (ROS) within cells and also are important checkpoints for the control of programmed cell death (27). There are increasing numbers of reports that describe apoptosis- or programmed cell death-like processes in unicellular organisms also, such as trypanosomatids (4, 60), bacteria (20, 25), yeasts (34), and Plasmodium (3). Among the kinetoplastid parasites, Trypanosoma and Leishmania are the most carefully studied genera where apoptotic features are well established (49). Several reports have shown that mitochondrial dysfunction or an imbalance of antioxidant homeostasis causes an increase in mitochondrion-generated ROS, which include H2O2, superoxide radical anions, singlet oxygen, and hydroxyl radicals. These species have all been implicated in apoptosis (16, 26, 28, 41). Increasing evidence has been presented to support that ROS homeostasis regulates two major types of important physiological processes and exerts diverse functions within cells. One type of function includes damage or oxidation of cellular macromolecules (DNA, proteins, and lipids), which can lead to necrotic cell death or protein modification (7). The second type of function includes the activation of cellular signaling cascades that regulate proliferation, detoxification, DNA repair, or apoptosis (11). The detoxification of toxic mitochondrial ROS in cells occurs through a variety of cellular antioxidant enzymes, such as superoxide dismutase, which detoxifies cells from superoxide released into the mitochondrial matrix, and several other antioxidant proteins, such as catalase, glutathione (GSH) peroxidase, and peroxiredoxins, which are known to catalyze further degradation of H2O2 (44). During its life cycle, the Leishmania sp. encounters a pool of ROS that is generated either by its own physiological processes or as a result of host immune reaction and drug metabolism. However, unlike most eukaryotes, Leishmania lacks catalase- and selenium-containing GSH peroxidases, enzymes that play a front-line role in detoxifying ROS. Hence, the mechanism by which it resists the toxic effects of H2O2 remains poorly understood.Recently, we cloned, expressed and characterized the unusual heme-containing ascorbate peroxidase from Leishmania major (LmAPX) and observed that the expression of LmAPX is increased when Leishmania cells are treated with exogenous H2O2 (1, 18). This enzyme is a functional hybrid between cytochrome c peroxidase and APX, owing to its ability to use both ascorbate and cytochrome c as reducing electron donors (58). Colocalization studies by confocal microscopy, submitochondrial fractionation analysis of the isolated mitochondria, and subsequent Western blot analysis with anti-LmAPX antibody have confirmed that the mature enzyme is present in intermembrane space side of the inner membrane. It has also been shown that overexpression of LmAPX causes a decrease in the mitochondrial ROS burden, an increase in tolerance to H2O2, and protection against cardiolipin oxidation under oxidative stress (18). Although previous studies have shown that Leishmania species use superoxide dismutase (23), peroxiredoxins (8), intracellular thiols (14), lipophosphoglycan (13), trypanothione (5), HSP 70 (a heat shock protein) (36), tryparedoxin peroxidase (29), and APX (18) for detoxification of ROS, it is still unclear how the antioxidants protect against oxidative stress-induced apoptotic events in the unicellular organism Leishmania.Since the LmAPX protein is localized in the mitochondria, we hypothesized that it would be a key protein for the maintenance of mitochondrial functions due to its antioxidant properties via its ROS-scavenging function (18). To test this hypothesis, we overexpressed LmAPX in Leishmania major cells and investigated whether overexpression of LmAPX can confer resistance to oxidant-mediated mitochondrial damage as well as oxidative stress-induced cell death. In this study, we provide evidence that the overexpression of LmAPX in Leishmania cells can indeed protect against camptothecin (CPT) or H2O2-mediated mitochondrial damage as measured by various parameters, including disruption of mitochondrial membrane potential (Δψm), decrease of ATP production, and cytochrome c and endonuclease G release from mitochondria. Cells overexpressing LmAPX were also protected against oxidative stress-induced protein carbonylation, DNA fragmentation, and apoptosis. To the best of our knowledge, this is the first report of a mitochondrial hemeperoxidase that controls the ROS-induced mitochondrial death pathway.  相似文献   

20.
An attenuated derivative of simian immunodeficiency virus strain 239 deleted of V1-V2 sequences in the envelope gene (SIV239ΔV1-V2) was used for vaccine/challenge experiments in rhesus monkeys. Peak levels of viral RNA in plasma of 104 to 106.5 copies/ml in the weeks immediately following inoculation of SIV239ΔV1-V2 were 10- to 1,000-fold lower than those observed with parental SIV239 (∼107.3 copies/ml). Viral loads consistently remained below 200 copies/ml after 8 weeks of infection by the attenuated SIV239ΔV1-V2 strain. Viral localization experiments revealed large numbers of infected cells within organized lymphoid nodules of the colonic gut-associated lymphoid tissue at 14 days; double-labeling experiments indicated that 93.5% of the virally infected cells at this site were positive for the macrophage marker CD68. Cellular and humoral immune responses measured principally by gamma interferon enzyme-linked immunospot and neutralization assays were variable in the five vaccinated monkeys. One monkey had responses in these assays comparable to or only slightly less than those observed in monkeys infected with parental, wild-type SIV239. Four of the vaccinated monkeys, however, had low, marginal, or undetectable responses in these same assays. These five vaccinated monkeys and three naïve control monkeys were subsequently challenged intravenously with wild-type SIV239. Three of the five vaccinated monkeys, including the one with strong anti-SIV immune responses, were strongly protected against the challenge on the basis of viral load measurements. Surprisingly, two of the vaccinated monkeys were strongly protected against SIV239 challenge despite the presence of cellular anti-SIV responses of low-frequency and low-titer anti-SIV antibody responses. These results indicate that high-titer anti-SIV antibody responses and high-frequency anti-SIV cellular immune responses measurable by standard assays from the peripheral blood are not needed to achieve strong vaccine protection, even against a difficult, neutralization-resistant strain such as SIV239.The characteristics of human immunodeficiency virus type 1 (HIV-1) infection suggest major difficulty for the development of a preventive vaccine (19, 23). Pessimism regarding the prospects for a vaccine is derived at least in part from the ability of HIV-1 to continually replicate in the face of apparently strong host immune responses, resistance to antibody-mediated neutralization, and the extensive sequence diversity in field strains of the virus. Lack of knowledge regarding the key components of a protective immune response also remains a major scientific obstacle. Vaccine/challenge experiments with macaque monkeys have been used to evaluate the properties and relative effectiveness of different vaccine approaches and to gauge the formidable nature of these difficulties.One lesson that has been learned from vaccine/challenge experiments with macaque monkeys is the importance of challenge strain on outcome. Vaccinated monkeys that have been challenged with strains of simian immunodeficiency virus (SIV) with an HIV-1 envelope (SHIV) have almost invariably exhibited strong, long-term protection against disease, irrespective of the nature of the vaccine. Even peptide immunogens have protected against SHIV-induced disease (6, 12, 38). Vaccine approaches that have protected against SHIV challenge include DNA (5, 13), recombinant poxvirus (4), recombinant adenovirus (57), other viral recombinants (18, 55), prime and boost protocols (3, 53, 65), and purified protein (10, 64). Vaccine protection against pathogenic SIV strains such as SIV239, SIV251, and SIV-E660 has been much more difficult to achieve (2, 11, 27, 63). The identical replication-defective gag-recombinant adenovirus that provided strong protection against SHIV challenge (57) provided little or no protection against SIV239 challenge (11). Disappointing levels of protection against SIV have often been observed in the face of apparently robust vaccine-induced immune responses (see, for example, Vogel et al. [63] and Casimiro et al. [11]). Some partial vaccine protections against these SIV strains have been achieved by recombinant poxvirus (7, 50), replication-competent recombinant adenovirus (51), replication-defective adenovirus (66), recombinant poliovirus (15), recombinant Venezuelan equine encephalitis virus (18), and recombinant Sendai virus (44).Differences between the biological properties of the SIV strains and those of the SHIV strains used for the above-mentioned studies provide clues as to what may be responsible for the differences in outcome. These SIV strains are difficult to neutralize (26, 34), use CCR5 as a coreceptor for entry into cells (21, 52), and induce a chronic, progressive disease course (17), and this course is independent of the infectious dose (17). The SHIV strains used for the above-mentioned studies are easier to neutralize, use CXCR4 for entry, and induce an acute decline in CD4 counts, and the disease course is dose dependent (29, 30, 48, 54). These SIV strains, like HIV-1 in humans, exhibit a marked preference for CD4+ CCR5+ memory cells, in contrast to the acutely pathogenic SHIV strains which principally target naïve cells (48).Live, attenuated strains of SIV have provided the strongest vaccine protection by far against SIV challenge. Although clinical use of a live, attenuated HIV vaccine is not being considered, understanding the basis of the strong protection afforded by live, attenuated SIV strains remains an important research objective for the insights that can be provided. Most of the attenuated SIV strains that have been used lack a functional nef gene (16, 31, 58, 67). Shacklett et al. (56) used an attenuated SIV strain with modifications in the gp41 transmembrane protein for protection. Here, we describe strong vaccine protection by a replication-competent SIV strain lacking 100 amino acids from the essential gp120 envelope protein in the absence of overtly robust immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号