首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antifungal activity of cecropin A(2-8)-melittin(6-9) hybrid undecapeptides, previously reported as active against plant pathogenic bacteria, was studied. A set of 15 sequences was screened in vitro against Fusarium oxysporum, Penicillium expansum, Aspergillus niger, and Rhizopus stolonifer. Most compounds were highly active against F. oxysporum (MIC < 2.5 μM) but were less active against the other fungi. The best peptides were studied for their sporicidal activity and for Sytox green uptake in F. oxysporum microconidia. A significant inverse linear relationship was observed between survival and fluorescence, indicating membrane disruption. Next, we evaluated the in vitro activity against P. expansum of a 125-member peptide library with the general structure R-X1KLFKKILKX10L-NH2, where X1 and X10 corresponded to amino acids with various degrees of hydrophobicity and hydrophilicity and R included different N-terminal derivatizations. Fifteen sequences with MICs below 12.5 μM were identified. The most active compounds were BP21 {Ac,F,V} and BP34 {Ac,L,V} (MIC < 6.25 μM), where the braces denote R, X1, and X10 positions and where Ac is an acetyl group. The peptides had sporicidal activity against P. expansum conidia. Seven of these peptides were tested in vivo by evaluating their preventative effect of inhibition of P. expansum infection in apple fruits. The peptide Ts-FKLFKKILKVL-NH2 (BP22), where Ts is a tosyl group, was the most active with an average efficacy of 56% disease reduction, which was slightly lower than that of a commercial formulation of the fungicide imazalil.The discovery of antimicrobial compounds to treat plant diseases of economical importance in agriculture remains a major scientific challenge (1). Antimicrobial peptides are being considered as a good alternative to current fungicides and a great deal of scientific effort has been invested in studying their application in plant disease control (29, 34, 35).Antimicrobial peptides have been reported to display interesting activities against pathogenic microbes that are resistant to conventional antibiotics and to exhibit a broad spectrum of activity against bacteria, fungi, enveloped viruses, parasites, and tumor cells (7-10, 19, 20, 40, 49). The mechanism of action of these peptides against fungi consists of cell lysis by binding to the membrane surface and disrupting its structure, interference with the synthesis of essential cell wall components, or interaction with specific internal targets (12, 13, 15, 23, 29).Despite their good lytic activity, major concerns about the use of antimicrobial peptides as pesticides in plant protection are the high production cost associated with synthetic procedures and their low stability toward protease degradation. Several design strategies have been devised in order to find shorter and more stable peptides, while maintaining or increasing the activity with a low cytotoxicity. These strategies include the juxtaposition of fragments of natural antimicrobial peptides, the modification of natural peptides, and the de novo design of sequences maintaining the crucial features of native antimicrobial peptides (2, 3, 11, 24, 32, 38, 42). However, the process involved in the development of lead candidates is time consuming and limited by the number of individual compounds that can be synthesized. Combinatorial chemistry has allowed the rapid preparation of synthetic libraries and their screening has led to the identification of peptides with high activity against selected phytopathogenic bacteria and fungi (4, 26, 27, 33).During our current research oriented to the development of new antimicrobial agents for use in plant protection, we designed linear undecapeptides (CECMEL11) derived from the cecropin A-melittin hybrid peptide WKLFKKILKVL-NH2 (Pep3) (5, 17). Using a combinatorial approach, we identified peptides with high activity against plant pathogenic bacteria, such as Erwinia amylovora, Xanthomonas vesicatoria, and Pseudomonas syringae, and with low susceptibility to protease degradation (4, 5).In order to broaden the study, we decided to test the CECMEL11 peptides against the plant pathogenic fungi Fusarium oxysporum, Aspergillus niger, Rhizopus stolonifer, and Penicillium expansum. The fungus F. oxysporum causes Fusarium wilt in more than a hundred species of plants, and it is an important pathogen in horticultural crops (44). Several Rhizopus and Penicillium species cause soft rot and blue mold rot, respectively, which are important postharvest diseases in stone and pome fruits (6, 18, 22, 39). Apart from the economic losses, Aspergillus and Penicillium species are also of interest from a public health point of view due to the production of mycotoxins (45, 47). The importance of Penicillium species in the postharvest of fruits emphasizes the interest to develop antimicrobial peptides to control this fungus.Taking into account the relevance of these pathogens, the aim of the present study was the analysis of the antifungal activity profile of the CECMEL11 peptides in order to identify sporicidal sequences against the above fungi. As a proof of concept, the feasibility of using such peptides to protect fruits from fungal spoilage was evaluated using a P. expansum/apple model.  相似文献   

2.
3.
The cationic lytic peptide cecropin B (CB), isolated from the giant silk moth (Hyalophora cecropia), has been shown to effectively eliminate Gram-negative and some Gram-positive bacteria. In this study, the effects of chemically synthesized CB on plant pathogens were investigated. The S50s (the peptide concentrations causing 50% survival of a pathogenic bacterium) of CB against two major pathogens of the tomato, Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria, were 529.6 μg/ml and 0.29 μg/ml, respectively. The CB gene was then fused to the secretory signal peptide (sp) sequence from the barley α-amylase gene, and the new construct, pBI121-spCB, was used for the transformation of tomato plants. Integration of the CB gene into the tomato genome was confirmed by PCR, and its expression was confirmed by Western blot analyses. In vivo studies of the transgenic tomato plant demonstrated significant resistance to bacterial wilt and bacterial spot. The levels of CB expressed in transgenic tomato plants (∼0.05 μg in 50 mg of leaves) were far lower than the S50 determined in vitro. CB transgenic tomatoes could therefore be a new mode of bioprotection against these two plant diseases with significant agricultural applications.Bacterial plant diseases are a source of great losses in the annual yields of most crops (5). The agrochemical methods and conventional breeding commonly used to control these bacterially induced diseases have many drawbacks. Indiscriminate use of agrochemicals has a negative impact on human, as well as animal, health and contributes to environmental pollution. Conventional plant-breeding strategies have limited scope due to the paucity of genes with these traits in the usable gene pools and their time-consuming nature. Consequently, genetic engineering and transformation technology offer better tools to test the efficacies of genes for crop improvement and to provide a better understanding of their mechanisms. One advance is the possibility of creating transgenic plants that overexpress recombinant DNA or novel genes with resistance to pathogens (36). In particular, strengthening the biological defenses of a crop by the production of antibacterial proteins with other origins (not from plants) offers a novel strategy to increase the resistance of crops to diseases (35, 39, 41). These antimicrobial peptides (AMPs) include such peptides as cecropins (2, 15, 20, 23-24, 27, 31, 42, 50), magainins (1, 9, 14, 29, 47), sarcotoxin IA (35, 40), and tachyplesin I (3). The genes encoding these small AMPs in plants have been used in practice to enhance their resistance to bacterial and fungal pathogens (8, 22, 40). The expression of AMPs in vivo (mostly cecropins and a synthetic analog of cecropin and magainin) with either specific or broad-spectrum disease resistance in tobacco (14, 24, 27), potato (17, 42), rice (46), banana (9), and hybrid poplar (32) have been reported. The transgenic plants showed considerably greater resistance to certain pathogens than the wild types (4, 13, 24, 27, 42, 46, 50). However, detailed studies of transgenic tomatoes expressing natural cecropin have not yet been reported.The tomato (Solanum lycopersicum) is one of the most commonly consumed vegetables worldwide. The annual yield of tomatoes, however, is severely affected by two common bacterial diseases, bacterial wilt and bacterial spot, which are caused by infection with the Gram-negative bacteria Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria, respectively. Currently available pesticides are ineffective against R. solanacearum, and thus bacterial wilt is a serious problem.Cecropins, one of the natural lytic peptides found in the giant silk moth, Hyalophora cecropia (25), are synthesized in lipid bodies as proteins consisting of 31 to 39 amino acid residues. They adopt an α-helical structure on interaction with bacterial membranes, resulting in the formation of ion channels (12). At low concentrations (0.1 μM to 5 μM), cecropins exhibit lytic antibacterial activity against a number of Gram-negative and some Gram-positive bacteria, but not against eukaryotic cells (11, 26, 33), thus making them potentially powerful tools for engineering bacterial resistance in crops. Moreover, cecropin B (CB) shows the strongest activity against Gram-negative bacteria within the cecropin family and therefore has been considered an excellent candidate for transformation into plants to improve their resistance against bacterial diseases.The introduction of genes encoding cecropins and their analogs into tobacco has been reported to have contradictory results regarding resistance against pathogens (20). However, subsequent investigations of these tobacco plants showed that the expression of CB in the plants did not result in accumulation of detectable levels of CB, presumably due to degradation of the peptide by host peptidases (20, 34). Therefore, protection of CB from cellular degradation is considered to be vital for the exploitation of its antibacterial activity in transgenic plants. The secretory sequences of several genes are helpful, because they cooperate with the desired genes to enhance extracellular secretion (24, 40, 46). In the present study, a natural CB gene was successfully transferred into tomatoes. The transgenic plants showed significant resistance to the tomato diseases bacterial wilt and bacterial spot, as well as with a chemically synthesized CB peptide.  相似文献   

4.
Enterocin X, composed of two antibacterial peptides (Xα and Xβ), is a novel class IIb bacteriocin from Enterococcus faecium KU-B5. When combined, Xα and Xβ display variably enhanced or reduced antibacterial activity toward a panel of indicators compared to each peptide individually. In E. faecium strains that produce enterocins A and B, such as KU-B5, only one additional bacteriocin had previously been known.Bacteriocins are gene-encoded antibacterial peptides and proteins. Because of their natural ability to preserve food, they are of particular interest to researchers in the food industry. Bacteriocins are grouped into three main classes according to their physical properties and compositions (11, 12). Of these, class IIb bacteriocins are thermostable non-lanthionine-containing two-peptide bacteriocins whose full antibacterial activity requires the interaction of two complementary peptides (8, 19). Therefore, two-peptide bacteriocins are considered to function together as one antibacterial entity (14).Enterocins A and B, first discovered and identified about 12 years ago (2, 3), are frequently present in Enterococcus faecium strains from various sources (3, 5, 6, 9, 13, 16). So far, no other bacteriocins have been identified in these strains, except the enterocin P-like bacteriocin from E. faecium JCM 5804T (18). Here, we describe the characterization and genetic identification of enterocin X in E. faecium KU-B5. Enterocin X (identified after the enterocin P-like bacteriocin was discovered) is a newly found class IIb bacteriocin in E. faecium strains that produce enterocins A and B.  相似文献   

5.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

6.
Biofilms are sessile microbial communities that cause serious chronic infections with high morbidity and mortality. In order to develop more effective approaches for biofilm control, a series of linear cationic antimicrobial peptides (AMPs) with various arginine (Arg or R) and tryptophan (Trp or W) repeats [(RW)n-NH2, where n = 2, 3, or 4] were rigorously compared to correlate their structures with antimicrobial activities affecting the planktonic growth and biofilm formation of Escherichia coli. The chain length of AMPs appears to be important for inhibition of bacterial planktonic growth, since the hexameric and octameric peptides significantly inhibited E. coli growth, while tetrameric peptide did not cause noticeable inhibition. In addition, all AMPs except the tetrameric peptide significantly reduced E. coli biofilm surface coverage and the viability of biofilm cells, when added at inoculation. In addition to inhibition of biofilm formation, significant killing of biofilm cells was observed after a 3-hour treatment of preformed biofilms with hexameric peptide. Interestingly, treatment with the octameric peptide caused significant biofilm dispersion without apparent killing of biofilm cells that remained on the surface; e.g., the surface coverage was reduced by 91.5 ± 3.5% by 200 μM octameric peptide. The detached biofilm cells, however, were effectively killed by this peptide. Overall, these results suggest that hexameric and octameric peptides are potent inhibitors of both bacterial planktonic growth and biofilm formation, while the octameric peptide can also disperse existing biofilms and kill the detached cells. These results are helpful for designing novel biofilm inhibitors and developing more effective therapeutic methods.Antimicrobial peptides (AMPs) are promising alternatives to traditional antibiotics (5). Native AMPs are part of the host defense in organisms ranging from bacteria to insects, plants, and animals (14). They are capable of eliminating a broad spectrum of microorganisms, including viruses, bacteria, and fungi (4, 14). Compared with widespread antibiotic resistance (38), resistance to AMPs is rare, possibly because AMPs directly target cell membranes that are essential to microbes (14, 29). In addition, no cross-resistance has been observed in clinic due to the diversity of peptide sequences (42). Thus, native and synthetic AMPs offer potential alternatives to antibiotics for treating drug-resistant infections (3, 26, 27).In mammalian innate immune systems, some AMPs are produced constitutively, while others are inducible within hours after detection of invading microorganisms (4, 13). Although the detailed mechanism of AMPs'' activities remains elusive (5), AMPs are known to disrupt cell membranes of microbes, interfere with metabolism, and/or target cytoplasmic components (41). Most known AMPs are cationic and amphiphilic (29). It is hypothesized that the initial interaction occurs via an electrostatic attraction between the AMP molecule and microbial membrane. Cationic AMPs can cover bacterial membranes, disrupt the membrane potential, create pores across the membrane, and consequently cause the leak of cell contents and cell death (27, 41). AMPs are relatively selective in targeting microbes rather than mammalian cells, most likely because of the fundamental differences between microbial and host membranes (41), e.g., a higher abundance of negatively charged phospholipids and an absence of cholesterol in microbial membranes.Known AMPs vary dramatically in sequence, size (from 12 to 50 amino acids), and structure (α-helices or β-sheets) (23). However, most AMPs have two types of side chains with relatively conservative sequences: positively charged basic residues, containing arginine (R), lysine (K), and/or histidine (H), that presumably mediate the interaction with the negatively charged microbial membrane, and bulky hydrophobic residues, rich in tryptophan (W), proline (P), and/or phenylalanine (F), that facilitate permeabilization and membrane disruption (26).Although AMPs are promising agents for antimicrobial therapies (15), only a few have made it to clinical trials and applications, with varied success (15, 42). There are several issues that need further development. First, the MICs of AMPs are relatively high compared to those of conventional antibiotics. Recent studies suggest that the peptide/lipid (P/L) ratio needs to be higher than a threshold to allow the AMPs to be oriented perpendicular to the membrane so that pores can be created to kill bacteria (22, 30). Thus, an optimization of peptide structure and size may improve their antimicrobial activities. In addition to the high MICs, the wide application of AMPs is also hindered by their high manufacturing costs and the cytotoxicity of some AMPs.Given the limit of currently available AMPs, it is important to develop more effective AMPs with reduced manufacturing cost and enhanced activity (17, 26, 28, 39). Strøm et al. (39) chemically synthesized a series of short cationic AMPs containing repeating R and W residues in order to identify the minimal pharmacophore with high antimicrobial activities. The data suggest that tetrapeptides or capped tripeptides are effective and there is no correlation between the order of amino acids and antimicrobial activity. Liu et al. (26) analyzed the effects of chain length on the activities of AMPs with repeating pharmacophore sequences (RW)n-NH2 (n = 1, 2, 3, 4, or 5). The tests of antimicrobial activities and the hemolysis of red blood cells suggest that (RW)3-NH2 has the optimal chain length. Although longer chains are more potent antimicrobials, they can stimulate hemolysis.Most of the AMP studies to date are focused on planktonic bacteria. However, the majority of pathogenic bacteria tend to adhere to surfaces and form sessile microbial communities with highly hydrated structures of secreted polysaccharide matrix, collectively known as biofilms (9). Biofilms can tolerate up to 1,000 times more antibiotics and disinfectants than their planktonic counterparts (2, 7, 8). For example, Folkesson et al. (12) reported that biofilm formation of E. coli K-12 increases its tolerance to polymyxin E, a polypeptide antibiotic that kills Gram-negative bacteria by disrupting membranes (34, 40). Since biofilms are involved in 80% of human bacterial infections (1), it is necessary to study biofilm inhibition and dispersion by AMPs.In this study, a series of linear peptides (RW)n-NH2 (where n = 2, 3, or 4) were studied for the effects of their activities on planktonic cells and biofilms of E. coli to understand the structural effects on the antimicrobial activities of AMPs. We chose E. coli RP437 in this study because it is one of the model strains for biofilm research and allows us to compare the data with those of our previous studies (6, 16, 19, 20).  相似文献   

7.
Here, we report a fluorescence in situ hybridization (FISH) method for rapid detection of Cronobacter strains in powdered infant formula (PIF) using a novel peptide nucleic acid (PNA) probe. Laboratory tests with several Enterobacteriaceae species showed that the specificity and sensitivity of the method were 100%. FISH using PNA could detect as few as 1 CFU per 10 g of Cronobacter in PIF after an 8-h enrichment step, even in a mixed population containing bacterial contaminants.Cronobacter strains were originally described as Enterobacter sakazakii (12), but they are now known to comprise a novel genus consisting of six separate genomospecies (20, 21). These opportunistic pathogens are ubiquitous in the environment and various types of food and are occasionally found in the normal human flora (11, 12, 16, 32, 47). Based on case reports, Cronobacter infections in adults are generally less severe than Cronobacter infections in newborn infants, with which a high fatality rate is associated (24).The ability to detect Cronobacter and trace possible sources of infection is essential as a means of limiting the impact of these organisms on neonatal health and maintaining consumer confidence in powdered infant formula (PIF). Conventional methods, involving isolation of individual colonies followed by biochemical identification, are more time-consuming than molecular methods, and the reliability of some currently proposed culture-based methods has been questioned (28). Recently, several PCR-based techniques have been described (23, 26, 28-31, 38). These techniques are reported to be efficient even when low levels of Cronobacter cells are found in a sample (0.36 to 66 CFU/100 g). However, PCR requires DNA extraction and does not allow direct, in situ visualization of the bacterium in a sample.Fluorescence in situ hybridization (FISH) is a method that is commonly used for bacterial identification and localization in samples. This method is based on specific binding of nucleic acid probes to particular DNA or RNA target regions (1, 2). rRNA has been regarded as the most suitable target for bacterial FISH, allowing differentiation of potentially viable cells. Traditionally, FISH methods are based on the use of conventional DNA oligonucleotide probes, and a commercial system, VIT-E sakazakii (Vermicon A.G., Munich, Germany), has been developed based on this technology (25). However, a recently developed synthetic DNA analogue, peptide nucleic acid (PNA), has been shown to provide improved hybridization performance compared to DNA probes, making FISH procedures easier and more efficient (41). Taking advantage of the PNA properties, FISH using PNA has been successfully used for detection of several clinically relevant microorganisms (5, 15, 17, 27, 34-36).  相似文献   

8.
9.
For recognition of infected cells by CD8 T cells, antigenic peptides are presented at the cell surface, bound to major histocompatibility complex class I (MHC-I) molecules. Downmodulation of cell surface MHC-I molecules is regarded as a hallmark function of cytomegalovirus-encoded immunoevasins. The molecular mechanisms by which immunoevasins interfere with the MHC-I pathway suggest, however, that this downmodulation may be secondary to an interruption of turnover replenishment and that hindrance of the vesicular transport of recently generated peptide-MHC (pMHC) complexes to the cell surface is the actual function of immunoevasins. Here we have used the model of murine cytomegalovirus (mCMV) infection to provide experimental evidence for this hypothesis. To quantitate pMHC complexes at the cell surface after infection in the presence and absence of immunoevasins, we generated the recombinant viruses mCMV-SIINFEKL and mCMV-Δm06m152-SIINFEKL, respectively, expressing the Kb-presented peptide SIINFEKL with early-phase kinetics in place of an immunodominant peptide of the viral carrier protein gp36.5/m164. The data revealed ∼10,000 Kb molecules presenting SIINFEKL in the absence of immunoevasins, which is an occupancy of ∼10% of all cell surface Kb molecules, whereas immunoevasins reduced this number to almost the detection limit. To selectively evaluate their effect on preexisting pMHC complexes, cells were exogenously loaded with SIINFEKL peptide shortly after infection with mCMV-SIINFEKA, in which endogenous presentation is prevented by an L174A mutation of the C-terminal MHC-I anchor residue. The data suggest that pMHC complexes present at the cell surface in advance of immunoevasin gene expression are downmodulated due to constitutive turnover in the absence of resupply.CD8 T cells recognize infected cells by interaction of their T-cell receptor (TCR) with a cell surface presentation complex composed of a cognate antigenic peptide bound to a presenting allelic form of a major histocompatibility complex class I (MHC-I) glycoprotein (77, 85, 97, 98). The number of such “peptide receptors” per cell has been estimated to be on the order of 105 to 106 for each MHC-I allomorph (for a review, see reference 82). Viral antigenic peptides are generated within infected cells by proteolytic processing of viral proteins, usually in the proteasome, and associate with nascent MHC-I proteins in the endoplasmic reticulum (ER) before the peptide-MHC (pMHC) complexes travel to the cell surface with the cellular vesicular flow (for reviews, see references 13, 87, 92, and 93). CD8 T cells have long been known to protect against cytomegalovirus (CMV) infection and disease in animal models (60, 72; reviewed in references 33 and 36) and in humans (9, 61, 67, 75, 76). As shown only recently in the murine CMV (mCMV) model of infection of immunocompromised mice by adoptive transfer of epitope-specific CD8 T cells, antiviral protection against CMV is indeed TCR mediated and epitope dependent. Specifically, memory cells purified by TCR-based epitope-specific cell sorting, as well as cells of a peptide-selected cytolytic T-lymphocyte line, protected against mCMV expressing the cognate antigenic peptide, the IE1 peptide 168-YPHFMPTNL-176 in this example, but failed to control infection with a recombinant mCMV expressing a peptide analogue in which the C-terminal MHC-I anchor residue leucine was replaced with alanine (3).Interference with the MHC-I pathway of antigen presentation has evolved as a viral immune evasion mechanism of CMVs and other viruses, mediated by virally encoded proteins that inhibit MHC-I trafficking to the cell surface (for reviews, see references 1, 24, 27, 29, 63, 70, 71, 84, and 95). These molecules are known as immunoevasins (50, 70, 89), as “viral proteins interfering with antigen presentation” (VIPRs) (95), or as negative “viral regulators of antigen presentation” (vRAPs) (34). Although the detailed molecular mechanisms differ between different CMV species in their respective hosts, the common biological outcome is the inhibition of antigen presentation. Accordingly, downmodulation of MHC-I cell surface expression is a hallmark of molecular immune evasion and actually led to the discovery of this class of molecules. Since CD8 T cells apparently protect against infection with wild-type CMV strains despite the expression of immunoevasins, the in vivo relevance of these molecules is an issue of current interest and investigation (for a review, see reference 14). As shown recently with the murine model, antigen presentation in infected host cells is not completely blocked for all epitopes, because pMHC complexes that are constitutively formed in sufficiently large amounts can exhaust the inhibitory capacity of the immunoevasins (40). Likewise, enhancing antigen processing conditionally with gamma interferon (IFN-γ) aids in peptide presentation in the presence of immunoevasins (18, 28). Thus, by raising the threshold of the amount of peptide required for presentation, immunoevasins determine whether a particular viral peptide can function as a protective epitope—an issue of relevance for rational vaccine design as well (94). Whereas deletion of immunoevasin genes gives only incremental improvement to the control of infection in immunocompetent mice (22, 51), expression of immunoevasins reduces the protective effect of adoptively transferred CD8 T cells in immunocompromised recipients (37, 40, 47, 48). In a bone marrow transplantation model, immunoevasins were recently found to contribute to enhanced and prolonged virus replication during hematopoietic reconstitution and, consequently, also to higher latent viral genome loads in the lungs and a higher incidence of virus recurrence (4). Notably, however, immunoevasins do not inhibit but, rather, enhance CD8 T-cell priming (5, 21, 22, 56), due to higher viral replication levels in draining lymph nodes associated with sustained antigen supply for the cross-priming of CD8 T cells by uninfected antigen-presenting cells (5).For mCMV, three molecules are proposed to function as vRAPs, only two of which are confirmed negative regulators that downmodulate cell surface MHC-I (34, 62, 89) and inhibit the presentation of antigenic peptides to CD8 T cells (34, 62). Immunoevasin gp40/m152 transiently interacts with MHC-I molecules and mediates their retention in a cis-Golgi compartment (96), whereas gp48/m06 stably binds to MHC-I molecules in the ER and mediates sorting of the complexes for lysosomal degradation by a mechanism that involves the cellular cargo sorting adaptor proteins AP1-A and AP3-A (73, 74). The third proposed immunoevasin of mCMV, gp34/m04 (46), also binds stably to MHC-I molecules. A function as a CD8 T-cell immunoevasin was predicted from some alleviation of immune evasion for certain epitopes and MHC-I molecules in cells infected with the deletion mutant mCMV-Δm04 (34, 42, 89), but gp34/m04 does not reduce the steady-state level of cell surface class I molecules and does not inhibit peptide presentation when expressed selectively after infection with mCMV-Δm06m152 (34, 62). The m04-MHC-I complexes are expressed on the cell surface (46) and appear to be involved in the modulation of natural killer cell activity (45).Here we give the first report on quantitating the efficacy of immunoevasins in terms of absolute numbers of pMHC complexes displayed at the cell surface. By comparing the fate of pMHC complexes already present at the cell surface in advance of immunoevasin gene expression with that of newly formed pMHC complexes, our data provide direct evidence to conclude that downmodulation of cell surface MHC-I molecules is secondary to an interruption of the flow of newly formed pMHC complexes to the cell surface.(Part of this work was presented at the 12th International CMV/Betaherpesvirus Workshop, 10 to 14 May 2009, Boston, MA.)  相似文献   

10.
Mature glycoprotein spikes are inserted in the Lassa virus envelope and consist of the distal subunit GP-1, the transmembrane-spanning subunit GP-2, and the signal peptide, which originate from the precursor glycoprotein pre-GP-C by proteolytic processing. In this study, we analyzed the oligomeric structure of the viral surface glycoprotein. Chemical cross-linking studies of mature glycoprotein spikes from purified virus revealed the formation of trimers. Interestingly, sucrose density gradient analysis of cellularly expressed glycoprotein showed that in contrast to trimeric mature glycoprotein complexes, the noncleaved glycoprotein forms monomers and oligomers spanning a wide size range, indicating that maturation cleavage of GP by the cellular subtilase SKI-1/S1P is critical for formation of the correct oligomeric state. To shed light on a potential relation between cholesterol and GP trimer stability, we performed cholesterol depletion experiments. Although depletion of cholesterol had no effect on trimerization of the glycoprotein spike complex, our studies revealed that the cholesterol content of the viral envelope is important for the infectivity of Lassa virus. Analyses of the distribution of viral proteins in cholesterol-rich detergent-resistant membrane areas showed that Lassa virus buds from membrane areas other than those responsible for impaired infectivity due to cholesterol depletion of lipid rafts. Thus, derivation of the viral envelope from cholesterol-rich membrane areas is not a prerequisite for the impact of cholesterol on virus infectivity.Lassa virus (LASV) is a member of the family Arenaviridae, of which Lymphocytic choriomeningitis virus (LCMV) is the prototype. Arenaviruses comprise more than 20 species, divided into the Old World and New World virus complexes (19). The Old World arenaviruses include the human pathogenic LASV strains, Lujo virus, which was first identified in late 2008 and is associated with an unprecedented high case fatality rate in humans, the nonhuman pathogenic Ippy, Mobala, and Mopeia viruses, and the recently described Kodoko virus (10, 30, 49). The New World virus complex contains, among others, the South American hemorrhagic fever-causing viruses Junín virus, Machupo virus, Guanarito virus, Sabiá virus, and the recently discovered Chapare virus (22).Arenaviruses contain a bisegmented single-stranded RNA genome encoding the polymerase L, matrix protein Z, nucleoprotein NP, and glycoprotein GP. The bipartite ribonucleoprotein of LASV is surrounded by a lipid envelope derived from the plasma membrane of the host cell. The matrix protein Z has been identified as a major budding factor, which lines the interior of the viral lipid membrane, in which GP spikes are inserted (61, 75). The glycoprotein is synthesized as precursor protein pre-GP-C and is cotranslationally cleaved by signal peptidase into GP-C and the signal peptide, which exhibits unusual length, stability, and topology (3, 27, 28, 33, 70, 87). Moreover, the arenaviral signal peptide functions as trans-acting maturation factor (2, 26, 33). After processing by signal peptidase, GP-C of both New World and Old World arenaviruses is cleaved by the cellular subtilase subtilisin kexin isozyme-1/site-1 protease (SKI-1/S1P) into the distal subunit GP-1 and the membrane-anchored subunit GP-2 within the secretory pathway (5, 52, 63). For LCMV, it has been shown that GP-1 subunits are linked to each other by disulfide bonds and are noncovalently connected to GP-2 subunits (14, 24, 31). GP-1 is responsible for binding to the host cell receptor, while GP-2 mediates fusion between the virus envelope and the endosomal membrane at low pH due to a bipartite fusion peptide near the amino terminus (24, 36, 44). Sequence analysis of the LCMV GP-2 ectodomain revealed two heptad repeats that most likely form amphipathic helices important for this process (34, 86).In general, viral class I fusion proteins have triplets of α-helical structures in common, which contain heptad repeats (47, 73). In contrast, class II fusion proteins are characterized by β-sheets that form dimers in the prefusion status and trimers in the postfusion status (43). The class III fusion proteins are trimers that, unlike class I fusion proteins, were not proteolytically processed N-terminally of the fusion peptide, resulting in a fusion-active membrane-anchored subunit (39, 62). Previous studies with LCMV described a tetrameric organization of the glycoprotein spikes (14), while more recent data using a bacterially expressed truncated ectodomain of the LCMV GP-2 subunit pointed toward a trimeric spike structure (31). Due to these conflicting data regarding the oligomerization status of LCMV GP, it remains unclear to which class of fusion proteins the arenaviral glycoproteins belong.The state of oligomerization and the correct conformation of viral glycoproteins are crucial for membrane fusion during virus entry. The early steps of infection have been shown for several viruses to be dependent on the cholesterol content of the participating membranes (i.e., either the virus envelope or the host cell membrane) (4, 9, 15, 20, 21, 23, 40, 42, 53, 56, 76, 78, 79). In fact, it has been shown previously that entry of both LASV and LCMV is susceptible to cholesterol depletion of the target host cell membrane using methyl-β-cyclodextrin (MβCD) treatment (64, 71). Moreover, cholesterol not only plays an important role in the early steps during entry in the viral life cycle but also is critical in the virus assembly and release process. Several viruses of various families, including influenza virus, human immunodeficiency virus type 1 (HIV-1), measles virus, and Ebola virus, use the ordered environment of lipid raft microdomains. Due to their high levels of glycosphingolipids and cholesterol, these domains are characterized by insolubility in nonionic detergents under cold conditions (60, 72). Recent observations have suggested that budding of the New World arenavirus Junin virus occurs from detergent-soluble membrane areas (1). Assembly and release from distinct membrane microdomains that are detergent soluble have also been described for vesicular stomatitis virus (VSV) (12, 38, 68). At present, however, it is not known whether LASV requires cholesterol in its viral envelope for successful virus entry or whether specific membrane microdomains are important for LASV assembly and release.In this study, we first investigated the oligomeric state of the premature and mature LASV glycoprotein complexes. Since it has been shown for several membrane proteins that the oligomerization and conformation are dependent on cholesterol (58, 59, 76, 78), we further analyzed the dependence of the cholesterol content of the virus envelope on glycoprotein oligomerization and virus infectivity. Finally, we characterized the lipid membrane areas from which LASV is released.  相似文献   

11.
A segregationally stable expression and secretion vector for Saccharomyces cerevisiae, named pYABD01, was constructed by cloning the yeast gene region encoding the mating pheromone α-factor 1 secretion signal (MFα1s) into the S. cerevisiae high-copy-number expression vector pYES2. The structural genes of the two leaderless peptides of enterocin L50 (EntL50A and EntL50B) from Enterococcus faecium L50 were cloned, separately (entL50A or entL50B) and together (entL50AB), into pYABD01 under the control of the galactose-inducible promoter PGAL1. The generation of recombinant S. cerevisiae strains heterologously expressing and secreting biologically active EntL50A and EntL50B demonstrates the suitability of the MFα1s-containing vector pYABD01 to direct processing and secretion of these antimicrobial peptides through the S. cerevisiae Sec system.Lactic acid bacteria (LAB) are widely known for their ability to produce a variety of ribosomally synthesized proteins or peptides, referred to as bacteriocins, displaying antimicrobial activity against a broad range of gram-positive bacteria and, to a lesser extent, gram-negative bacteria, including spoilage and food-borne pathogenic microorganisms (11, 19, 33, 34, 36, 37). These antimicrobials may be classified into three main classes: (i) the lantibiotics, or posttranslationally modified peptides; (ii) the nonmodified, small, heat-stable peptides; and (iii) the large, heat-labile protein bacteriocins. Class II bacteriocins are further grouped into five subclasses: the subclass IIa (pediocin-like bacteriocins containing the N-terminal conserved motif YGNGVxC), the subclass IIb (two-peptide bacteriocins), the subclass IIc (leaderless bacteriocins), the subclass IId (circular bacteriocins), and the subclass IIe (other peptide bacteriocins) (17, 19, 21, 37). All lantibiotics and most class II bacteriocins are synthesized as biologically inactive precursors containing an N-terminal extension (the so-called double-glycine-type leader sequence or the Sec-dependent signal peptide), which is cleaved off concomitantly with externalization of biologically active bacteriocins by a dedicated ATP-binding cassette transporter and its accessory protein or by the Sec system and the signal peptidases, respectively (11, 17). Interestingly, only a few bacteriocins described to date are synthesized without an N-terminal extension, including enterocin L50 (L50A and L50B) (8), enterocin Q (EntQ) (10), enterocin EJ97 (41), and the bacteriocin LsbB (20).In recent years, there has been an increasing interest in the application of bacteriocinogenic microorganisms and/or their bacteriocins as biopreservatives to guarantee the safety and quality of foods and beverages, such as fermented vegetables and meats, dairy and fish products, and wine and beer (12, 15, 16, 39, 47). Three main strategies for the use of bacteriocins as food biopreservatives have been proposed: (i) addition of a purified/semipurified bacteriocin preparation as a food additive; (ii) use of a substrate previously fermented by a bacteriocin-producing strain as a food ingredient; and/or (iii) inoculation of a culture to produce the bacteriocin in situ in fermented foods (13, 15). The lantibiotic nisin A is the most widely characterized bacteriocin and the only one that has been legally approved in more than 48 countries as a food additive for use in certain types of cheeses (13, 16). Likewise, nisin A has been approved as a beer additive in Australia and New Zealand (16). However, the difficulties encountered in addressing the regulatory approval of new bacteriocins as food additives have spurred the development of the other bacteriocin-based food biopreservation strategies (13, 17).Beer is a beverage with a remarkable microbiological stability and is considered as a food substrate difficult to spoil. However, some LAB, such as Lactobacillus brevis, Lactobacillus lindneri, and Pediococcus damnosus, are able to spoil beer and are recognized as the most hazardous bacteria for breweries, being responsible for approximately 70% of microbial beer spoilage incidents (40, 47). The ever-growing consumer demand for less-processed and less chemically preserved foods and beverages is promoting the development of alternative biocontrol strategies, such as those based on the use of bacteriocins as biopreservatives (12, 15, 39, 47). However, beyond the strict requirements to fulfill legal regulations, the commercial application of bacteriocins as beer additives is hindered mainly by low bacteriocin production yields and increases in production costs (44). Considering that Saccharomyces cerevisiae is commonly used as starter culture for brewing (24, 28, 35), a novel beer biopreservation strategy based on the development of bactericidal S. cerevisiae brewing strains has been proposed to overcome the aforementioned challenges (44, 46, 47). In this respect, the heterologous production of LAB bacteriocins, namely, pediocin PA-1 (PedPA-1) from Pediococcus acidilactici PAC1.0 and plantaricin 423 from Lactobacillus plantarum 423, by laboratory strains of S. cerevisiae has been reported (44, 46).Enterocin L50 (EntL50) is a commonly found bacteriocin composed of two highly related leaderless antimicrobial peptides, enterocin L50A (EntL50A) and enterocin L50B (EntL50B), which possesses a broad antimicrobial spectrum against LAB, food-borne pathogenic bacteria, and human and animal clinical pathogens (8, 9, 10, 11). Previous work by our group showed that EntL50 (EntL50A and EntL50B) may be used as a beer biopreservative to inhibit the growth of beer spoilage bacteria (1). Therefore, genetically engineered strains of S. cerevisiae heterologously expressing and secreting EntL50A and EntL50B have been developed in this work. For this purpose, we constructed the segregationally stable expression and secretion vector pYABD01, which allowed the secretion of biologically active EntL50A and EntL50B directed by MFα1s through the S. cerevisiae Sec system.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding first to CD4 and then to a coreceptor (CoR), of which C-C chemokine receptor 5 (CCR5) is the most common (6, 53). CXCR4 is an additional CoR for up to 50% of subtype B and D HIV-1 isolates at very late stages of disease (4, 7, 28, 35). Many other seven-membrane-spanning G-protein-coupled receptors (GPCRs) have been identified as alternative CoRs when expressed on various target cell lines in vitro, including CCR1 (76, 79), CCR2b (24), CCR3 (3, 5, 17, 32, 60), CCR8 (18, 34, 38), GPR1 (27, 65), GPR15/BOB (22), CXCR5 (39), CXCR6/Bonzo/STRL33/TYMSTR (9, 22, 25, 45, 46), APJ (26), CMKLR1/ChemR23 (49, 62), FPLR1 (67, 68), RDC1 (66), and D6 (55). HIV-2 and simian immunodeficiency virus SIVmac isolates more frequently show expanded use of these alternative CoRs than HIV-1 isolates (12, 30, 51, 74), and evidence that alternative CoRs other than CXCR4 mediate infection of primary target cells by HIV-1 isolates is sparse (18, 30, 53, 81). Genetic deficiency in CCR5 expression is highly protective against HIV-1 transmission (21, 36), establishing CCR5 as the primary CoR. The importance of alternative CoRs other than CXCR4 has remained elusive despite many studies (1, 30, 70, 81). Expansion of CoR use from CCR5 to include CXCR4 is frequently associated with the ability to use additional alternative CoRs for viral entry (8, 16, 20, 63, 79) in most but not all studies (29, 33, 40, 77, 78). This finding suggests that the sequence changes in HIV-1 env required for use of CXCR4 as an additional or alternative CoR (14, 15, 31, 37, 41, 57) are likely to increase the potential to use other alternative CoRs.We have used the highly permissive NP-2/CD4 human glioma cell line developed by Soda et al. (69) to classify virus entry via the alternative CoRs CCR1, CCR3, CCR8, GPR1, CXCR6, APJ, CMKLR1/ChemR23, FPRL1, and CXCR4. Full-length molecular clones of 66 env genes from most prevalent HIV-1 subtypes were used to generate infectious virus pseudotypes expressing a luciferase reporter construct (19, 57). Two types of analysis were performed: the level of virus entry mediated by each alternative CoR and linear regression of entry mediated by CCR5 versus all other alternative CoRs. We thus were able to identify patterns of alternative CoR use that were subtype specific and to determine if use of any alternative CoR was correlated or independent of CCR5-mediated entry. The results obtained have implications for the evolution of env function, and the analyses revealed important differences between subtype B Env function and all other HIV-1 subtypes.  相似文献   

13.
Adhesive pili on the surface of the serotype M1 Streptococcus pyogenes strain SF370 are composed of a major backbone subunit (Spy0128) and two minor subunits (Spy0125 and Spy0130), joined covalently by a pilin polymerase (Spy0129). Previous studies using recombinant proteins showed that both minor subunits bind to human pharyngeal (Detroit) cells (A. G. Manetti et al., Mol. Microbiol. 64:968-983, 2007), suggesting both may act as pilus-presented adhesins. While confirming these binding properties, studies described here indicate that Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role as a wall linker. Pili were localized predominantly to cell wall fractions of the wild-type S. pyogenes parent strain and a spy0125 deletion mutant. In contrast, they were found almost exclusively in culture supernatants in both spy0130 and srtA deletion mutants, indicating that the housekeeping sortase (SrtA) attaches pili to the cell wall by using Spy0130 as a linker protein. Adhesion assays with antisera specific for individual subunits showed that only anti-rSpy0125 serum inhibited adhesion of wild-type S. pyogenes to human keratinocytes and tonsil epithelium to a significant extent. Spy0125 was localized to the tip of pili, based on a combination of mutant analysis and liquid chromatography-tandem mass spectrometry analysis of purified pili. Assays comparing parent and mutant strains confirmed its role as the adhesin. Unexpectedly, apparent spontaneous cleavage of a labile, proline-rich (8 of 14 residues) sequence separating the N-terminal ∼1/3 and C-terminal ∼2/3 of Spy0125 leads to loss of the N-terminal region, but analysis of internal spy0125 deletion mutants confirmed that this has no significant effect on adhesion.The group A Streptococcus (S. pyogenes) is an exclusively human pathogen that commonly colonizes either the pharynx or skin, where local spread can give rise to various inflammatory conditions such as pharyngitis, tonsillitis, sinusitis, or erysipelas. Although often mild and self-limiting, GAS infections are occasionally very severe and sometimes lead to life-threatening diseases, such as necrotizing fasciitis or streptococcal toxic shock syndrome. A wide variety of cell surface components and extracellular products have been shown or suggested to play important roles in S. pyogenes virulence, including cell surface pili (1, 6, 32). Pili expressed by the serotype M1 S. pyogenes strain SF370 mediate specific adhesion to intact human tonsil epithelia and to primary human keratinocytes, as well as cultured keratinocyte-derived HaCaT cells, but not to Hep-2 or A549 cells (1). They also contribute to adhesion to a human pharyngeal cell line (Detroit cells) and to biofilm formation (29).Over the past 5 years, pili have been discovered on an increasing number of important Gram-positive bacterial pathogens, including Bacillus cereus (4), Bacillus anthracis (4, 5), Corynebacterium diphtheriae (13, 14, 19, 26, 27, 44, 46, 47), Streptococcus agalactiae (7, 23, 38), and Streptococcus pneumoniae (2, 3, 24, 25, 34), as well as S. pyogenes (1, 29, 32). All these species produce pili that are composed of a single major subunit plus either one or two minor subunits. During assembly, the individual subunits are covalently linked to each other via intermolecular isopeptide bonds, catalyzed by specialized membrane-associated transpeptidases that may be described as pilin polymerases (4, 7, 25, 41, 44, 46). These are related to the classical housekeeping sortase (usually, but not always, designated SrtA) that is responsible for anchoring many proteins to Gram-positive bacterial cell walls (30, 31, 33). The C-terminal ends of sortase target proteins include a cell wall sorting (CWS) motif consisting, in most cases, of Leu-Pro-X-Thr-Gly (LPXTG, where X can be any amino acid) (11, 40). Sortases cleave this substrate between the Thr and Gly residues and produce an intermolecular isopeptide bond linking the Thr to a free amino group provided by a specific target. In attaching proteins to the cell wall, the target amino group is provided by the lipid II peptidoglycan precursor (30, 36, 40). In joining pilus subunits, the target is the ɛ-amino group in the side chain of a specific Lys residue in the second subunit (14, 18, 19). Current models of pilus biogenesis envisage repeated transpeptidation reactions adding additional subunits to the base of the growing pilus, until the terminal subunit is eventually linked covalently via an intermolecular isopeptide bond to the cell wall (28, 41, 45).The major subunit (sometimes called the backbone or shaft subunit) extends along the length of the pilus and appears to play a structural role, while minor subunits have been detected either at the tip, the base, and/or at occasional intervals along the shaft, depending on the species (4, 23, 24, 32, 47). In S. pneumoniae and S. agalactiae one of the minor subunits acts as an adhesin, while the second appears to act as a linker between the base of the assembled pilus and the cell wall (7, 15, 22, 34, 35). It was originally suggested that both minor subunits of C. diphtheriae pili could act as adhesins (27). However, recent data showed one of these has a wall linker role (26, 44) and may therefore not function as an adhesin.S. pyogenes strain SF370 pili are composed of a major (backbone) subunit, termed Spy0128, plus two minor subunits, called Spy0125 and Spy0130 (1, 32). All three are required for efficient adhesion to target cells (1). Studies employing purified recombinant proteins have shown that both of the minor subunits, but not the major subunit, bind to Detroit cells (29), suggesting both might act as pilus-presented adhesins. Here we report studies employing a combination of recombinant proteins, specific antisera, and allelic replacement mutants which show that only Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role in linking pili to the cell wall.  相似文献   

14.
15.
16.
17.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

18.
Antigenic peptides recognized by virus-specific cytotoxic T lymphocytes (CTLs) are presented by major histocompatibility complex (MHC; or human leukocyte antigen [HLA] in humans) molecules, and the peptide selection and presentation strategy of the host has been studied to guide our understanding of cellular immunity and vaccine development. Here, a severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid (N) protein-derived CTL epitope, N1 (QFKDNVILL), restricted by HLA-A*2402 was identified by a series of in vitro studies, including a computer-assisted algorithm for prediction, stabilization of the peptide by co-refolding with HLA-A*2402 heavy chain and β2-microglobulin (β2m), and T2-A24 cell binding. Consequently, the antigenicity of the peptide was confirmed by enzyme-linked immunospot (ELISPOT), proliferation assays, and HLA-peptide complex tetramer staining using peripheral blood mononuclear cells (PBMCs) from donors who had recovered from SARS donors. Furthermore, the crystal structure of HLA-A*2402 complexed with peptide N1 was determined, and the featured peptide was characterized with two unexpected intrachain hydrogen bonds which augment the central residues to bulge out of the binding groove. This may contribute to the T-cell receptor (TCR) interaction, showing a host immunodominant peptide presentation strategy. Meanwhile, a rapid and efficient strategy is presented for the determination of naturally presented CTL epitopes in the context of given HLA alleles of interest from long immunogenic overlapping peptides.In 2003, severe and acute respiratory syndrome (SARS), emerging from China, caused a global outbreak, affecting 29 countries, with over 8,000 human cases and greater than 800 deaths (5, 9, 24, 33, 37). Thanks to the unprecedented global collaboration coordinated by the WHO, SARS coronavirus (SARS-CoV), a novel member of Coronaviridae family, was rapidly confirmed to be the etiological agent for the SARS epidemic (36). Soon after the identification of the causative agent, SARS was controlled and then quickly announced to be conquered through international cooperation on epidemiological processes (9). However, the role that human immunity played in the clearance of SARS-CoV and whether the memory immunity will persist for the potential reemergence of SARS are not yet well understood.In viral infections, CD8+ cytotoxic T lymphocytes (CTLs) are essential to the control of infectious disease. Virus-specific CD8+ T cells recognize peptides which have 8 to 11 amino acids, in most cases presented by major histocompatibility complex (MHC) class I molecules. However, identification of virus-specific CD8+ T-cell epitopes remains a complicated and time-consuming process. Various strategies have been developed to define CTL epitopes so far. One of the most common practices to determine immunodominant CTL epitopes on a large scale is based on screening and functional analysis of overlapping 15- to 20-mer peptides covering an entire viral proteome or a given set of immunogenic proteins (19, 23, 32). However, peptides identified through this method are too long to be naturally processed CTL epitopes, and the definition of MHC class I restriction of these peptides still requires further analysis. Rapid and efficient strategies should be developed for the determination of naturally presented CTL epitopes in the context of any given HLA allele of interest. Furthermore, no other HLA alleles except HLA-A2-restricted CTL epitopes have been reported for SARS-CoV-derived proteins (16, 22, 31, 43, 46, 47, 49). This is primarily because of the limitation of the experimental methods for the other HLA alleles. HLA-A24 is one of the most common HLA-A alleles throughout the world, especially in East Asia, where SARS-CoV emerged, second only to HLA-A2 (30). The development of a fast and valid method to screen and identify HLA-A24-restricted epitopes would greatly contribute to the understanding of the specific CTL epitope-stimulated response and widen the application of the epitope-based vaccine among a more universal population (17). A genomewide scanning of HLA binding peptides from SARS-CoV has been performed by Sylvester-Hvid and colleagues, through which dozens of peptides with major HLA supertypes, including HLA-A24 binding capability, have been identified (41).There are strong indications that different peptide ligands, such as peptides with distinct immunodominance, can elicit a diverse specific T-cell repertoire, and even subtle changes in the same peptide can have a profound effect on the response (25, 44). Furthermore, a broader T-cell receptor (TCR) repertoire to a virus-specific peptide-MHC complex can keep the host resistant to the virus and limit the emergence of virus immune-escape mutants (29, 34, 38). Recent studies have demonstrated that the diversity of the selected TCR repertoire (designated as T-cell receptor bias) is clearly influenced by the conformational characteristics of the bound peptide in the MHC groove. Peptides with a flat, featureless surface when presented by MHC generate only limited TCR diversity in a mature repertoire, while featured peptides with exposed residues (without extreme bulges) protruding outside the pMHC landscapes are rather associated with the more diverse T-cell repertoire (15, 28, 39, 44, 45). Therefore, being able to determine the binding features of a peptide to MHC and describe the peptide-MHC topology will help us understand the immunodominance of a given peptide and demonstrate the peptide presentation strategy of the host.Structural proteins of SARS-CoV, such as spike, membrane, and nucleocapsid (N), have been demonstrated as factors of the antigenicity of the virus, as compared with the nonstructural proteins (12, 20). Coronavirus nucleocapsid (N) protein is a highly phosphorylated protein which not only is responsible for construction of the ribonucleoprotein complex by interacting with the viral genome and regulating the synthesis of viral RNA and protein, but also serves as a potent immunogen that induces humoral and cellular immunity (13, 14, 26, 48). The CD8+ T-cell epitopes derived from SARS-CoV N protein defined so far mainly cluster in two major immunogenic regions (4, 21, 23, 31, 32, 43). One of them, residues 219 to 235, comprises most of the N protein-derived minimal CTL epitopes identified so far—N220-228, N223-231, N227-235, etc.—all of which are HLA-A*0201 restricted (4, 43). The other region, residues 331 to 365, also includes high-immunogenicity peptides that can induce memory T-lymphocyte responses against SARS-CoV (21, 23, 32). However, until now, no minimal CTL epitope with a given HLA allele restriction has been investigated in this region.Here, based on previously defined immunogenic regions derived from SARS-CoV N protein (21), we identified an HLA-A*2402-restricted epitope, N1 (residues 346 to 354), in the region through a distinct strategy using structural and functional approaches. The binding affinity with HLA-A*2402 molecules and the cellular immunogenicity of the peptide were demonstrated in a series of assays. The X-ray crystal structure of HLA-A*2402 complexed with peptide N1 has shown a novel host strategy to present an immunodominant CTL epitope by intrachain hydrogen bond as a featured epitope.  相似文献   

19.
Although the genome of Haloferax volcanii contains genes (flgA1-flgA2) that encode flagellins and others that encode proteins involved in flagellar assembly, previous reports have concluded that H. volcanii is nonmotile. Contrary to these reports, we have now identified conditions under which H. volcanii is motile. Moreover, we have determined that an H. volcanii deletion mutant lacking flagellin genes is not motile. However, unlike flagella characterized in other prokaryotes, including other archaea, the H. volcanii flagella do not appear to play a significant role in surface adhesion. While flagella often play similar functional roles in bacteria and archaea, the processes involved in the biosynthesis of archaeal flagella do not resemble those involved in assembling bacterial flagella but, instead, are similar to those involved in producing bacterial type IV pili. Consistent with this observation, we have determined that, in addition to disrupting preflagellin processing, deleting pibD, which encodes the preflagellin peptidase, prevents the maturation of other H. volcanii type IV pilin-like proteins. Moreover, in addition to abolishing swimming motility, and unlike the flgA1-flgA2 deletion, deleting pibD eliminates the ability of H. volcanii to adhere to a glass surface, indicating that a nonflagellar type IV pilus-like structure plays a critical role in H. volcanii surface adhesion.To escape toxic conditions or to acquire new sources of nutrients, prokaryotes often depend on some form of motility. Swimming motility, a common means by which many bacteria move from one place to another, usually depends on flagellar rotation to propel cells through liquid medium (24, 26, 34). These motility structures are also critical for the effective attachment of bacteria to surfaces.As in bacteria, rotating flagella are responsible for swimming motility in archaea, and recent studies suggest that archaea, like bacteria, also require flagella for efficient surface attachment (37, 58). However, in contrast to bacterial flagellar subunits, which are translocated via a specialized type III secretion apparatus, archaeal flagellin secretion and flagellum assembly resemble the processes used to translocate and assemble the subunits of bacterial type IV pili (34, 38, 54).Type IV pili are typically composed of major pilins, the primary structural components of the pilus, and several minor pilin-like proteins that play important roles in pilus assembly or function (15, 17, 46). Pilin precursor proteins are transported across the cytoplasmic membrane via the Sec translocation pathway (7, 20). Most Sec substrates contain either a class I or a class II signal peptide that is cleaved at a recognition site that lies subsequent to the hydrophobic portion of the signal peptide (18, 43). However, the precursors of type IV pilins contain class III signal peptides, which are processed at recognition sites that precede the hydrophobic domain by a prepilin-specific peptidase (SPase III) (38, 43, 45). Similarly, archaeal flagellin precursors contain a class III signal peptide that is processed by a prepilin-specific peptidase homolog (FlaK/PibD) (3, 8, 10, 11). Moreover, flagellar assembly involves homologs of components involved in the biosynthesis of bacterial type IV pili, including FlaI, an ATPase homologous to PilB, and FlaJ, a multispanning membrane protein that may provide a platform for flagellar assembly, similar to the proposed role for PilC in pilus assembly (38, 44, 53, 54). These genes, as well as a number of others that encode proteins often required for either flagellar assembly or function (flaCDEFG and flaH), are frequently coregulated with the flg genes (11, 26, 44, 54).Interestingly, most sequenced archaeal genomes also contain diverse sets of genes that encode type IV pilin-like proteins with little or no homology to archaeal flagellins (3, 39, 52). While often coregulated with pilB and pilC homologs, these genes are never found in clusters containing the motility-specific flaCDEFG and flaH homologs; however, the proteins they encode do contain class III signal peptides (52). Several of these proteins have been shown to be processed by an SPase III (4, 52). Moreover, in Sulfolobus solfataricus and Methanococcus maripaludis, some of these archaeal type IV pilin-like proteins were confirmed to form surface filaments that are distinct from the flagella (21, 22, 56). These findings strongly suggest that the genes encode subunits of pilus-like surface structures that are involved in functions other than swimming motility.In bacteria, type IV pili are multifunctional filamentous protein complexes that, in addition to facilitating twitching motility, mediate adherence to abiotic surfaces and make close intercellular associations possible (15, 17, 46). For instance, mating between Escherichia coli in liquid medium has been shown to require type IV pili (often referred to as thin sex pili), which bring cells into close proximity (29, 30, 57). Recent work has shown that the S. solfataricus pilus, Ups, is required not only for efficient adhesion to surfaces of these crenarchaeal cells but also for UV-induced aggregation (21, 22, 58). Frols et al. postulate that autoaggregation is required for DNA exchange under these highly mutagenic conditions (22). Halobacterium salinarum has also been shown to form Ca2+-induced aggregates (27, 28). Furthermore, conjugation has been observed in H. volcanii, which likely requires that cells be held in close proximity for a sustained period to allow time for the cells to construct the cytoplasmic bridges that facilitate DNA transfer between them (35).To determine the roles played by haloarchaeal flagella and other putative type IV pilus-like structures in swimming and surface motility, surface adhesion, autoaggregation, and conjugation, we constructed and characterized two mutant strains of H. volcanii, one lacking the genes that encode the flagellins and the other lacking pibD. Our analyses indicate that although this archaeon was previously thought to be nonmotile (14, 36), wild-type (wt) H. volcanii can swim in a flagellum-dependent manner. Consistent with the involvement of PibD in processing flagellins, the peptidase mutant is nonmotile. Unlike nonhalophilic archaea, however, the flagellum mutant can adhere to glass as effectively as the wild type. Conversely, the ΔpibD strain fails to adhere to glass surfaces, strongly suggesting that in H. volcanii surface adhesion involves nonflagellar, type IV pilus-like structures.  相似文献   

20.
An intracellular multiplication F (IcmF) family protein is a conserved component of a newly identified type VI secretion system (T6SS) encoded in many animal and plant-associated Proteobacteria. We have previously identified ImpLM, an IcmF family protein that is required for the secretion of the T6SS substrate hemolysin-coregulated protein (Hcp) from the plant-pathogenic bacterium Agrobacterium tumefaciens. In this study, we characterized the topology of ImpLM and the importance of its nucleotide-binding Walker A motif involved in Hcp secretion from A. tumefaciens. A combination of β-lactamase-green fluorescent protein fusion and biochemical fractionation analyses revealed that ImpLM is an integral polytopic inner membrane protein comprising three transmembrane domains bordered by an N-terminal domain facing the cytoplasm and a C-terminal domain exposed to the periplasm. impLM mutants with substitutions or deletions in the Walker A motif failed to complement the impLM deletion mutant for Hcp secretion, which provided evidence that ImpLM may bind and/or hydrolyze nucleoside triphosphates to mediate T6SS machine assembly and/or substrate secretion. Protein-protein interaction and protein stability analyses indicated that there is a physical interaction between ImpLM and another essential T6SS component, ImpKL. Topology and biochemical fractionation analyses suggested that ImpKL is an integral bitopic inner membrane protein with an N-terminal domain facing the cytoplasm and a C-terminal OmpA-like domain exposed to the periplasm. Further comprehensive yeast two-hybrid assays dissecting ImpLM-ImpKL interaction domains suggested that ImpLM interacts with ImpKL via the N-terminal cytoplasmic domains of the proteins. In conclusion, ImpLM interacts with ImpKL, and its Walker A motif is required for its function in mediation of Hcp secretion from A. tumefaciens.Many pathogenic gram-negative bacteria employ protein secretion systems formed by macromolecular complexes to deliver proteins or protein-DNA complexes across the bacterial membrane. In addition to the general secretory (Sec) pathway (18, 52) and twin-arginine translocation (Tat) pathway (7, 34), which transport proteins across the inner membrane into the periplasm, at least six distinct protein secretion systems occur in gram-negative bacteria (28, 46, 66). These systems are able to secrete proteins from the cytoplasm or periplasm to the external environment or the host cell and include the well-documented type I to type V secretion systems (T1SS to T5SS) (10, 15, 23, 26, 30) and a recently discovered type VI secretion system (T6SS) (4, 8, 22, 41, 48, 49). These systems use ATPase or a proton motive force to energize assembly of the protein secretion machinery and/or substrate translocation (2, 6, 41, 44, 60).Agrobacterium tumefaciens is a soilborne pathogenic gram-negative bacterium that causes crown gall disease in a wide range of plants. Using an archetypal T4SS (9), A. tumefaciens translocates oncogenic transferred DNA and effector proteins to the host and ultimately integrates transferred DNA into the host genome. Because of its unique interkingdom DNA transfer, this bacterium has been extensively studied and used to transform foreign DNA into plants and fungi (11, 24, 40, 67). In addition to the T4SS, A. tumefaciens encodes several other secretion systems, including the Sec pathway, the Tat pathway, T1SS, T5SS, and the recently identified T6SS (72). T6SS is highly conserved and widely distributed in animal- and plant-associated Proteobacteria and plays an important role in the virulence of several human and animal pathogens (14, 19, 41, 48, 56, 63, 74). However, T6SS seems to play only a minor role or even a negative role in infection or virulence of the plant-associated pathogens or symbionts studied to date (5, 37-39, 72).T6SS was initially designated IAHP (IcmF-associated homologous protein) clusters (13). Before T6SS was documented by Pukatzki et al. in Vibrio cholerae (48), mutations in this gene cluster in the plant symbiont Rhizobium leguminosarum (5) and the fish pathogen Edwardsiella tarda (51) caused defects in protein secretion. In V. cholerae, T6SS was responsible for the loss of cytotoxicity for amoebae and for secretion of two proteins lacking a signal peptide, hemolysin-coregulated protein (Hcp) and valine-glycine repeat protein (VgrG). Secretion of Hcp is the hallmark of T6SS. Interestingly, mutation of hcp blocks the secretion of VgrG proteins (VgrG-1, VgrG-2, and VgrG-3), and, conversely, vgrG-1 and vgrG-2 are both required for secretion of the Hcp and VgrG proteins from V. cholerae (47, 48). Similarly, a requirement of Hcp for VgrG secretion and a requirement of VgrG for Hcp secretion have also been shown for E. tarda (74). Because Hcp forms a hexameric ring (41) stacked in a tube-like structure in vitro (3, 35) and VgrG has a predicted trimeric phage tail spike-like structure similar to that of the T4 phage gp5-gp27 complex (47), Hcp and VgrG have been postulated to form an extracellular translocon. This model is further supported by two recent crystallography studies showing that Hcp, VgrG, and a T4 phage gp25-like protein resembled membrane penetration tails of bacteriophages (35, 45).Little is known about the topology and structure of T6SS machinery subunits and the distinction between genes encoding machinery subunits and genes encoding regulatory proteins. Posttranslational regulation via the phosphorylation of Fha1 by a serine-threonine kinase (PpkA) is required for Hcp secretion from Pseudomonas aeruginosa (42). Genetic evidence for P. aeruginosa suggested that the T6SS may utilize a ClpV-like AAA+ ATPase to provide the energy for machinery assembly or substrate translocation (41). A recent study of V. cholerae suggested that ClpV ATPase activity is responsible for remodeling the VipA/VipB tubules which are crucial for type VI substrate secretion (6). An outer membrane lipoprotein, SciN, is an essential T6SS component for mediating Hcp secretion from enteroaggregative Escherichia coli (1). A systematic study of the T6SS machinery in E. tarda revealed that 13 of 16 genes in the evp gene cluster are essential for secretion of T6S substrates (74), which suggests the core components of the T6SS. Interestingly, most of the core components conserved in T6SS are predicted soluble proteins without recognizable signal peptide and transmembrane (TM) domains.The intracellular multiplication F (IcmF) and H (IcmH) proteins are among the few core components with obvious TM domains (8). In Legionella pneumophila Dot/Icm T4SSb, IcmF and IcmH are both membrane localized and partially required for L. pneumophila replication in macrophages (58, 70, 75). IcmF and IcmH are thought to interact with each other in stabilizing the T4SS complex in L. pneumophila (58). In T6SS, IcmF is one of the essential components required for secretion of Hcp from several animal pathogens, including V. cholerae (48), Aeromonas hydrophila (63), E. tarda (74), and P. aeruginosa (41), as well as the plant pathogens A. tumefaciens (72) and Pectobacterium atrosepticum (39). In E. tarda, IcmF (EvpO) interacted with IcmH (EvpN), EvpL, and EvpA in a yeast two-hybrid assay, and its putative nucleotide-binding site (Walker A motif) was not essential for secretion of T6SS substrates (74).In this study, we characterized the topology and interactions of the IcmF and IcmH family proteins ImpLM and ImpKL, which are two essential components of the T6SS of A. tumefaciens. We adapted the nomenclature proposed by Cascales (8), using the annotated gene designation followed by the letter indicated by Shalom et al. (59). Our data indicate that ImpLM and ImpKL are both integral inner membrane proteins and interact with each other via their N-terminal domains residing in the cytoplasm. We also provide genetic evidence showing that ImpLM may function as a nucleoside triphosphate (NTP)-binding protein or nucleoside triphosphatase to mediate T6S machinery assembly and/or substrate secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号