首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The [URE3] yeast prion is a self-propagating inactive form of the Ure2p protein. We show here that Ure2p from the species Saccharomyces paradoxus (Ure2pSp) can be efficiently converted into a prion form and propagate [URE3] when expressed in Saccharomyces cerevisiae at physiological level. We found however that Ure2pSp overexpression prevents efficient prion propagation. We have compared the aggregation rate and propagon numbers of Ure2pSp and of S. cerevisiae Ure2p (Ure2pSc) in [URE3] cells both at different expression levels. Overexpression of both Ure2p orthologues accelerates formation of large aggregates but Ure2pSp aggregates faster than Ure2pSc. Although the yeast cells that contain these large Ure2p aggregates do not transmit [URE3] to daughter cells, the corresponding crude extract retains the ability to induce [URE3] in wild-type [ure3-0] cells. At low expression level, propagon numbers are higher with Ure2pSc than with Ure2pSp. Overexpression of Ure2p decreases the number of [URE3] propagons with Ure2pSc. Together, our results demonstrate that the concentration of a prion protein is a key factor for prion propagation. We propose a model to explain how prion protein overexpression can produce a detrimental effect on prion propagation and why Ure2pSp might be more sensitive to such effects than Ure2pSc.  相似文献   

2.
Fibrils play an important role in the pathogenesis of amyloidosis; however, the underlying mechanisms of the growth process and the structural details of fibrils are poorly understood. Crucial in the fibril formation of prion proteins is the stacking of PrP monomers. We previously proposed that the structure of the prion protein fibril may be similar as a parallel left-handed β-helix. The β-helix is composed of spiraling rungs of parallel β-strands, and in the PrP model residues 105–143 of each PrP monomer can contribute two β-helical rungs to the growing fibril. Here we report data to support this model. We show that two cyclized human PrP peptides corresponding to residues 105–124 and 125–143, based on two single rungs of the left-handed β-helical core of the human PrPSc fibril, show spontaneous cooperative fibril growth in vitro by heterologous stacking. Because the structural model must have predictive value, peptides were designed based on the structure rules of the left-handed β-helical fold that could stack with prion protein peptides to stimulate or to block fibril growth. The stimulator peptide was designed as an optimal left-handed β-helical fold that can serve as a template for fibril growth initiation. The inhibiting peptide was designed to bind to the exposed rung but frustrate the propagation of the fibril growth. The single inhibitory peptide hardly shows inhibition, but the combination of the inhibitory with the stimulatory peptide showed complete inhibition of the fibril growth of peptide huPrP-(106–126). Moreover, the unique strategy based on stimulatory and inhibitory peptides seems a powerful new approach to study amyloidogenic fibril structures in general and could prove useful for the development of therapeutics.Transmissible spongiform encephalopathies are neurodegenerative disorders in a wide range of mammalian species, including Creutzfeldt-Jacob disease in man, scrapie in sheep, and bovine spongiform encephalopathy in cattle. The deposition of aggregated prion protein fibrils on and in neurons is regarded to be the source of these neurodegenerative diseases and is frequently associated with occurrence of Congo red positivity (13). The fibrils are formed by the conformational change of the prion protein (PrPc)2 into the scrapie form (PrPSc). The misfolded conformer of the prion protein (PrPSc) is considered as the causative agent in these diseases according to the protein-only hypothesis (4). Studies have shown the toxicity of fibrils of the full-length recombinant mammalian prion protein as well as soluble β-rich oligomers to cultured cells and primary neurons (5).It is still unknown how much of the whole PrPSc molecule is involved in the fibril growth. It is shown that the N-terminal part of PrP, specifically residues 112–141, can go through conformational changes involving β-strand formation, which subsequently triggers fibril growth (68), and solid state NMR studies showed that residues 112–141 are part of the highly ordered core of huPrP-(23–144) (9). It was previously shown that peptides based on the 89–143 region of the human PrP protein can form fibrils rich in β-sheet structure which are biologically active in transgenic mice (10). Within this region it is the huPrP-(106–126) peptide that is the smallest known region of PrP that forms fibrils that are toxic and resemble the physiological properties of PrPSc (1116). The formation of PrPSc is considered to be a two-step event; first, there is the binding between PrPc and PrPSc and subsequently the conformational conversion from PrPc into PrPSc occurs. Mutation studies in a prion-infected neuroblastoma cell line showed that in mouse PrP the regions 101–110 and 136–158 are crucial for the binding and conversion events, respectively (17). Because prevention of fibril growth is the prime therapeutic target, detailed structural knowledge of the fibril is essential for understanding the mechanism of fibril growth. However, structural analysis of amyloid fibrils is hampered by insolubility, isomorphism, and aggregation. X-ray diffraction of several amyloid fibrils revealed a so-called cross-β diffraction pattern which indicates that the fibrils contain β-strands perpendicular to the fibril axis and hydrogen bonds in parallel (18, 19). Thus, for fibril growth the β-strands have to stack on top of each other. Several structures have been suggested to explain the structure of the stacked β-strands; e.g. a parallel in register organization of stacked β hairpins (24) or the comparable dry steric zipper structure (25). Previously, we and other groups suggested that the β-sheet structures in the PrPSc fibril may be similar to the topologically most simple class of β-sheets; that is, the parallel left-handed β-helix (Fig. 1A) (6, 20, 21). The left-handed β helix is formed by triangular progressive coils (rungs) of 18–20 residues. Each rung is formed by three hexapeptide motifs, which results in an approximate 3-fold symmetry. Backbone-backbone hydrogen bonding and stacking of the side chains in adjacent rungs contribute to the folding of β-helical rungs. We suggested that each PrPSc monomer contributes two left-handed β-helical rungs to the fibril, comprising residues 105–124 and 125–143 (Fig. 1A). This two-rung structural model was recently confirmed for amyloid fibrils of the HET-s prion by NMR analysis (22). In contrast to fibrils which are composed of homologous stacks of identical peptides, e.g. the Aβ peptide (23), the PrPSc fibril is more complex because it is composed of heterologous stacks of at least two peptides. For homologous stacking of two identical peptides, the complementarity issue is relatively simple because the identical side chains are in register (e.g. Ile-Ile, Val-Val stacking, and Asn ladders). However, in the case of heterologous stacking, the side chains of the additional heterologous peptide needs to be complementary with the other peptide to allow fibril growth.Open in a separate windowFIGURE 1.A, theoretical model of the fibrillogenic core of PrPSc. In the PrPSc model based on the left-handed β-helix structure, each PrPSc monomer contributes two stacked rungs to the fibril (different color for each monomer). The protofibril is formed by consecutive stacking of the two windings. The stack of two rungs provides enough elevation to accommodate the remaining part (residues ∼ 146–253) of the PrPSc molecule (20). B, the left-handed β-helix structure of LpxA-based on x-ray crystallography. In the left-handed β-helix structure of LpxA (PDB code 1LXA) rungs 6 and 7 are indicated (red) that were used for the heterologous stacking studies. Linear and cyclized peptides based on rung 6 and rung 7 were modified to satisfy the ideal left-handed β-helix motif (see “LpxA Peptides” under “Results”) and tested for their intrinsic and cooperative fibrillogenicity. C, left-handed β-helical rung based on rung 6 of LpxA. The rung is formed by three hexapeptide motifs, which results in an approximate 3-fold symmetry. A left-handed β-helical rung can be cyclized by a disulfide bridge after the introduction of a cysteine at position 2 of the first hexapeptide and position 1 of the fourth hexapeptide (according to the numbering used for the hexapeptide repeats in the left-handed β-helix).To investigate whether the suggested rungs 105–123 and 125–143 from human PrP could be complementary (20), we studied the homologous stacking and the heterologous stacking of linear and cyclized prion protein peptides comprising the huPrP-(105–143) region (KTNMKHMAGAAAAGAVVGGLGGYMLGSAMSRPIIHFGS). Qualitative and semiquantitative analysis were done by electron microscopy and Congo red staining. The quantification of the fibril formation was assessed by thioflavin S staining, in which the addition of polyanions (e.g. heparin) enhance the β-sheet formation of peptides comprising the 82–143 region of PrP and improve the reproducibility of the fibril growth (24). This study provides first evidence of heterologous stacking by two isolated putative β-strand layers (or rungs) of the human prion protein with fibril formation as a result. The left-handed β-helix structure provided insight for the “stack-and-stop” approach. With this approach a mix of a stimulatory peptide and an inhibitory peptide could completely block fibril formation. The stimulatory peptide was based on the 125–143 region that was optimized to serve as a folding template for the consecutive stacking of the 106–126 peptide. This cooperative fibril growth was completely inhibited by the inhibitory peptide based on peptides 106–126 with strategic d-amino acid and/or proline substitutions. The findings in this study support models in which the sequential strands in a fibril must somehow spiral up- or downward along the fibril axis, e.g. like the hypothetical left-handed β-helical structure of PrPSc fibrils (20). Furthermore, it allows the development of well defined small protein modules which can be used for structure studies of the 82–143 domain of PrPSc and the development of therapeutics.  相似文献   

3.
Amyloid fibril formation is associated with a range of neurodegenerative diseases in humans, including Alzheimer’s, Parkinson’s, and prion diseases. In yeast, amyloid underlies several non-Mendelian phenotypes referred to as yeast prions. Mechanism of amyloid formation is critical for a complete understanding of the yeast prion phenomenon and human amyloid-related diseases. Ure2 protein is the basis of yeast prion [URE3]. The Ure2p prion domain is largely disordered. Residual structures, if any, in the disordered region may play an important role in the aggregation process. Studies of Ure2p prion domain are complicated by its high aggregation propensity, which results in a mixture of monomer and aggregates in solution. Previously we have developed a solid-support electron paramagnetic resonance (EPR) approach to address this problem and have identified a structured state for the Alzheimer’s amyloid-β monomer. Here we use solid-support EPR to study the structure of Ure2p prion domain. EPR spectra of Ure2p prion domain with spin labels at every fifth residue from position 10 to position 75 show similar residue mobility profile for denaturing and native buffers after accounting for the effect of solution viscosity. These results suggest that Ure2p prion domain adopts a completely disordered structure in the native buffer. A completely disordered Ure2p prion domain implies that the amyloid formation of Ure2p, and likely other Q/N-rich yeast prion proteins, is primarily driven by inter-molecular interactions.  相似文献   

4.

Background

A number of amyloid diseases involve deposition of extracellular protein aggregates, which are implicated in mechanisms of cell damage and death. However, the mechanisms involved remain poorly understood.

Methodology/Principal Findings

Here we use the yeast prion protein Ure2 as a generic model to investigate how amyloid-like protein aggregates can enter mammalian cells and convey cytotoxicity. The effect of three different states of Ure2 protein (native dimer, protofibrils and mature fibrils) was tested on four mammalian cell lines (SH-SY5Y, MES23.5, HEK-293 and HeLa) when added extracellularly to the medium. Immunofluorescence using a polyclonal antibody against Ure2 showed that all three protein states could enter the four cell lines. In each case, protofibrils significantly inhibited the growth of the cells in a dose-dependent manner, fibrils showed less toxicity than protofibrils, while the native state had no effect on cell growth. This suggests that the structural differences between the three protein states lead to their different effects upon cells. Protofibrils of Ure2 increased membrane conductivity, altered calcium homeostasis, and ultimately induced apoptosis. The use of standard inhibitors suggested uptake into mammalian cells might occur via receptor-mediated endocytosis. In order to investigate this further, we used the chicken DT40 B cell line DKOR, which allows conditional expression of clathrin. Uptake into the DKOR cell-line was reduced when clathrin expression was repressed suggesting similarities between the mechanism of PrP uptake and the mechanism observed here for Ure2.

Conclusions/Significance

The results provide insight into the mechanisms by which amyloid aggregates may cause pathological effects in prion and amyloid diseases.  相似文献   

5.
Yeast prions are self-perpetuating protein aggregates that cause heritable and transmissible phenotypic traits. Among these, [PSI +] and [URE3] stand out as the most studied yeast prions, and result from the self-assembly of the translation terminator Sup35p and the nitrogen catabolism regulator Ure2p, respectively, into insoluble fibrillar aggregates. Protein quality control systems are well known to govern the formation, propagation and transmission of these prions. However, little is known about the implication of the cellular proteolytic machineries in their turnover. We previously showed that the 26S proteasome degrades both the soluble and fibrillar forms of Sup35p and affects [PSI +] propagation. Here, we show that soluble native Ure2p is degraded by the proteasome in an ubiquitin-independent manner. Proteasomal degradation of Ure2p yields amyloidogenic N-terminal peptides and a C-terminal resistant fragment. In contrast to Sup35p, fibrillar Ure2p resists proteasomal degradation. Thus, structural variability within prions may dictate their ability to be degraded by the cellular proteolytic systems.  相似文献   

6.
The difference between the prion and the non-prion form of a protein is given solely by its three-dimensional structure, according to the prion hypothesis. It has been shown that solid-state NMR can unravel the atomic-resolution three-dimensional structure of prion fragments but, in the case of Ure2p, no highly resolved spectra are obtained from the isolated prion domain. Here, we demonstrate that the spectra of full-length fibrils of Ure2p interestingly lead to highly resolved solid-state NMR spectra. Prion fibrils formed under physiological conditions are therefore well-ordered objects on the molecular level. Comparing the full-length NMR spectra with the corresponding spectra of the prion and globular domains in isolation reveals that the globular part in particular shows almost perfect structural order. The NMR linewidths in these spectra are as narrow as the ones observed in crystals of the isolated globular domain. For the prion domain, the spectra reflect partial disorder, suggesting structural heterogeneity, both in isolation and in full-length Ure2p fibrils, although to different extents. The spectral quality is surprising in the light of existing structural models for Ure2p and in comparison to the corresponding spectra of the only other full-length prion fibrils (HET-s) investigated so far. This opens the exciting perspective of an atomic-resolution structure determination of the fibrillar form of a prion whose assembly is not accompanied by significant conformational changes and documents the structural diversity underlying prion propagation.  相似文献   

7.
8.
9.
Aggregation of the Ure2 protein is at the origin of the [URE3] prion trait in the yeast Saccharomyces cerevisiae. The N-terminal region of Ure2p is necessary and sufficient to induce the [URE3] phenotype in vivo and to polymerize into amyloid-like fibrils in vitro. However, as the N-terminal region is poorly ordered in the native state, making it difficult to detect structural changes in this region by spectroscopic methods, detailed information about the fibril assembly process is therefore lacking. Short fibril-forming peptide regions (4–7 residues) have been identified in a number of prion and other amyloid-related proteins, but such short regions have not yet been identified in Ure2p. In this study, we identify a unique cysteine mutant (R17C) that can greatly accelerate the fibril assembly kinetics of Ure2p under oxidizing conditions. We found that the segment QVNI, corresponding to residues 18–21 in Ure2p, plays a critical role in the fast assembly properties of R17C, suggesting that this segment represents a potential amyloid-forming region. A series of peptides containing the QVNI segment were found to form fibrils in vitro. Furthermore, the peptide fibrils could seed fibril formation for wild-type Ure2p. Preceding the QVNI segment with a cysteine or a hydrophobic residue, instead of a charged residue, caused the rate of assembly into fibrils to increase greatly for both peptides and full-length Ure2p. Our results indicate that the potential amyloid stretch and its preceding residue can modulate the fibril assembly of Ure2p to control the initiation of prion formation.The [URE3] phenotype of Saccharomyces cerevisiae arises because of conversion of the Ure2 protein to an aggregated propagatable prion state (1, 2). Ure2p contains two regions: a poorly structured N-terminal region and a compactly folded C-terminal region (3, 4). The N-terminal region is rich in Asn and Gln residues, is highly flexible, and is without any detectable ordered secondary structure (46). This region is necessary and sufficient for prion behavior in vivo (2) and amyloid-forming capacity in vitro (5, 7), so it is referred to as the prion domain (PrD).2 The C-terminal region has a fold similar to the glutathione S-transferase superfamily (8, 9) and possesses glutathione-dependent peroxidase activity (10). Upon fibril formation, the N-terminal region undergoes a significant conformational change from an unfolded to a thermally resistant conformation (11), whereas the glutathione S-transferase-like C-terminal domain retains its enzymatic activity, suggesting that little conformational change occurs (10, 12). Ure2p fibrils show various morphologies, including variations in thickness and the presence or absence of a periodic twist (1316). The overall structure of the fibrils imaged by cryoelectron microscopy suggests that the intact fibrils contain a 4-nm amyloid filament backbone surrounded by C-terminal globular domains (17).It is widely accepted that disulfide bonds play a critical role in maintaining protein stability (1821) and also affect the process of protein folding by influencing the folding pathway (2225). A recent study shows that the presence of a disulfide bond in a protein can markedly accelerate the folding process (26). Therefore, a disulfide bond is a useful tool to study protein folding. In the study of prion and other amyloid-related proteins, cysteine scanning has been widely used to study the structure of amyloid fibrils, the driving force of amyloid formation, and the plasticity of amyloid fibrils (13, 2731).Short segments from amyloid-related proteins, including IAPP (islet amyloid polypeptide), β2-microglobulin, insulin, and the amyloid-β peptide, show amyloid-forming capacity (3234). Hence, the amyloid stretch hypothesis has been proposed, which suggests that a short amino acid stretch bearing a highly amyloidogenic motif might supply most of the driving force needed to trigger the self-catalytic assembly process of a protein to form fibrils (35, 36). In support of this hypothesis, it was found that the insertion of an amyloidogenic stretch into a non-amyloid-related protein can trigger the amyloidosis of the protein (36). At the same time, the structural information obtained from microcrystals formed by amyloidogenic stretches and bearing cross-β-structure has contributed significantly to our understanding of the structure of intact fibrils at the atomic level (34, 37). However, no amyloidogenic stretches <10 amino acids have so far been identified in the yeast prion protein Ure2.In this study, we performed a cysteine scan within the N-terminal PrD of Ure2p and found a unique cysteine mutant (R17C) that eliminates the lag phase of the Ure2p fibril assembly reaction upon the addition of oxidizing agents. Furthermore, we identified a 4-residue region adjacent to Arg17 as a potential amyloid stretch in Ure2p.  相似文献   

10.
11.
Human aminopeptidase N (hAPN/hCD13) is a dimeric membrane protein and a member of the M1 family of zinc metallopeptidases. Within the rennin-angiotensin system, its enzymatic activity is responsible for processing peptide hormones angiotensin III and IV. In addition, hAPN is also involved in cell adhesion, endocytosis, and signal transduction and it is an important target for cancer therapy. Reported here are the high resolution x-ray crystal structures of the dimeric ectodomain of hAPN and its complexes with angiotensin IV and the peptidomimetic inhibitors, amastatin and bestatin. Each monomer of the dimer is found in what has been termed the closed form in other M1 enzymes and each monomer is characterized by an internal cavity surrounding the catalytic site as well as a unique substrate/inhibitor-dependent loop ordering, which in the case of the bestatin complex suggests a new route to inhibitor design. The hAPN structure provides the first example of a dimeric M1 family member and the observed structural features, in conjunction with a model for the open form, provide novel insights into the mechanism of peptide processing and signal transduction.  相似文献   

12.
The prion consists essentially of PrPSc, a misfolded and aggregated conformer of the cellular protein PrPC. Whereas PrPC deficient mice are clinically healthy, expression of PrPC variants lacking its central domain (PrPΔCD), or of the PrP-related protein Dpl, induces lethal neurodegenerative syndromes which are repressed by full-length PrP. Here we tested the structural basis of these syndromes by grafting the amino terminus of PrPC (residues 1–134), or its central domain (residues 90–134), onto Dpl. Further, we constructed a soluble variant of the neurotoxic PrPΔCD mutant that lacks its glycosyl phosphatidyl inositol (GPI) membrane anchor. Each of these modifications abrogated the pathogenicity of Dpl and PrPΔCD in transgenic mice. The PrP-Dpl chimeric molecules, but not anchorless PrPΔCD, ameliorated the disease of mice expressing truncated PrP variants. We conclude that the amino proximal domain of PrP exerts a neurotrophic effect even when grafted onto a distantly related protein, and that GPI-linked membrane anchoring is necessary for both beneficial and deleterious effects of PrP and its variants.  相似文献   

13.
Spores are an essential cell type required for long-term survival across diverse organisms in the tree of life and are a hallmark of fungal reproduction, persistence, and dispersal. Among human fungal pathogens, spores are presumed infectious particles, but relatively little is known about this robust cell type. Here we used the meningitis-causing fungus Cryptococcus neoformans to determine the roles of spore-resident proteins in spore biology. Using highly sensitive nanoscale liquid chromatography/mass spectrometry, we compared the proteomes of spores and vegetative cells (yeast) and identified eighteen proteins specifically enriched in spores. The genes encoding these proteins were deleted, and the resulting strains were evaluated for discernable phenotypes. We hypothesized that spore-enriched proteins would be preferentially involved in spore-specific processes such as dormancy, stress resistance, and germination. Surprisingly, however, the majority of the mutants harbored defects in sexual development, the process by which spores are formed. One mutant in the cohort was defective in the spore-specific process of germination, showing a delay specifically in the initiation of vegetative growth. Thus, by using this in-depth proteomics approach as a screening tool for cell type-specific proteins and combining it with molecular genetics, we successfully identified the first germination factor in C. neoformans. We also identified numerous proteins with previously unknown functions in both sexual development and spore composition. Our findings provide the first insights into the basic protein components of infectious spores and reveal unexpected molecular connections between infectious particle production and spore composition in a pathogenic eukaryote.  相似文献   

14.
In prion diseases, the infectious isoform of the prion protein (PrPSc) may subvert a normal, physiological activity of the cellular isoform (PrPC). A deletion mutant of the prion protein (Δ105–125) that produces a neonatal lethal phenotype when expressed in transgenic mice provides a window into the normal function of PrPC and how it can be corrupted to produce neurotoxic effects. We report here the surprising and unexpected observation that cells expressing Δ105–125 PrP and related mutants are hypersensitive to the toxic effects of two classes of antibiotics (aminoglycosides and bleomycin analogues) that are commonly used for selection of stably transfected cell lines. This unusual phenomenon mimics several essential features of Δ105–125 PrP toxicity seen in transgenic mice, including rescue by co-expression of wild type PrP. Cells expressing Δ105–125 PrP are susceptible to drug toxicity within minutes, suggesting that the mutant protein enhances cellular accumulation of these cationic compounds. Our results establish a screenable cellular phenotype for the activity of neurotoxic forms of PrP, and they suggest possible mechanisms by which these molecules could produce their pathological effects in vivo.  相似文献   

15.
16.
17.

Background

Prion diseases are fatal neurodegenerative disorders characterized by misfolding and aggregation of the normal prion protein PrPC. Little is known about the details of the structural rearrangement of physiological PrPC into a still-elusive disease-associated conformation termed PrPSc. Increasing evidence suggests that the amino-terminal octapeptide sequences of PrP (huPrP, residues 59–89), though not essential, play a role in modulating prion replication and disease presentation.

Methodology/Principal Findings

Here, we report that trypsin digestion of PrPSc from variant and sporadic human CJD results in a disease-specific trypsin-resistant PrPSc fragment including amino acids ∼49–231, thus preserving important epitopes such as the octapeptide domain for biochemical examination. Our immunodetection analyses reveal that several epitopes buried in this region of PrPSc are exposed in PrPC.

Conclusions/Significance

We conclude that the octapeptide region undergoes a previously unrecognized conformational transition in the formation of PrPSc. This phenomenon may be relevant to the mechanism by which the amino terminus of PrPC participates in PrPSc conversion, and may also be exploited for diagnostic purposes.  相似文献   

18.
Yeast prions are self-propagating amyloid-like aggregates of Q/N-rich protein that confer heritable traits and provide a model of mammalian amyloidoses. [PSI+] is a prion isoform of the translation termination factor Sup35. Propagation of [PSI+] during cell division under normal conditions and during the recovery from damaging environmental stress depends on cellular chaperones and is influenced by ubiquitin proteolysis and the actin cytoskeleton. The paralogous yeast proteins Lsb1 and Lsb2 bind the actin assembly protein Las17 (a yeast homolog of human Wiskott-Aldrich syndrome protein) and participate in the endocytic pathway. Lsb2 was shown to modulate maintenance of [PSI+] during and after heat shock. Here, we demonstrate that Lsb1 also regulates maintenance of the Sup35 prion during and after heat shock. These data point to the involvement of Lsb proteins in the partitioning of protein aggregates in stressed cells. Lsb1 abundance and cycling between actin patches, endoplasmic reticulum, and cytosol is regulated by the Guided Entry of Tail-anchored proteins pathway and Rsp5-dependent ubiquitination. Heat shock-induced proteolytic processing of Lsb1 is crucial for prion maintenance during stress. Our findings identify Lsb1 as another component of a tightly regulated pathway controlling protein aggregation in changing environments.  相似文献   

19.
Molecular chaperones play a significant role in preventing protein misfolding and aggregation. Indeed, some protein conformational disorders have been linked to changes in the chaperone network. Curiously, in yeast, chaperones also play a role in promoting prion maintenance and propagation. While many amyloidogenic proteins are associated with disease in mammals, yeast prion proteins, and their ability to undergo conformational conversion into a prion state, are proposed to play a functional role in yeast biology. The chaperone Hsp104, a AAA+ ATPase, is essential for yeast prion propagation. Hsp104 fragments large prion aggregates to generate a population of smaller oligomers that can more readily convert soluble monomer and be transmitted to daughter cells. Here, we show that the middle (M) domain of Hsp104, and its mobility, plays an integral part in prion propagation. We generated and characterized mutations in the M-domain of Hsp104 that are predicted to stabilize either a repressed or de-repressed conformation of the M-domain (by analogy to ClpB in bacteria). We show that the predicted stabilization of the repressed conformation inhibits general chaperone activity. Mutation to the de-repressed conformation, however, has differential effects on ATP hydrolysis and disaggregation, suggesting that the M-domain is involved in coupling these two activities. Interestingly, we show that changes in the M-domain differentially affect the propagation of different variants of the [PSI+] and [RNQ+] prions, which indicates that some prion variants are more sensitive to changes in the M-domain mobility than others. Thus, we provide evidence that regulation of the M-domain of Hsp104 is critical for efficient prion propagation. This shows the importance of elucidating the function of the M-domain in order to understand the role of Hsp104 in the propagation of different prions and prion variants.  相似文献   

20.
Mammalian prion strains are believed to arise from the propagation of distinct conformations of the misfolded prion protein PrPSc. One key operational parameter used to define differences between strains has been conformational stability of PrPSc as defined by resistance to thermal and/or chemical denaturation. However, the structural basis of these stability differences is unknown. To bridge this gap, we have generated two strains of recombinant human prion protein amyloid fibrils that show dramatic differences in conformational stability and have characterized them by a number of biophysical methods. Backbone amide hydrogen/deuterium exchange experiments revealed that, in sharp contrast to previously studied strains of infectious amyloid formed from the yeast prion protein Sup35, differences in β-sheet core size do not underlie differences in conformational stability between strains of mammalian prion protein amyloid. Instead, these stability differences appear to be dictated by distinct packing arrangements (i.e. steric zipper interfaces) within the amyloid core, as indicated by distinct x-ray fiber diffraction patterns and large strain-dependent differences in hydrogen/deuterium exchange kinetics for histidine side chains within the core region. Although this study was limited to synthetic prion protein amyloid fibrils, a similar structural basis for strain-dependent conformational stability may apply to brain-derived PrPSc, especially because large strain-specific differences in PrPSc stability are often observed despite a similar size of the PrPSc core region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号