首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The biological formation of inorganic materials (biomineralization) often occurs in specialized intracellular vesicles. Prominent examples are diatoms, a group of single-celled eukaryotic microalgae that produce their SiO2 (silica)-based cell walls within intracellular silica deposition vesicles (SDVs). SDVs contain protein-based organic matrices that control silica formation, resulting in species specifically nanopatterned biosilica, an organic-inorganic composite material. So far no information is available regarding the molecular mechanisms of SDV biogenesis. Here we have investigated by fluorescence microscopy and subcellular membrane fractionation the intracellular transport of silaffin Sil3. Silaffins are a group of phosphoproteins constituting the main components of the organic matrix of diatom biosilica. We demonstrate that the N-terminal signal peptide of Sil3 mediates import into a specific subregion of the endoplasmic reticulum. Additional segments from the mature part of Sil3 are required to reach post-endoplasmic reticulum compartments. Further transport of Sil3 and incorporation into the biosilica (silica targeting) require protein segments that contain a high density of modified lysine residues and phosphoserines. Silica targeting of Sil3 is not dependent on a particular peptide sequence, yet a lysine-rich 12–14-amino acid peptide motif (pentalysine cluster), which is conserved in all silaffins, strongly promotes silica targeting. The results of the present work provide the first insight into the molecular mechanisms for biogenesis of mineral-forming vesicles from an eukaryotic organism.  相似文献   

4.
Genetic engineering in microalgae is gaining attraction but nuclear transformation methods available so far are either inefficient or require special equipment. In this study, we employ positively charged nanoparticles, 3-aminopropyl-functionalized magnesium phyllosilicate (aminoclay, approximate unit cell composition of [H2N(CH2)3]8Si8Mg6O12(OH)4), for nuclear transformation into eukaryotic microalgae. TEM and EDX analysis of the process of transformation reveals that aminoclay coats negatively-charged DNA biomolecules and forms a self-assembled hybrid nanostructure. Subsequently, when this nanostructure is mixed with microalgal cells and plated onto selective agar plates with high friction force, cell wall is disrupted facilitating delivery of plasmid DNA into the cell and ultimately to the nucleus. This method is not only simple, inexpensive, and non-toxic to cells but also provides efficient transformation (5.03×102 transformants/µg DNA), second only to electroporation which needs advanced instrumentation. We present optimized parameters for efficient transformation including pre-treatment, friction force, concentration of foreign DNA/aminoclay, and plasticity of agar plates. It is also confirmed the successful integration and stable expression of foreign gene in Chlamydomonas reinhardtii through molecular methods.  相似文献   

5.
Previous analysis of the Lotus histidine kinase1 (Lhk1) cytokinin receptor gene has shown that it is required and also sufficient for nodule formation in Lotus japonicus. The L. japonicus mutant carrying the loss-of-function lhk1-1 allele is hyperinfected by its symbiotic partner, Mesorhizobium loti, in the initial absence of nodule organogenesis. At a later time point following bacterial infection, lhk1-1 develops a limited number of nodules, suggesting the presence of an Lhk1-independent mechanism. We have tested a hypothesis that other cytokinin receptors function in at least a partially redundant manner with LHK1 to mediate nodule organogenesis in L. japonicus. We show here that L. japonicus contains a small family of four cytokinin receptor genes, which all respond to M. loti infection. We show that within the root cortex, LHK1 performs an essential role but also works partially redundantly with LHK1A and LHK3 to mediate cell divisions for nodule primordium formation. The LHK1 receptor is also presumed to partake in mediating a feedback mechanism that negatively regulates bacterial infections at the root epidermis. Interestingly, the Arabidopsis thaliana AHK4 receptor gene can functionally replace Lhk1 in mediating nodule organogenesis, indicating that the ability to perform this developmental process is not determined by unique, legume-specific properties of LHK1.  相似文献   

6.
7.
Innate attraction and aversion to odorants are observed throughout the animal kingdom, but how olfactory circuits encode such valences is not well understood, despite extensive anatomical and functional knowledge. In Drosophila melanogaster, ~50 types of olfactory receptor neurons (ORNs) each express a unique receptor gene, and relay information to a cognate type of projection neurons (PNs). To examine the extent to which the population activity of ORNs is required for olfactory behavior, we developed a genetic strategy to block all ORN outputs, and then to restore output in specific types. Unlike attraction, aversion was unaffected by simultaneous silencing of many ORNs, and even single ORN types previously shown to convey neutral valence sufficed to mediate aversion. Thus, aversion may rely on specific activity patterns in individual ORNs rather than the number or identity of activated ORNs. ORN activity is relayed into the brain by downstream circuits, with excitatory PNs (ePN) representing a major output. We found that silencing the majority of ePNs did not affect aversion, even when ePNs directly downstream of single restored ORN types were silenced. Our data demonstrate the robustness of olfactory aversion, and suggest that its circuit mechanism is qualitatively different from attraction.  相似文献   

8.
9.
Addition of membrane-permeable cyclic GMP (cGMP) and cyclic AMP (cAMP) were shown to cause elevation of cytosolic Ca2+ concentration ([Ca2+]cyt) in tobacco (Nicotiana plumbaginofolia) protoplasts. Under the same conditions these cyclic nucleotides were shown to provoke a physiological swelling response in the protoplasts. Nonmembrane-permeable cAMP and cGMP were unable to trigger a detectable [Ca2+]cyt response. Cyclic-nucleotide-mediated elevations in [Ca2+]cyt involved both internal and external Ca2+ stores. Both cAMP- and cGMP-mediated [Ca2+]cyt elevations could be inhibited by the Ca2+-channel blocker verapamil. Addition of inhibitors of phosphodiesterases (isobutylmethylxanthine and zaprinast) and the adenylate cyclase agonist forskolin to the protoplasts (predicted to elevate in vivo cyclic-nucleotide concentrations) caused elevations in [Ca2+]cyt. Addition of the adenylate cyclase inhibitor 2′,5′-dideoxyadenosine before forskolin significantly inhibited the forskolin-induced [Ca2+]cyt elevation. Taken together, these data suggest that a potential communication point for cross-talk between signal transduction pathways using cyclic nucleotides in plants is at the level of Ca2+ signaling.  相似文献   

10.
Lipophorin, the main Drosophila lipoprotein, circulates in the hemolymph transporting lipids between organs following routes that must adapt to changing physiological requirements. Lipophorin receptors expressed in developmentally dynamic patterns in tissues such as imaginal discs, oenocytes and ovaries control the timing and tissular distribution of lipid uptake. Using an affinity purification strategy, we identified a novel ligand for the lipophorin receptors, the circulating lipoprotein Lipid Transfer Particle (LTP). We show that specific isoforms of the lipophorin receptors mediate the extracellular accumulation of LTP in imaginal discs and ovaries. The interaction requires the LA-1 module in the lipophorin receptors and is strengthened by a contiguous region of 16 conserved amino acids. Lipophorin receptor variants that do not interact with LTP cannot mediate lipid uptake, revealing an essential role of LTP in the process. In addition, we show that lipophorin associates with the lipophorin receptors and with the extracellular matrix through weak interactions. However, during lipophorin receptor-mediated lipid uptake, LTP is required for a transient stabilization of lipophorin in the basolateral plasma membrane of imaginal disc cells. Together, our data suggests a molecular mechanism by which the lipophorin receptors tether LTP to the plasma membrane in lipid acceptor tissues. LTP would interact with lipophorin particles adsorbed to the extracellular matrix and with the plasma membrane, catalyzing the exchange of lipids between them.  相似文献   

11.
12.
Salivary glands express multiple isoforms of P2X and P2Y nucleotide receptors, but their in vivo physiological roles are unclear. P2 receptor agonists induced salivation in an ex vivo submandibular gland preparation. The nucleotide selectivity sequence of the secretion response was BzATP ≫ ATP > ADP ≫ UTP, and removal of external Ca2+ dramatically suppressed the initial ATP-induced fluid secretion (∼85%). Together, these results suggested that P2X receptors are the major purinergic receptor subfamily involved in the fluid secretion process. Mice with targeted disruption of the P2X7 gene were used to evaluate the role of the P2X7 receptor in nucleotide-evoked fluid secretion. P2X7 receptor protein and BzATP-activated inward cation currents were absent, and importantly, purinergic receptor agonist-stimulated salivation was suppressed by more than 70% in submandibular glands from P2X7-null mice. Consistent with these observations, the ATP-induced increases in [Ca2+]i were nearly abolished in P2X7–/– submandibular acinar and duct cells. ATP appeared to also act through the P2X7 receptor to inhibit muscarinic-induced fluid secretion. These results demonstrate that the ATP-sensitive P2X7 receptor regulates fluid secretion in the mouse submandibular gland.Salivation is a Ca2+-dependent process (1, 2) primarily associated with the neurotransmitters norepinephrine and acetylcholine, release of which stimulates α-adrenergic and muscarinic receptors, respectively. Both types of receptors are coupled to G proteins that activate phospholipase Cβ (PLCβ) during salivary gland stimulation. PLCβ activation cleaves phosphatidylinositol 1,4-bisphosphate resulting in diacylglycerol and inositol 1,4,5-trisphosphate (InsP3) production. Activation of Ca2+-selective InsP3 receptor channels localized to the endoplasmic reticulum of salivary acinar cells increases the intracellular free calcium concentration ([Ca2+]i).4 Depletion of the endoplasmic reticulum Ca2+ pool triggers extracellular Ca2+ influx and a sustained elevation in [Ca2+]i. This increase in [Ca2+]i activates Ca2+-dependent K+ and Cl channels promoting Cl secretion across the apical membrane and a lumen negative, electrochemical gradient that supports Na+ efflux into the lumen. The accumulation of NaCl creates an osmotic gradient which drives water movement into the lumen, thus generating isotonic primary saliva. This primary fluid is then modified by the ductal system, which reabsorbs NaCl and secretes KHCO3 producing a final saliva that is hypotonic (1, 2).Salivation also has a non-cholinergic, non-adrenergic component, the origin of which is unclear (3). In addition to muscarinic and α-adrenergic receptors, salivary acinar cells express other receptors that are coupled to an increase in [Ca2+]i such as purinergic P2 and substance P receptors. Like muscarinic and α-adrenergic receptors, P2 receptor activation leads to a sustained increase in [Ca2+]i in salivary acinar cells (4). In contrast, substance P receptor activation rapidly desensitizes and therefore generates only a relatively transient increase in [Ca2+]i (5) that is unlikely to appreciably contribute to fluid secretion. The purinergic P2 receptor family is comprised of G protein-coupled P2Y and ionotropic P2X receptors activated by extracellular di- and triphosphate nucleotides. Activation of both subfamilies of P2 receptors causes an increase in [Ca2+]i. P2Y receptors increase [Ca2+]i via InsP3-induced Ca2+ mobilization from intracellular stores (similar to α-adrenergic and muscarinic receptors) while P2X receptors act as ligand-gated, non-selective cation channels that mediate extracellular Ca2+ influx (6). Salivary gland tissues express at least four isoforms of P2X (P2X4 and P2X7) and P2Y (P2Y1 and P2Y2) subtypes; however, their in vivo physiological significance has yet to be characterized (711).Our results revealed that ATP acts in isolation to stimulate fluid secretion from the mouse submandibular gland, but secretion is inhibited when ATP is simultaneously presented with a muscarinic receptor agonist. Ablation of the P2X7 gene had no effect on the salivary flow rate evoked by muscarinic receptor activation, but markedly reduced ATP-mediated fluid secretion and rescued the inhibitory effects of ATP on muscarinic receptor activation. Submandibular gland acinar cells from P2X7–/– animals had dramatically impaired ATP-activated Ca2+ signaling, consistent with this being the mechanism responsible for the reduction in ATP-mediated fluid secretion in these mice. Together, these results demonstrated that ATP regulates salivation, acting mainly through the P2X7 receptor. Activation of the P2X7 receptor may play a major role in non-adrenergic, non-cholinergic stimulated fluid secretion.  相似文献   

13.
Transformation frequencies of a mariner-based transposon system in Rickettsia rickettsii were determined using a plaque assay system for enumeration and isolation of mutants. Sequence analysis of insertion sites in both R. rickettsii and R. prowazekii indicated that insertions were random. Transposon mutagenesis provides a useful tool for rickettsial research.  相似文献   

14.
The release of redox-active iron and heme into the blood-stream is toxic to the vasculature, contributing to the development of vascular diseases. How iron induces endothelial injury remains ill defined. To investigate this, we developed a novel ex vivo perfusion chamber that enables direct analysis of the effects of FeCl3 on the vasculature. We demonstrate that FeCl3 treatment of isolated mouse aorta, perfused with whole blood, was associated with endothelial denudation, collagen exposure, and occlusive thrombus formation. Strikingly exposing vessels to FeCl3 alone, in the absence of perfused blood, was associated with only minor vascular injury. Whole blood fractionation studies revealed that FeCl3-induced vascular injury was red blood cell (erythrocyte)-dependent, requiring erythrocyte hemolysis and hemoglobin oxidation for endothelial denudation. Overall these studies define a unique mechanism of Fe3+-induced vascular injury that has implications for the understanding of FeCl3-dependent models of thrombosis and vascular dysfunction associated with severe intravascular hemolysis.Iron and heme-containing moieties are indispensable for the normal transport of oxygen in the blood; however, once released into the bloodstream these molecules are highly toxic to the vasculature because of their pro-oxidative effects on the endothelium (1-3). Humans have therefore evolved sophisticated iron transport and sequestration systems as well as heme-metabolizing enzymes to rapidly clear iron and heme from the circulation (4, 5). There is growing evidence that defects in these natural protective mechanisms lead to endothelial dysfunction and vascular disease, and as a consequence, methods that reduce the pro-oxidative effects of iron and heme may have therapeutic benefit (2).Clinical syndromes associated with marked intravascular hemolysis and circulating free hemoglobin, such as sickle cell disease, paroxysmal nocturnal hemoglobinuria, thalassemias, and hereditary spherocytosis, lead to endothelial dysfunction, thrombosis, and vascular disease (5-10). Similarly administration of purified recombinant hemoglobin to humans promotes vascular injury and arterial thrombosis, precipitating acute myocardial infarction (11-13). Some of these vascular effects are related to nitric oxide scavenging by excess plasma hemoglobin, whereas others are linked to cytotoxic, proinflammatory, and pro-oxidant effects of iron-containing hemoglobin and heme (14-19). Interestingly elevated levels of body iron stores are associated with an increased risk of myocardial infarction, and carriers of the hemochromatosis gene have an increased risk of myocardial infarction and cardiovascular death (20, 21). Whether the pro-oxidative effects of iron per se are proatherogenic remains controversial; however, in the context of erythrocyte-dependent release of hemoglobin and heme, redox-active iron is likely to play an important role in promoting vascular dysfunction.The well defined pro-oxidative properties of redox-active iron have been exploited experimentally with topical application of ferric chloride (FeCl3) widely used to induce vascular injury and thrombosis in experimental animal models (22). High concentrations of FeCl3 induce profound injury to the vasculature, leading to endothelial denudation, and collagen and tissue factor exposure, leading to the rapid formation of vaso-occlusive thrombi. Histologically FeCl3-induced thrombi are rich in platelets, fibrin, and red blood cells (23-26). However, the mechanism(s) by which FeCl3 induces vascular injury has not been clearly defined. FeCl3 can have direct pro-oxidative effects on endothelial cells as a result of the Fenton reaction, leading to hydroxyl radical generation and lipid peroxidation (1, 3). It can also mediate vascular injury indirectly through oxidative modification of LDL3 (3, 14). A recent study has demonstrated transfer of ferric ions through the vasculature, penetrating the internal elastic membrane and emerging through the endothelium via an endocytic/exocytic pathway, leading to the development of ferric oxide aggregates in the vascular lumen (27). Although the direct cytotoxic effects of redox-active iron on endothelial cells have been well established in vitro, the importance of this mechanism to the severe vascular injury and thrombus formation induced by topical FeCl3 in vivo remains unclear.To gain insight into this, we developed a novel ex vivo perfusion chamber that enables direct analysis of the effects of FeCl3 on the vasculature. Our studies demonstrated that FeCl3 alone induces relatively mild injury to endothelial cells with severe vascular injury only observed in the presence of flowing blood. Whole blood fractionation studies revealed that FeCl3-mediated vascular injury is dependent on erythrocyte hemolysis and hemoglobin oxidation, defining a unique mechanism of iron-induced vascular injury.  相似文献   

15.
16.
17.
18.
19.
20.
Though traditionally perceived as weapons, antibiotics are also hypothesized to act as microbial signals in natural habitats. However, while subinhibitory concentrations of antibiotics (SICA) are known to shift bacterial gene expression, specific hypotheses as to how SICA influence the ecology of natural populations are scarce. We explored whether antibiotic ‘signals’, or SICA, have the potential to alter nutrient utilization, niche overlap, and competitive species interactions among Streptomyces populations in soil. For nine diverse Streptomyces isolates, we evaluated nutrient utilization patterns on 95 different nutrient sources in the presence and absence of subinhibitory concentrations of five antibiotics. There were significant changes in nutrient use among Streptomyces isolates, including both increases and decreases in the capacity to use individual nutrients in the presence vs. in the absence of SICA. Isolates varied in their responses to SICA and antibiotics varied in their effects on isolates. Furthermore, for some isolate-isolate-antibiotic combinations, competition-free growth (growth for an isolate on all nutrients that were not utilized by a competing isolate), was increased in the presence of SICA, reducing the potential fitness cost of nutrient competition among those competitors. This suggests that antibiotics may provide a mechanism for bacteria to actively minimize niche overlap among competitors in soil. Thus, in contrast to antagonistic coevolutionary dynamics, antibiotics as signals may mediate coevolutionary displacement among coexisting Streptomyces, thereby hindering the emergence of antibiotic resistant phenotypes. These results contribute to our broad understanding of the ecology and evolutionary biology of antibiotics and microbial signals in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号