首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Mitochondrial dysregulation is strongly implicated in Parkinson disease. Mutations in PTEN-induced kinase 1 (PINK1) are associated with familial parkinsonism and neuropsychiatric disorders. Although overexpressed PINK1 is neuroprotective, less is known about neuronal responses to loss of PINK1 function. We found that stable knockdown of PINK1 induced mitochondrial fragmentation and autophagy in SH-SY5Y cells, which was reversed by the reintroduction of an RNA interference (RNAi)-resistant plasmid for PINK1. Moreover, stable or transient overexpression of wild-type PINK1 increased mitochondrial interconnectivity and suppressed toxin-induced autophagy/mitophagy. Mitochondrial oxidant production played an essential role in triggering mitochondrial fragmentation and autophagy in PINK1 shRNA lines. Autophagy/mitophagy served a protective role in limiting cell death, and overexpressing Parkin further enhanced this protective mitophagic response. The dominant negative Drp1 mutant inhibited both fission and mitophagy in PINK1-deficient cells. Interestingly, RNAi knockdown of autophagy proteins Atg7 and LC3/Atg8 also decreased mitochondrial fragmentation without affecting oxidative stress, suggesting active involvement of autophagy in morphologic remodeling of mitochondria for clearance. To summarize, loss of PINK1 function elicits oxidative stress and mitochondrial turnover coordinated by the autophagic and fission/fusion machineries. Furthermore, PINK1 and Parkin may cooperate through different mechanisms to maintain mitochondrial homeostasis.Parkinson disease is an age-related neurodegenerative disease that affects ∼1% of the population worldwide. The causes of sporadic cases are unknown, although mitochondrial or oxidative toxins such as 1-methyl-4-phenylpyridinium, 6-hydroxydopamine (6-OHDA),3 and rotenone reproduce features of the disease in animal and cell culture models (1). Abnormalities in mitochondrial respiration and increased oxidative stress are observed in cells and tissues from parkinsonian patients (2, 3), which also exhibit increased mitochondrial autophagy (4). Furthermore, mutations in parkinsonian genes affect oxidative stress response pathways and mitochondrial homeostasis (5). Thus, disruption of mitochondrial homeostasis represents a major factor implicated in the pathogenesis of sporadic and inherited parkinsonian disorders (PD).The PARK6 locus involved in autosomal recessive and early-onset PD encodes for PTEN-induced kinase 1 (PINK1) (6, 7). PINK1 is a cytosolic and mitochondrially localized 581-amino acid serine/threonine kinase that possesses an N-terminal mitochondrial targeting sequence (6, 8). The primary sequence also includes a putative transmembrane domain important for orientation of the PINK1 domain (8), a conserved kinase domain homologous to calcium calmodulin kinases, and a C-terminal domain that regulates autophosphorylation activity (9, 10). Overexpression of wild-type PINK1, but not its PD-associated mutants, protects against several toxic insults in neuronal cells (6, 11, 12). Mitochondrial targeting is necessary for some (13) but not all of the neuroprotective effects of PINK1 (14), implicating involvement of cytoplasmic targets that modulate mitochondrial pathobiology (8). PINK1 catalytic activity is necessary for its neuroprotective role, because a kinase-deficient K219M substitution in the ATP binding pocket of PINK1 abrogates its ability to protect neurons (14). Although PINK1 mutations do not seem to impair mitochondrial targeting, PD-associated mutations differentially destabilize the protein, resulting in loss of neuroprotective activities (13, 15).Recent studies indicate that PINK1 and Parkin interact genetically (3, 16-18) to prevent oxidative stress (19, 20) and regulate mitochondrial morphology (21). Primary cells derived from PINK1 mutant patients exhibit mitochondrial fragmentation with disorganized cristae, recapitulated by RNA interference studies in HeLa cells (3).Mitochondria are degraded by macroautophagy, a process involving sequestration of cytoplasmic cargo into membranous autophagic vacuoles (AVs) for delivery to lysosomes (22, 23). Interestingly, mitochondrial fission accompanies autophagic neurodegeneration elicited by the PD neurotoxin 6-OHDA (24, 25). Moreover, mitochondrial fragmentation and increased autophagy are observed in neurodegenerative diseases including Alzheimer and Parkinson diseases (4, 26-28). Although inclusion of mitochondria in autophagosomes was once believed to be a random process, as observed during starvation, studies involving hypoxia, mitochondrial damage, apoptotic stimuli, or limiting amounts of aerobic substrates in facultative anaerobes support the concept of selective mitochondrial autophagy (mitophagy) (29, 30). In particular, mitochondrially localized kinases may play an important role in models involving oxidative mitochondrial injury (25, 31, 32).Autophagy is involved in the clearance of protein aggregates (33-35) and normal regulation of axonal-synaptic morphology (36). Chronic disruption of lysosomal function results in accumulation of subtly impaired mitochondria with decreased calcium buffering capacity (37), implicating an important role for autophagy in mitochondrial homeostasis (37, 38). Recently, Parkin, which complements the effects of PINK1 deficiency on mitochondrial morphology (3), was found to promote autophagy of depolarized mitochondria (39). Conversely, Beclin 1-independent autophagy/mitophagy contributes to cell death elicited by the PD toxins 1-methyl-4-phenylpyridinium and 6-OHDA (25, 28, 31, 32), causing neurite retraction in cells expressing a PD-linked mutation in leucine-rich repeat kinase 2 (40). Whereas properly regulated autophagy plays a homeostatic and neuroprotective role, excessive or incomplete autophagy creates a condition of “autophagic stress” that can contribute to neurodegeneration (28).As mitochondrial fragmentation (3) and increased mitochondrial autophagy (4) have been described in human cells or tissues of PD patients, we investigated whether or not the engineered loss of PINK1 function could recapitulate these observations in human neuronal cells (SH-SY5Y). Stable knockdown of endogenous PINK1 gave rise to mitochondrial fragmentation and increased autophagy and mitophagy, whereas stable or transient overexpression of PINK1 had the opposite effect. Autophagy/mitophagy was dependent upon increased mitochondrial oxidant production and activation of fission. The data indicate that PINK1 is important for the maintenance of mitochondrial networks, suggesting that coordinated regulation of mitochondrial dynamics and autophagy limits cell death associated with loss of PINK1 function.  相似文献   

2.
Sex-dependent differences in adaptation to famine have long been appreciated, thought to hinge on female versus male preferences for fat versus protein sources, respectively. However, whether these differences can be reduced to neurons, independent of typical nutrient depots, such as adipose tissue, skeletal muscle, and liver, was heretofore unknown. A vital adaptation to starvation is autophagy, a mechanism for recycling amino acids from organelles and proteins. Here we show that segregated neurons from males in culture are more vulnerable to starvation than neurons from females. Nutrient deprivation decreased mitochondrial respiration, increased autophagosome formation, and produced cell death more profoundly in neurons from males versus females. Starvation-induced neuronal death was attenuated by 3-methyladenine, an inhibitor of autophagy; Atg7 knockdown using small interfering RNA; or l-carnitine, essential for transport of fatty acids into mitochondria, all more effective in neurons from males versus females. Relative tolerance to nutrient deprivation in neurons from females was associated with a marked increase in triglyceride and free fatty acid content and a cytosolic phospholipase A2-dependent increase in formation of lipid droplets. Similar sex differences in sensitivity to nutrient deprivation were seen in fibroblasts. However, although inhibition of autophagy using Atg7 small interfering RNA inhibited cell death during starvation in neurons, it increased cell death in fibroblasts, implying that the role of autophagy during starvation is both sex- and tissue-dependent. Thus, during starvation, neurons from males more readily undergo autophagy and die, whereas neurons from females mobilize fatty acids, accumulate triglycerides, form lipid droplets, and survive longer.Sex-dependent differences in adaptation to famine have long been appreciated (1, 2), thought to hinge on a female preference for fat sources, in contrast to a male preference for protein sources (3). Fatty acid metabolism is different between sexes normally (4) and under conditions of starvation (1, 2). During exercise, in addition to increases in carbohydrate requirement, men increase their need for amino acids, whereas women increase mobilization of fat (5). Furthermore, sex-dependent responses to nutritional stress associated with either self-induced weight loss or illness-related cachexia also exist (6, 7).An important adaptation to starvation is autophagy (autophagy-associated proteins, abbreviated ATG). Classic, starvation-induced autophagy is initiated by nutrient and amino acid deprivation, glucagon, and cAMP (8, 9). ATG7, a ubiquitin E1-like enzyme, is essential for autophagy, with phosphorylation of preautophagosomal membranes, formation of ATG12-ATG5 complexes, and processing of ATG8/LC3 (microtubule-associated protein light chain-3) as other crucial steps in this process (10). Starvation-induced autophagy is regulated by class III phosphatidylinositol 3-kinase and the Bcl-2-interacting partner, Beclin-1 (11). The autophagosomes then engulf cytoplasmic material and/or organelles, such as mitochondria, the latter sometimes referred to as “mitophagy,” disassembling large proteins and organelles to recycle amino acids and other nutrients, an important response to starvation (12).It is unknown whether starvation can induce autophagy in the brain; however, there is evidence that critical starvation can result in brain atrophy in humans. It has been reported that ∼30% of people during a prolonged hunger strike (mean of 199 days) will show brain tissue loss (13), and brain shrinkage in patients with anorexia nervosa is well documented (14, 15). Although 48 h of food deprivation does not produce detectable autophagy in brains from mice (16), the aforementioned reports are consistent with long durations of starvation as a bona fide stimulus for autophagy in brain. There are recent studies suggesting that other stimuli can induce autophagy in the brain, such as trauma (17) and ischemia (18), and that autophagy may contribute to neuronal death. There is also evidence for autophagy in the human brain after trauma and critical illness (19), which probably includes both elements of malnutrition and systemic stress. A potential role for brain atrophy as a contributor to neurological morbidity in the critically ill and injured is an emerging topic (20).  相似文献   

3.
Macroautophagy is a vacuolar lysosomal catabolic pathway that is stimulated during periods of nutrient starvation to preserve cell integrity. Ceramide is a bioactive sphingolipid associated with a large range of cell processes. Here we show that short-chain ceramides (C2-ceramide and C6-ceramide) and stimulation of the de novo ceramide synthesis by tamoxifen induce the dissociation of the complex formed between the autophagy protein Beclin 1 and the anti-apoptotic protein Bcl-2. This dissociation is required for macroautophagy to be induced either in response to ceramide or to starvation. Three potential phosphorylation sites, Thr69, Ser70, and Ser87, located in the non-structural N-terminal loop of Bcl-2, play major roles in the dissociation of Bcl-2 from Beclin 1. We further show that activation of c-Jun N-terminal protein kinase 1 by ceramide is required both to phosphorylate Bcl-2 and to stimulate macroautophagy. These findings reveal a new aspect of sphingolipid signaling in up-regulating a major cell process involved in cell adaptation to stress.Macroautophagy (referred to below as “autophagy”) is a vacuolar, lysosomal degradation pathway for cytoplasmic constituents that is conserved in eukaryotic cells (13). Autophagy is initiated by the formation of a multimembrane-bound autophagosome that engulfs cytoplasmic proteins and organelles. The last stage in the process results in fusion with the lysosomal compartments, where the autophagic cargo undergoes degradation. Basal autophagy is important in controlling the quality of the cytoplasm by removing damaged organelles and protein aggregates. Inhibition of basal autophagy in the brain is deleterious, and leads to neurodegeneration in mouse models (4, 5). Stimulation of autophagy during periods of nutrient starvation is a physiological response present at birth and has been shown to provide energy in various tissues of newborn pups (6). In cultured cells, starvation-induced autophagy is an autonomous cell survival mechanism, which provides nutrients to maintain a metabolic rate and level of ATP compatible with cell survival (7). In addition, starvation-induced autophagy blocks the induction of apoptosis (8). In other contexts, such as drug treatment and a hypoxic environment, autophagy has also been shown to be cytoprotective in cancer cells (9, 10). However, autophagy is also part of cell death pathways in certain situations (11). Autophagy can be a player in apoptosis-independent type-2 cell death (type-1 cell death is apoptosis), also known as autophagic cell death. This situation has been shown to occur when the apoptotic machinery is crippled in mammalian cells (12, 13). Autophagy can also be part of the apoptotic program, for instance in tumor necrosis factor-α-induced cell death when NF-κB is inhibited (14), or in human immunodeficiency virus envelope-mediated cell death in bystander naive CD4 T cells (15). Moreover autophagy has recently been shown to be required for the externalization of phosphatidylserine, the eat-me signal for phagocytic cells, at the surface of apoptotic cells (16).The complex relationship between autophagy and apoptosis reflects the intertwined regulation of these processes (17, 18). Many signaling pathways involved in the regulation of autophagy also regulate apoptosis. This intertwining has recently been shown to occur at the level of the molecular machinery of autophagy. In fact the anti-apoptotic protein Bcl-2 has been shown to inhibit starvation-induced autophagy by interacting with the autophagy protein Beclin 1 (19). Beclin 1 is one of the Atg proteins conserved from yeast to humans (it is the mammalian orthologue of yeast Atg6) and is involved in autophagosome formation (20). Beclin 1 is a platform protein that interacts with several different partners, including hVps34 (class III phosphatidylinositol 3-kinase), which is responsible for the synthesis of phosphatidylinositol 3-phosphate. The production of this lipid is important for events associated with the nucleation of the isolation membrane before it elongates and closes to form autophagosomes in response to other Atg proteins, including the Atg12 and LC32 (microtubule-associated protein light chain 3 is the mammalian orthologue of the yeast Atg8) ubiquitin-like conjugation systems (3, 21). Various partners associated with the Beclin 1 complex modulate the activity of hVps34. For instance, Bcl-2 inhibits the activity of this enzyme, whereas UVRAG, Ambra-1, and Bif-1 all up-regulate it (22, 23).In view of the intertwining between autophagy and apoptosis, it is noteworthy that Beclin 1 belongs to the BH3-only family of proteins (2426). However, and unlike most of the proteins in this family, Beclin 1 is not able to trigger apoptosis when its expression is forced in cells (27). A BH3-mimetic drug, ABT-737, is able to dissociate the Beclin 1-Bcl-2 complex, and to trigger autophagy by mirroring the effect of starvation (25).The sphingolipids constitute a family of bioactive lipids (2832) of which several members, such as ceramide and sphingosine 1-phosphate, are signaling molecules. These molecules constitute a “sphingolipid rheostat” that determines the fate of the cell, because in many settings ceramide is pro-apoptotic and sphingosine 1-phosphate mitigates this apoptotic effect (31, 32). However, ceramide is also engaged in a wide variety of other cell processes, such as the formation of exosomes (33), differentiation, cell proliferation, and senescence (34). Recently we showed that both ceramide and sphingosine 1-phosphate are able to stimulate autophagy (35, 36). It has also been shown that ceramide triggers autophagy in a large panel of mammalian cells (3739). However, elucidation of the mechanism by which ceramide stimulates autophagy is still in its infancy. We have previously demonstrated that ceramide induces autophagy in breast and colon cancer cells by inhibiting the Class I phosphatidylinositol 3-phosphate/mTOR signaling pathway, which plays a central role in inhibiting autophagy (36). Inhibition of mTOR is another hallmark of starvation-induced autophagy (17). This finding led us to investigate the effect of ceramide on the Beclin 1-Bcl-2 complex. The results presented here show that ceramide is more potent than starvation in dissociating the Beclin 1-Bcl-2 complex (see Ref. 40). This dissociation is dependent on three phosphorylation sites (Thr69, Ser70, and Ser87) located in a non-structural loop of Bcl-2. Ceramide induces the c-Jun N-terminal kinase 1-dependent phosphorylation of Bcl-2. Expression of a dominant negative form of JNK1 blocks Bcl-2 phosphorylation, and thus the induction of autophagy by ceramide. These findings help to explain how autophagy is regulated by a major lipid second messenger.  相似文献   

4.
5.
The objective of this study was to evaluate the physiological importance of the mitochondrial fatty acid synthesis pathway in mammalian cells using the RNA interference strategy. Transfection of HEK293T cells with small interfering RNAs targeting the acyl carrier protein (ACP) component reduced ACP mRNA and protein levels by >85% within 24 h. The earliest phenotypic changes observed were a marked decrease in the proportion of post-translationally lipoylated mitochondrial proteins recognized by anti-lipoate antibodies and a reduction in their catalytic activity, and a slowing of the cell growth rate. Later effects observed included a reduction in the specific activity of respiratory complex I, lowered mitochondrial membrane potential, the development of cytoplasmic membrane blebs containing high levels of reactive oxygen species and ultimately, cell death. Supplementation of the culture medium with lipoic acid offered some protection against oxidative damage but did not reverse the protein lipoylation defect. These observations are consistent with a dual role for ACP in mammalian mitochondrial function. First, as a key component of the mitochondrial fatty acid biosynthetic pathway, ACP plays an essential role in providing the octanoyl-ACP precursor required for the protein lipoylation pathway. Second, as one of the subunits of complex I, ACP is required for the efficient functioning of the electron transport chain and maintenance of normal mitochondrial membrane potential.Eukaryotes employ two distinct systems for the synthesis of fatty acids de novo. The bulk of fatty acids destined for membrane biogenesis and energy storage are synthesized in the cytosolic compartment by megasynthases in which the component enzymes are covalently linked in very large polypeptides; this system is referred to as the type I fatty acid synthase (FAS)2 (1, 2). A second system localized in mitochondria is composed of a suite of discrete, freestanding enzymes that closely resemble their counterparts in prokaryotes (310), which are characterized as type II FASs (11). Most of the constituent enzymes of the mitochondrial fatty acid biosynthetic system have been identified and characterized in fungi and animals; all are nuclear-encoded proteins that are transported to the matrix compartment of mitochondria. Fungi with deleted mitochondrial FAS genes fail to grow on non-fermentable carbon sources, have low levels of lipoic acid and elevated levels of mitochondrial lysophospholipids (12, 13). These observations indicate that the mitochondrial FAS may serve to provide the octanoyl precursor required for the biosynthesis of lipoyl moieties de novo, as well as providing fatty acids that are utilized in remodeling of mitochondrial membrane phospholipids (14). The mitochondrial FAS system in animals is less well characterized. However, kinetic analysis of the β-ketoacyl synthase enzyme responsible for catalysis of the chain extension reaction in human mitochondria suggested that this system is uniquely engineered to produce mainly octanoyl moieties and has limited ability to form long-chain products (9). Indeed, studies with a reconstituted system from bovine heart mitochondrial matrix extracts confirmed that octanoyl moieties are the main product and are utilized for the synthesis of lipoyl moieties (15). One of the key components of the prokaryotic and mitochondrial FAS systems is a small molecular mass, freestanding protein, the ACP, that shuttles substrates and pathway intermediates to each of the component enzymes. The mitochondrial ACP is localized primarily in the matrix compartment (16), but a small fraction is integrated into complex I of the electron transport chain (1723). As is the case with many of the other 45 subunits of complex I, the role of the ACP subunit is unclear (24). To clarify the physiological importance of the mitochondrial FAS, and the mitochondrial ACP in particular, in mammalian mitochondrial function we have utilized an RNA interference strategy to knockdown the mitochondrial ACP in cultured HEK293T cells.  相似文献   

6.
Autophagy is a degradative process that recycles long-lived and faulty cellular components. It is linked to many diseases and is required for normal development. ULK1, a mammalian serine/threonine protein kinase, plays a key role in the initial stages of autophagy, though the exact molecular mechanism is unknown. Here we report identification of a novel protein complex containing ULK1 and two additional protein factors, FIP200 and ATG13, all of which are essential for starvation-induced autophagy. Both FIP200 and ATG13 are critical for correct localization of ULK1 to the pre-autophagosome and stability of ULK1 protein. Additionally, we demonstrate by using both cellular experiments and a de novo in vitro reconstituted reaction that FIP200 and ATG13 can enhance ULK1 kinase activity individually but both are required for maximal stimulation. Further, we show that ATG13 and ULK1 are phosphorylated by the mTOR pathway in a nutrient starvation-regulated manner, indicating that the ULK1·ATG13·FIP200 complex acts as a node for integrating incoming autophagy signals into autophagosome biogenesis.Macroautophagy (herein referred to as autophagy) is a catabolic process whereby long-lived proteins and damaged organelles are shuttled to lysosomes for degradation. This process is conserved in all eukaryotes. Under normal growth conditions a housekeeping level of autophagy exists. Under stress, such as nutrient starvation, autophagy is strongly induced resulting in the engulfment of cytosolic components and organelles in specialized double-membrane structures termed autophagosomes. Following fusion of the outer autophagosomal membrane with lysosomes, the inner membrane and its cytoplasmic cargo are degraded and recycled (13). Recent work has implicated autophagy in many disease pathologies, including cancer, neurodegeneration, as well as in eliminating intracellular pathogens (48).The morphology of autophagy was first described in mammalian cells over 50 years ago (9). However, it is only recently through yeast genetic screens, that multiple autophagy-related (ATG) genes have been identified (1012). The yeast ATG proteins have been classified into four major groups: the Atg1 protein kinase complex, the Vps34 phosphatidylinositol 3-phosphate kinase complex, the Atg8/Atg12 conjugation systems, and the Atg9 recycling complex (13). Even though many ATG genes are now known, most of which have functional homologs in mammalian cells (14, 15), the molecular mechanism by which they sense the initial triggers and subsequently dictate autophagy-specific intracellular membrane events is far from understood.In yeast, one of the earliest autophagy-specific events is believed to involve the Atg1 protein kinase complex. Atg1 is a serine/threonine protein kinase and a key autophagy-regulator (16). Atg1 is complexed to at least two other proteins during autophagy, Atg13 and Atg17, both of which are required for normal Atg1 function and autophagosome generation (1719). Classical signaling pathways such as the cAMP-dependent kinase (PKA) pathway or the Tor kinase pathway appear to converge upon this complex, placing Atg1 at an early stage during autophagosome biogenesis (2022). Atg1 phosphorylation by PKA blocks its association with the forming autophagosome (21), while the Tor pathway hyperphosphorylates Atg13 causing a reduced affinity of Atg13 for Atg1, resulting in repression of autophagy (17, 19). In contrast, nutrient starvation or inhibition of Tor leads to dephosphorylation of Atg13 thus increased Atg1 complex formation and kinase activity, resulting in stimulation of autophagy (19). Surprisingly, the physiological substrates of Atg1 kinase have not been identified; thus how Atg1 transduces upstream autophagic signaling is undefined. Recently, mammalian homologs of Atg1 have been identified as ULK1 and ULK2 (Unc-51-like kinase)2 (2325). ULK1 and ULK2 are ubiquitously expressed and localize to the isolation membrane, or forming autophagosome, upon nutrient starvation (25); RNAi-mediated depletion of ULK1 in HEK293 cells compromises autophagy (23, 24). The exact role of ULK1 versus ULK2 in autophagy is unclear, and it is possible some redundancy exists between the two isoforms (26).Given the conservation of autophagy from yeast to man, it is interesting to note that no mammalian counterpart to yeast Atg13 or Atg17 had been identified until very recently. The protein FIP200 (focal adhesion kinase family-interacting protein of 200 kDa) was identified as an autophagy-essential binding partner of both ULK1 and ULK2 (25), and it has been speculated that FIP200 might be the equivalent of yeast Atg17, despite low sequence similarity (25, 27).In this study, we delve deeper into the molecular regulation of ULK1 to gain a better insight into how mammalian signaling pathways affect autophagy initiation. We describe here the identification of a triple complex consisting of ULK1, FIP200, and the mammalian equivalent of Atg13. This complex is required not only for localization of ULK1 to the isolation membrane but also for maximal kinase activity. In addition, both ATG13 and ULK1 are kinase substrates in the mTOR pathway and thus might function to sense nutrient starvation. Therefore, this study defines the role of mammalian ULK1-ATG13-FIP200 complex in mediating the initial autophagic triggers and to transduce the signal to the core autophagic machinery.  相似文献   

7.
Cell membranes predominantly consist of lamellar lipid bilayers. When studied in vitro, however, many membrane lipids can exhibit non-lamellar morphologies, often with cubic symmetries. An open issue is how lipid polymorphisms influence organelle and cell shape. Here, we used controlled dimerization of artificial membrane proteins in mammalian tissue culture cells to induce an expansion of the endoplasmic reticulum (ER) with cubic symmetry. Although this observation emphasizes ER architectural plasticity, we found that the changed ER membrane became sequestered into large autophagic vacuoles, positive for the autophagy protein LC3. Autophagy may be targeting irregular membrane shapes and/or aggregated protein. We suggest that membrane morphology can be controlled in cells.The observation that simple mixtures of amphiphilic (polar) lipids and water yield a rich flora of phase structures has opened a long-standing debate as to whether such membrane polymorphisms are relevant for living organisms (17). Lipid bilayers with planar geometry, termed lamellar symmetry, dominate the membrane structure of cells. However, this architecture comprises only a fraction of the structures seen with in vitro lipid-water systems (711). The propensity to form lamellar bilayers (a property exclusive to cylindrically shaped lipids) is flanked by a continuum of lipid structures that occur in a number of exotic and probably non-physiological non-bilayer configurations (3, 12). However, certain lipids, particularly those with smaller head groups and more bulky hydrocarbon chains, can adopt bilayered non-lamellar phases called cubic phases. Here the bilayer is curved everywhere in the form of saddle shapes corresponding to an energetically favorable minimal surface of zero mean curvature (1, 7). Because a substantial number of the lipids present in biological membranes, when studied as individual pure lipids, form cubic phases (13), cubic membranes have received particular interest in cell biology.Since the application of electron microscopy (EM)3 to the study of cell ultrastructure, unusual membrane morphologies have been reported for virtually every organelle (14, 15). However, interpretation of three-dimensional structures from two-dimensional electron micrographs is not easy (16). In seminal work, Landh (17) developed the method of direct template correlative matching, a technique that unequivocally assesses the presence of cubic membranes in biological specimens (16). Cubic phases adopt mathematically well defined three-dimensional configurations whose two-dimensional analogs have been derived (4, 17). In direct template correlative matching, electron micrographs are matched to these analogs. Cubic cell membrane geometries and in vitro cubic phases of purified lipid mixtures do differ in their lattice parameters; however, such deviations are thought to relate to differences in water activity and lipid to protein ratios (10, 14, 18). Direct template correlative matching has revealed thousands of examples of cellular cubic membranes in a broad survey of electron micrographs ranging from protozoa to human cells (14, 17) and, more recently, in the mitochondria of amoeba (19) and in subcellular membrane compartments associated with severe acute respiratory syndrome virus (20). Analysis of cellular cubic membranes has also been furthered by the development of EM tomography that confirmed the presence of cubic bilayers in the mitochondrial membranes of amoeba (21, 22).Although it is now clear that cubic membranes can exist in living cells, the generation of such architecture would appear tightly regulated, as evidenced by the dominance of lamellar bilayers in biology. In this light, we examined the capability and implications of generating cubic membranes in the endoplasmic reticulum (ER) of mammalian tissue culture cells. The ER is a spatially interconnected complex consisting of two domains, the nuclear envelope and the peripheral ER (2326). The nuclear envelope surrounds the nucleus and is composed of two continuous sheets of membranes, an inner and outer nuclear membrane connected to each other at nuclear pores. The peripheral ER constitutes a network of branching trijunctional tubules that are continuous with membrane sheet regions that occur in closer proximity to the nucleus. Recently it has been suggested that the classical morphological definition of rough ER (ribosome-studded) and smooth ER (ribosome-free) may correspond to sheet-like and tubular ER domains, respectively (27). The ER has a strong potential for cubic architectures, as demonstrated by the fact that the majority of cubic cell membranes in the EM record come from ER-derived structures (14, 17). Furthermore, ER cubic symmetries are an inducible class of organized smooth ER (OSER), a definition collectively referring to ordered smooth ER membranes (=stacked cisternae on the outer nuclear membrane, also called Karmelle (2830), packed sinusoidal ER (31), concentric membrane whorls (30, 3234), and arrays of crystalloid ER (3537)). Specifically, weak homotypic interactions between membrane proteins produce both a whorled and a sinusoidal OSER phenotype (38), the latter exhibiting a cubic symmetry (16, 39).We were able to produce OSER with cubic membrane morphology via induction of homo-dimerization of artificial membrane proteins. Interestingly, the resultant cubic membrane architecture was removed from the ER system by incorporation into large autophagic vacuoles. To assess whether these cubic symmetries were favored in the absence of cellular energy, we depleted ATP. To our surprise, the cells responded by forming large domains of tubulated membrane, suggesting that a cubic symmetry was not the preferred conformation of the system. Our results suggest that whereas the endoplasmic reticulum is capable of adopting cubic symmetries, both the inherent properties of the ER system and active cellular mechanisms, such as autophagy, can tightly control their appearance.  相似文献   

8.
9.
Hepatocellular carcinoma (HCC) is one of the most common and aggressive human malignancies. Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-tumor agent. However, many HCC cells show resistance to TRAIL-induced apoptosis. In this study, we showed that bortezomib, a proteasome inhibitor, overcame TRAIL resistance in HCC cells, including Huh-7, Hep3B, and Sk-Hep1. The combination of bortezomib and TRAIL restored the sensitivity of HCC cells to TRAIL-induced apoptosis. Comparing the molecular change in HCC cells treated with these agents, we found that down-regulation of phospho-Akt (P-Akt) played a key role in mediating TRAIL sensitization of bortezomib. The first evidence was that bortezomib down-regulated P-Akt in a dose- and time-dependent manner in TRAIL-treated HCC cells. Second, LY294002, a PI3K inhibitor, also sensitized resistant HCC cells to TRAIL-induced apoptosis. Third, knocking down Akt1 by small interference RNA also enhanced TRAIL-induced apoptosis in Huh-7 cells. Finally, ectopic expression of mutant Akt (constitutive active) in HCC cells abolished TRAIL sensitization effect of bortezomib. Moreover, okadaic acid, a protein phosphatase 2A (PP2A) inhibitor, reversed down-regulation of P-Akt in bortezomib-treated cells, and PP2A knockdown by small interference RNA also reduced apoptosis induced by the combination of TRAIL and bortezomib, indicating that PP2A may be important in mediating the effect of bortezomib on TRAIL sensitization. Together, bortezomib overcame TRAIL resistance at clinically achievable concentrations in hepatocellular carcinoma cells, and this effect is mediated at least partly via inhibition of the PI3K/Akt pathway.Hepatocellular carcinoma (HCC)2 is currently the fifth most common solid tumor worldwide and the fourth leading cause of cancer-related death. To date, surgery is still the only curative treatment but is only feasible in a small portion of patients (1). Drug treatment is the major therapy for patients with advanced stage disease. Unfortunately, the response rate to traditional chemotherapy for HCC patients is unsatisfactory (1). Novel pharmacological therapy is urgently needed for patients with advanced HCC. In this regard, the approval of sorafenib might open a new era of molecularly targeted therapy in the treatment of HCC patients.Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a type II transmembrane protein and a member of the TNF family, is a promising anti-tumor agent under clinical investigation (2). TRAIL functions by engaging its receptors expressed on the surface of target cells. Five receptors specific for TRAIL have been identified, including DR4/TRAIL-R1, DR5/TRAIL-R2, DcR1, DcR2, and osteoprotegerin. Among TRAIL receptors, only DR4 and DR5 contain an effective death domain that is essential to formation of death-inducing signaling complex (DISC), a critical step for TRAIL-induced apoptosis. Notably, the trimerization of the death domains recruits an adaptor molecule, Fas-associated protein with death domain (FADD), which subsequently recruits and activates caspase-8. In type I cells, activation of caspase-8 is sufficient to activate caspase-3 to induce apoptosis; however, in another type of cells (type II), the intrinsic mitochondrial pathway is essential for apoptosis characterized by cleavage of Bid and release of cytochrome c from mitochondria, which subsequently activates caspase-9 and caspase-3 (3).Although TRAIL induces apoptosis in malignant cells but sparing normal cells, some tumor cells are resistant to TRAIL-induced apoptosis. Mechanisms responsible for the resistance include receptors and intracellular resistance. Although the cell surface expression of DR4 or DR5 is absolutely required for TRAIL-induced apoptosis, tumor cells expressing these death receptors are not always sensitive to TRAIL due to intracellular mechanisms. For example, the cellular FLICE-inhibitory protein (c-FLIP), a homologue to caspase-8 but without protease activity, has been linked to TRAIL resistance in several studies (4, 5). In addition, inactivation of Bax, a proapoptotic Bcl-2 family protein, resulted in resistance to TRAIL in MMR-deficient tumors (6, 7), and reintroduction of Bax into Bax-deficient cells restored TRAIL sensitivity (8), indicating that the Bcl-2 family plays a critical role in intracellular mechanisms for resistance of TRAIL.Bortezomib, a proteasome inhibitor approved clinically for multiple myeloma and mantle cell lymphoma, has been investigated intensively for many types of cancer (9). Accumulating studies indicate that the combination of bortezomib and TRAIL overcomes the resistance to TRAIL in various types of cancer, including acute myeloid leukemia (4), lymphoma (1013), prostate (1417), colon (15, 18, 19), bladder (14, 16), renal cell carcinoma (20), thyroid (21), ovary (22), non-small cell lung (23, 24), sarcoma (25), and HCC (26, 27). Molecular targets responsible for the sensitizing effect of bortezomib on TRAIL-induced cell death include DR4 (14, 27), DR5 (14, 20, 2223, 28), c-FLIP (4, 11, 2123, 29), NF-κB (12, 24, 30), p21 (16, 21, 25), and p27 (25). In addition, Bcl-2 family also plays a role in the combinational effect of bortezomib and TRAIL, including Bcl-2 (10, 21), Bax (13, 22), Bak (27), Bcl-xL (21), Bik (18), and Bim (15).Recently, we have reported that Akt signaling is a major molecular determinant in bortezomib-induced apoptosis in HCC cells (31). In this study, we demonstrated that bortezomib overcame TRAIL resistance in HCC cells through inhibition of the PI3K/Akt pathway.  相似文献   

10.
11.
The acid-sensing ion channel 1a (ASIC1a) is widely expressed in central and peripheral neurons where it generates transient cation currents when extracellular pH falls. ASIC1a confers pH-dependent modulation on postsynaptic dendritic spines and has critical effects in neurological diseases associated with a reduced pH. However, knowledge of the proteins that interact with ASIC1a and influence its function is limited. Here, we show that α-actinin, which links membrane proteins to the actin cytoskeleton, associates with ASIC1a in brain and in cultured cells. The interaction depended on an α-actinin-binding site in the ASIC1a C terminus that was specific for ASIC1a versus other ASICs and for α-actinin-1 and -4. Co-expressing α-actinin-4 altered ASIC1a current density, pH sensitivity, desensitization rate, and recovery from desensitization. Moreover, reducing α-actinin expression altered acid-activated currents in hippocampal neurons. These findings suggest that α-actinins may link ASIC1a to a macromolecular complex in the postsynaptic membrane where it regulates ASIC1a activity.Acid-sensing ion channels (ASICs)2 are H+-gated members of the DEG/ENaC family (13). Members of this family contain cytosolic N and C termini, two transmembrane domains, and a large cysteine-rich extracellular domain. ASIC subunits combine as homo- or heterotrimers to form cation channels that are widely expressed in the central and peripheral nervous systems (14). In mammals, four genes encode ASICs, and two subunits, ASIC1 and ASIC2, have two splice forms, a and b. Central nervous system neurons express ASIC1a, ASIC2a, and ASIC2b (57). Homomeric ASIC1a channels are activated when extracellular pH drops below 7.2, and half-maximal activation occurs at pH 6.5–6.8 (810). These channels desensitize in the continued presence of a low extracellular pH, and they can conduct Ca2+ (9, 1113). ASIC1a is required for acid-evoked currents in central nervous system neurons; disrupting the gene encoding ASIC1a eliminates H+-gated currents unless extracellular pH is reduced below pH 5.0 (5, 7).Previous studies found ASIC1a enriched in synaptosomal membrane fractions and present in dendritic spines, the site of excitatory synapses (5, 14, 15). Consistent with this localization, ASIC1a null mice manifested deficits in hippocampal long term potentiation, learning, and memory, which suggested that ASIC1a is required for normal synaptic plasticity (5, 16). ASICs might be activated during neurotransmission when synaptic vesicles empty their acidic contents into the synaptic cleft or when neuronal activity lowers extracellular pH (1719). Ion channels, including those at the synapse often interact with multiple proteins in a macromolecular complex that incorporates regulators of their function (20, 21). For ASIC1a, only a few interacting proteins have been identified. Earlier work indicated that ASIC1a interacts with another postsynaptic scaffolding protein, PICK1 (15, 22, 23). ASIC1a also has been reported to interact with annexin II light chain p11 through its cytosolic N terminus to increase cell surface expression (24) and with Ca2+/calmodulin-dependent protein kinase II to phosphorylate the channel (25). However, whether ASIC1a interacts with additional proteins and with the cytoskeleton remain unknown. Moreover, it is not known whether such interactions alter ASIC1a function.In analyzing the ASIC1a amino acid sequence, we identified cytosolic residues that might bind α-actinins. α-Actinins cluster membrane proteins and signaling molecules into macromolecular complexes and link membrane proteins to the actincytoskeleton (for review, Ref. 26). Four genes encode α-actinin-1, -2, -3, and -4 isoforms. α-Actinins contain an N-terminal head domain that binds F-actin, a C-terminal region containing two EF-hand motifs, and a central rod domain containing four spectrin-like motifs (2628). The C-terminal portion of the rod segment appears to be crucial for binding to membrane proteins. The α-actinins assemble into antiparallel homodimers through interactions in their rod domain. α-Actinins-1, -2, and -4 are enriched in dendritic spines, concentrating at the postsynaptic membrane (2935). In the postsynaptic membrane of excitatory synapses, α-actinin connects the NMDA receptor to the actin cytoskeleton, and this interaction is key for Ca2+-dependent inhibition of NMDA receptors (3638). α-Actinins can also regulate the membrane trafficking and function of several cation channels, including L-type Ca2+ channels, K+ channels, and TRP channels (3941).To better understand the function of ASIC1a channels in macromolecular complexes, we asked if ASIC1a associates with α-actinins. We were interested in the α-actinins because they and ASIC1a, both, are present in dendritic spines, ASIC1a contains a potential α-actinin binding sequence, and the related epithelial Na+ channel (ENaC) interacts with the cytoskeleton (42, 43). Therefore, we hypothesized that α-actinin interacts structurally and functionally with ASIC1a.  相似文献   

12.
13.
14.
As obligate intracellular parasites, viruses exploit diverse cellular signaling machineries, including the mitogen-activated protein-kinase pathway, during their infections. We have demonstrated previously that the open reading frame 45 (ORF45) of Kaposi sarcoma-associated herpesvirus interacts with p90 ribosomal S6 kinases (RSKs) and strongly stimulates their kinase activities (Kuang, E., Tang, Q., Maul, G. G., and Zhu, F. (2008) J. Virol. 82 ,1838 -1850). Here, we define the mechanism by which ORF45 activates RSKs. We demonstrated that binding of ORF45 to RSK increases the association of extracellular signal-regulated kinase (ERK) with RSK, such that ORF45, RSK, and ERK formed high molecular mass protein complexes. We further demonstrated that the complexes shielded active pERK and pRSK from dephosphorylation. As a result, the complex-associated RSK and ERK were activated and sustained at high levels. Finally, we provide evidence that this mechanism contributes to the sustained activation of ERK and RSK in Kaposi sarcoma-associated herpesvirus lytic replication.The extracellular signal-regulated kinase (ERK)2 mitogen-activated protein kinase (MAPK) signaling pathway has been implicated in diverse cellular physiological processes including proliferation, survival, growth, differentiation, and motility (1-4) and is also exploited by a variety of viruses such as Kaposi sarcoma-associated herpesvirus (KSHV), human cytomegalovirus, human immunodeficiency virus, respiratory syncytial virus, hepatitis B virus, coxsackie, vaccinia, coronavirus, and influenza virus (5-17). The MAPK kinases relay the extracellular signaling through sequential phosphorylation to an array of cytoplasmic and nuclear substrates to elicit specific responses (1, 2, 18). Phosphorylation of MAPK is reversible. The kinetics of deactivation or duration of signaling dictates diverse biological outcomes (19, 20). For example, sustained but not transient activation of ERK signaling induces the differentiation of PC12 cells into sympathetic-like neurons and transformation of NIH3T3 cells (20-22). During viral infection, a unique biphasic ERK activation has been observed for some viruses (an early transient activation triggered by viral binding or entry and a late sustained activation correlated with viral gene expression), but the responsible viral factors and underlying mechanism for the sustained ERK activation remain largely unknown (5, 8, 13, 23).The p90 ribosomal S6 kinases (RSKs) are a family of serine/threonine kinases that lie at the terminus of the ERK pathway (1, 24-26). In mammals, four isoforms are known, RSK1 to RSK4. Each one has two catalytically functional kinase domains, the N-terminal kinase domain (NTKD) and C-terminal kinase domain (CTKD) as well as a linker region between the two. The NTKD is responsible for phosphorylation of exogenous substrates, and the CTKD and linker region regulate RSK activation (1, 24, 25). In quiescent cells ERK binds to the docking site in the C terminus of RSK (27-29). Upon mitogen stimulation, ERK is activated by its upstream MAPK/ERK kinase (MEK). The active ERK phosphorylates Thr-359/Ser-363 of RSK in the linker region (amino acid numbers refer to human RSK1) and Thr-573 in the CTKD activation loop. The activated CTKD then phosphorylates Ser-380 in the linker region, creating a docking site for 3-phosphoinositide-dependent protein kinase-1. The 3-phosphoinositide-dependent protein kinase-1 phosphorylates Ser-221 of RSK in the activation loop and activates the NTKD. The activated NTKD autophosphorylates the serine residue near the ERK docking site, causing a transient dissociation of active ERK from RSK (25, 26, 28). The stimulation of quiescent cells by a mitogen such as epidermal growth factor or a phorbol ester such as 12-O-tetradecanoylphorbol-13-acetate (TPA) usually results in a transient RSK activation that lasts less than 30 min. RSKs have been implicated in regulating cell survival, growth, and proliferation. Mutation or aberrant expression of RSK has been implicated in several human diseases including Coffin-Lowry syndrome and prostate and breast cancers (1, 24, 25, 30-32).KSHV is a human DNA tumor virus etiologically linked to Kaposi sarcoma, primary effusion lymphoma, and a subset of multicentric Castleman disease (33, 34). Infection and reactivation of KSHV activate multiple MAPK pathways (6, 12, 35). Noticeably, the ERK/RSK activation is sustained late during KSHV primary infection and reactivation from latency (5, 6, 12, 23), but the mechanism of the sustained ERK/RSK activation is unclear. Recently, we demonstrated that ORF45, an immediate early and also virion tegument protein of KSHV, interacts with RSK1 and RSK2 and strongly stimulates their kinase activities (23). We also demonstrated that the activation of RSK plays an essential role in KSHV lytic replication (23). In the present study we determined the mechanism of ORF45-induced sustained ERK/RSK activation. We found that ORF45 increases the association of RSK with ERK and protects them from dephosphorylation, causing sustained activation of both ERK and RSK.  相似文献   

15.
16.
17.
18.
19.
The synthesis and storage of neutral lipids in lipid droplets is a fundamental property of eukaryotic cells, but the spatial organization of this process is poorly understood. Here we examined the intracellular localization of acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2), an enzyme that catalyzes the final step of triacylglycerol (TG) synthesis in eukaryotes. We found that DGAT2 expressed in cultured cells localizes to the endoplasmic reticulum (ER) under basal conditions. After providing oleate to drive TG synthesis, DGAT2 also localized to near the surface of lipid droplets, where it co-localized with mitochondria. Biochemical fractionation revealed that DGAT2 is present in mitochondria-associated membranes, specialized domains of the ER that are highly enriched in lipid synthetic enzymes and interact tightly with mitochondria. The interaction of DGAT2 with mitochondria depended on 67 N-terminal amino acids of DGAT2, which are not conserved in family members that have different catalytic functions. This targeting signal was sufficient to localize a red fluorescent protein to mitochondria. A highly conserved, positively charged, putative mitochondrial targeting signal was identified in murine DGAT2 between amino acids 61 and 66. Thus, DGAT2, an ER-resident transmembrane domain-containing enzyme, is also found in mitochondria-associated membranes, where its N terminus may promote its association with mitochondria.Most eukaryotic cells can synthesize neutral lipids, such as triacylglycerols (TGs)2 and sterol esters, and store them in cytosolic lipid droplets. Yet, a molecular understanding of this process and how it is spatially organized is lacking. For example, lipid substrates for TG synthesis (fatty acids and glycerolipid precursors) are found in the cytoplasm and membranes, energy for activating fatty acids (by converting to fatty acyl-CoA) comes from mitochondria, and the enzymes that catalyze TG formation are primarily found in the mitochondria and endoplasmic reticulum (ER). How the cell orchestrates this complex anabolic process to maximize lipid synthesis and storage during times of substrate excess is poorly understood.In most cells, TG synthesis occurs via the glycerol 3-phosphate (Kennedy) pathway and involves multiple enzymatic reactions in different subcellular compartments (1). The fatty acids for TG synthesis must first be “activated” by acyl-CoA synthases, a family of enzymes that localize to membranes of different compartments, including the ER, mitochondria, and plasma membrane (2), and utilize ATP to ligate CoA to the fatty acyl chain. Next, these fatty acids enter the Kennedy pathway of glycerolipid synthesis, in which the first two reactions occur in both the ER and mitochondria. In the first reaction, glycerol 3-phosphate and a fatty acyl-CoA are combined to yield lysophosphatidic acid through the actions of glycerol-3-phosphate acyltransferase enzymes (1, 3). In the second reaction, 1-acylglycerol-3-phosphate O-acyltransferase enzymes catalyze the esterification of lysophosphatidic acid with fatty acyl-CoA to form phosphatidic acid (1, 4). Next, phosphatidic acid is dephosphorylated at membrane surfaces by phosphatidate phosphatase to yield diacylglycerol (1, 5, 6). All these steps are highly organized spatially, which is likely to be important for the efficiency of the pathway.The final reaction of TG synthesis is catalyzed by acyl-CoA: diacylglycerol acyltransferase (DGAT) enzymes (7-9). The two mammalian DGATs, DGAT1 and DGAT2 (10, 11), which are encoded by genes of different families, have distinct roles in TG synthesis (12). DGAT2 is the major TG biosynthetic enzyme in eukaryotes. Dgat2-deficient mice die shortly after birth and are almost completely devoid of TG (13), indicating an essential requirement for DGAT2. Catalysis of TG synthesis is conserved in the DGAT2 gene family, with functional orthologs in many species, including Dga1p in Saccharomyces cerevisiae, which contributes to a major portion of TG synthesis (14-16).Little is known about the intracellular localization of DGAT enzymes. DGAT activity is present in microsomes (7, 17, 18), but in vitro assays do not distinguish between DGAT1 and DGAT2. A DGAT2-green fluorescent fusion protein expressed in HeLa cells localized to the ER (19), and Dga1p activity in S. cerevisiae localizes to the ER and lipid droplets (16). DGAT1 and DGAT2 expressed in COS-7 cells localized primarily to the ER (20). A recent study of the subcellular localizations of tung tree DGAT1 and DGAT2 in tobacco BY-2 cells revealed that the enzymes are located in distinct, non-overlapping regions of the ER (21). Most recently, DGAT2 was reported to co-localize with lipid droplets in cultured adipocytes (22). As a step toward a better understanding of the cellular organization of processes that contribute to TG synthesis and storage, we determined the subcellular localization of murine DGAT2 in mammalian cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号