共查询到20条相似文献,搜索用时 31 毫秒
1.
Abnormal localization of cystic fibrosis transmembrane conductance regulator in primary cultures of cystic fibrosis airway epithelia 下载免费PDF全文
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a membrane glycoprotein that forms Cl- channels. Previous work has shown that when some CF-associated mutants of CFTR are expressed in heterologous cells, their glycosylation is incomplete. That observation led to the hypothesis that such mutants are not delivered to the plasma membrane where they can mediate Cl- transport. Testing this hypothesis requires localization of CFTR in nonrecombinant cells and a specific determination of whether CFTR is in the apical membrane of normal and CF epithelia. To test the hypothesis, we used primary cultures of airway epithelia grown on permeable supports because they polarize and express the CF defect in apical Cl- permeability. Moreover, their dysfunction contributes to disease. We developed a semiquantitative assay, using nonpermeabilized epithelia, an antibody directed against an extracellular epitope of CFTR, and large (1 microns) fluorescent beads which bound to secondary antibodies. We observed specific binding to airway epithelia from non-CF subjects, indicating that CFTR is located in the apical membrane. In contrast, there was no specific binding to the apical membrane of CF airway epithelia. These data were supported by qualitative studies using confocal microscopy: the most prominent immunostaining was in the apical region of non-CF cells and in cytoplasmic regions of CF cells. The results indicate that CFTR is either missing from the apical membrane of these CF cells or it is present at a much reduced level. The data support the proposed defective delivery of some CF-associated mutants to the plasma membrane and explain the lack of apical Cl- permeability in most CF airway epithelia. 相似文献
2.
3.
《Cell calcium》2019
The Transient Receptor Potential (TRP) protein superfamily is a group of cation channels expressed in various cell types and involved in respiratory diseases such as cystic fibrosis (CF), the genetic disease caused by CF Transmembrane conductance Regulator (CFTR) mutations. In human airway epithelial cells, there is growing evidence for a functional link between CFTR and TRP channels. TRP channels contribute to transmitting extracellular signals into the cells and, in an indirect manner, to CFTR activity via a Ca2+ rise signaling. Indeed, mutated CFTR-epithelial cells are characterized by an increased Ca2+ influx and, on the opposite, by a decreased of magnesium influx, both being mediated by TRP channels. This increasing cellular Ca2+ triggers the activation of calcium-activated chloride channels (CaCC) or CFTR itself, via adenylyl cyclase, PKA and tyrosine kinases activation, but also leads to an exaltation of the inflammatory response. Another shortcoming in mutated CFTR-epithelial cells is a [Mg2+]i decrease, associated with impaired TRPM7 functioning. This deregulation has to be taken into consideration in CF physiopathology, as Mg2+ is required for ATP hydrolysis and CFTR activity. The modulation of druggable TRP channels could supplement CF therapy either an anti-inflammatory drug or for CFTR potentiation, according to the balance between exacerbation and respite phases. The present paper focus on TRPA1, TRPC6, TRPM7, TRPV2, TRPV4, TRPV6 and ORAI 1, the proteins identified, for now, as dysfunctional channels, in CF cells. 相似文献
4.
Grubb BR Rogers TD Diggs PC Boucher RC Ostrowski LE 《American journal of physiology. Lung cellular and molecular physiology》2006,290(2):L270-L277
The ion transport defects reported for human cystic fibrosis (CF) airways are reproduced in nasal epithelia of the CF mouse. Although this tissue has been studied in vivo using the nasal potential difference technique and as a native tissue mounted in the Ussing chamber, little information is available on cultured murine nasal epithelia. We have developed a polarized cell culture model of primary murine nasal epithelia in which the CF tissue exhibits not only a defect in cAMP-mediated Cl- secretion but also the Na+ hyperabsorption and upregulation of the Ca2+-activated Cl- conductance observed in human airways. Both the wild-type and CF cultures were constituted predominantly of undifferentiated cuboidal columnar cells, with most cultures exhibiting a small number of ciliated cells. Although no goblet cells were observed, RT-PCR demonstrated the expression of Muc5ac RNA after approximately 22 days in culture. The CF tissue exhibited an adherent layer of mucus similar to the mucus plaques reported in the distal airways of human CF patients. Furthermore, we found that treatment of CF preparations with a Na+ channel blocker for 7 days prevented formation of mucus adherent to epithelial surfaces. The cultured murine nasal epithelial preparation should be an excellent model tissue for gene transfer studies and pharmacological studies of Na+ channel blockers and mucolytic agents as well as for further characterization of CF ion transport defects. Culture of nasal epithelia from DeltaF508 mice will be particularly useful in testing drugs that allow DeltaF508 CFTR to traffic to the membrane. 相似文献
5.
6.
cAMP-induced ion transport in normal and cystic fibrosis (CF) fibroblasts was investigated by X-ray microanalysis. Stimulation with cAMP causes an increase in cellular Na content and a decrease in cellular Cl and K content. No significant difference in response between CF and normal cells was noted. In this respect, fibroblasts differ from epithelial cells, where cAMP-induced Cl- efflux blocked in CF patients. Isoproterenol produced similar changes in Na and K content as cAMP, but did not effect Cl content. 相似文献
7.
Effects of cystic fibrosis and congenital bilateral absence of the vas deferens-associated mutations on cystic fibrosis transmembrane conductance regulator-mediated regulation of separate channels 下载免费PDF全文
The protein defective in cystic fibrosis (CF), the CF transmembrane-conductance regulator (CFTR), functions as an epithelial chloride channel and as a regulator of separate ion channels. Although the consequences that disease-causing mutations have on the chloride-channel function have been studied extensively, little is known about the effects that mutations have on the regulatory function. To address this issue, we transiently expressed CFTR-bearing mutations associated with CF or its milder phenotype, congenital bilateral absence of the vas deferens, and determined whether mutant CFTR could regulate outwardly rectifying chloride channels (ORCCs). CFTR bearing a CF-associated mutation in the first nucleotide-binding domain (NBD1), DeltaF508, functioned as a chloride channel but did not regulate ORCCs. However, CFTR bearing disease-associated mutations in other domains retained both functions, regardless of the associated phenotype. Thus, a relationship between loss of CFTR regulatory function and disease severity is evident for NBD1, a region of CFTR that appears important for regulation of separate channels. 相似文献
8.
Polarized signaling via purinoceptors in normal and cystic fibrosis airway epithelia 总被引:8,自引:0,他引:8
Airway epithelia are confronted with distinct signals emanating from the luminal and/or serosal environments. This study tested whether airway epithelia exhibit polarized intracellular free calcium (Ca(2+)(i)) and anion secretory responses to 5' triphosphate nucleotides (ATP/UTP), which may be released across both barriers of these epithelia. In both normal and cystic fibrosis (CF) airway epithelia, mucosal exposure to ATP/UTP increased Ca(2+)(i) and anion secretion, but both responses were greater in magnitude for CF epithelia. In CF epithelia, the mucosal nucleotide-induced response was mediated exclusively via Ca(2+)(i) interacting with a Ca(2+)-activated Cl(-) channel (CaCC). In normal airway epithelia (but not CF), nucleotides stimulated a component of anion secretion via a chelerythrine-sensitive, Ca(2+)-independent PKC activation of cystic fibrosis transmembrane conductance regulator. In normal and CF airway epithelia, serosally applied ATP or UTP were equally effective in mobilizing Ca(2+)(i). However, serosally applied nucleotides failed to induce anion transport in CF epithelia, whereas a PKC-regulated anion secretory response was detected in normal airway epithelia. We conclude that (1) in normal nasal epithelium, apical/basolateral purinergic receptor activation by ATP/UTP regulates separate Ca(2+)-sensitive and Ca(2+)-insensitive (PKC-mediated) anion conductances; (2) in CF airway epithelia, the mucosal ATP/UTP-dependent anion secretory response is mediated exclusively via Ca(2+)(i); and (3) Ca(2+)(i) regulation of the Ca(2+)-sensitive anion conductance (via CaCC) is compartmentalized in both CF and normal airway epithelia, with basolaterally released Ca(2+)(i) failing to activate CaCC in both epithelia. 相似文献
9.
Gao L Broughman JR Iwamoto T Tomich JM Venglarik CJ Forman HJ 《American journal of physiology. Lung cellular and molecular physiology》2001,281(1):L24-L30
Cystic fibrosis (CF), an inherited disease characterized by defective epithelial Cl- transport, damages lungs via chronic inflammation and oxidative stress. Glutathione, a major antioxidant in the epithelial lung lining fluid, is decreased in the apical fluid of CF airway epithelia due to reduced glutathione efflux (Gao L, Kim KJ, Yankaskas JR, and Forman HJ. Am J Physiol Lung Cell Mol Physiol 277: L113-L118, 1999). The present study examined the question of whether restoration of chloride transport would also restore glutathione secretion. We found that a Cl- channel-forming peptide (N-K4-M2GlyR) and a K+ channel activator (chlorzoxazone) increased Cl- secretion, measured as bumetanide-sensitive short-circuit current, and glutathione efflux, measured by high-performance liquid chromatography, in a human CF airway epithelial cell line (CFT1). Addition of the peptide alone increased glutathione secretion (181 +/- 8% of the control value), whereas chlorzoxazone alone did not significantly affect glutathione efflux; however, chlorzoxazone potentiated the effect of the peptide on glutathione release (359 +/- 16% of the control value). These studies demonstrate that glutathione efflux is associated with apical chloride secretion, not with the CF transmembrane conductance regulator per se, and the defect of glutathione efflux in CF can be overcome pharmacologically. 相似文献
10.
Abnormalities of epithelial function in cystic fibrosis (CF) have been linked to defects in cell membrane permeability to chloride or sodium ions. Recently, a class of chloride channels in airway epithelial cells have been reported to lack their usual sensitivity to phosphorylation via cAMP-dependent protein kinase, suggesting that CF could be due to a single genetic defect in these channels. We have examined single chloride and sodium channels in control and CF human nasal epithelia using the patch-clamp technique. The most common chloride channel was not the one previously associated with CF, but it was also abnormal in CF cells. In addition, the number of sodium channels was unusually high in CF. These findings suggest a wider disturbance of ion channel properties in CF than would be produced by a defect in a single type of channel. 相似文献
11.
Chloride channels and cystic fibrosis of the pancreas 总被引:1,自引:0,他引:1
Cystic fibrosis (CF) affects approximately 1 in 2000 people making it one of the commonest fatal, inherited diseases in the Caucasian population. CF is caused by mutations in a cyclic AMP-regulated chloride channel known as CFTR, which is found on the apical plasma membrane of many exocrine epithelial cells. In the CF pancreas, dysfunction of the CFTR reduces the secretory activity of the tubular duct cells, which leads to blockage of the ductal system and eventual fibrosis of the whole gland. One possible approach to treating the disease would be to activate an alternative chloride channel capable of bypassing defective CFTR. A strong candidate for this is a chloride channel regulated by intracellular calcium, which has recently been shown to protect the pancreas in transgenic CF mice. Pharmacological intervention directed at activating this calcium-activated Cl– conductance might provide a possible therapy to treat the problems of pancreatic dysfunction in CF. 相似文献
12.
Ye JH Gao J Wu YN Hu YJ Zhang CP Xu TL 《Biochemical and biophysical research communications》2007,355(4):986-992
Tissue acidosis is an important feature of tumor. The response of adenoid cystic carcinoma (ACC) cells to acidic solution was studied using whole-cell patch-clamp recording in the current study. An inward, amiloride-sensitive Na(+) current was identified in cultured ACC-2 cells while not in normal human salivary gland epithelial cells. Electrophysiological and pharmacological properties of the currents suggest that heteromeric acid-sensing ion channels (ASICs) containing 2a and 3 may be responsible for the proton-induced currents in the majority of ACC-2 cells. Consistent with it, analyses of RT-PCR and Western blotting demonstrated the presences of ASIC2a and 3 in ACC-2 cells. Furthermore, we observed the enhanced expression of ASIC2a and 3 in the sample of ACC tissues. These results indicate that the functional expression of ASICs is characteristic feature of ACC cells. 相似文献
13.
Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains 总被引:5,自引:0,他引:5
Csanády L Chan KW Seto-Young D Kopsco DC Nairn AC Gadsby DC 《The Journal of general physiology》2000,116(3):477-500
Opening and closing of a CFTR Cl(-) channel is controlled by PKA-mediated phosphorylation of its cytoplasmic regulatory (R) domain and by ATP binding, and likely hydrolysis, at its two nucleotide binding domains. Functional interactions between the R domain and the two nucleotide binding domains were probed by characterizing the gating of severed CFTR channels expressed in Xenopus oocytes. Expression levels were assessed using measurements of oocyte conductance, and detailed functional characteristics of the channels were extracted from kinetic analyses of macroscopic current relaxations and of single-channel gating events in membrane patches excised from the oocytes. The kinetic behavior of wild-type (WT) CFTR channels was compared with that of split CFTR channels bearing a single cut (between residues 633 and 634) just before the R domain, of split channels with a single cut (between residues 835 and 837) just after the R domain, and of split channels from which the entire R domain (residues 634-836) between those two cut sites was omitted. The channels cut before the R domain had characteristics almost identical to those of WT channels, except for less than twofold shorter open burst durations in the presence of PKA. Channels cut just after the R domain were characterized by a low level of activity even without phosphorylation, strong stimulation by PKA, enhanced apparent affinity for ATP as assayed by open probability, and a somewhat destabilized binding site for the locking action of the nonhydrolyzable ATP analog AMPPNP. Split channels with no R domain (from coexpression of CFTR segments 1-633 and 837-1480) were highly active without phosphorylation, but otherwise displayed the characteristics of channels cut after the R domain, including higher apparent ATP affinity, and less tight binding of AMPPNP at the locking site, than for WT. Intriguingly, severed channels with no R domain were still noticeably stimulated by PKA, implying that activation of WT CFTR by PKA likely also includes some component unrelated to the R domain. As the maximal opening rates were the same for WT channels and split channels with no R domain, it seems that the phosphorylated R domain does not stimulate opening of CFTR channels; rather, the dephosphorylated R domain inhibits them. 相似文献
14.
Cystic fibrosis (CF) is associated with a defect in a cAMP-activated chloride channel in secretory epithelia, which leads to decreased fluid secretion. In addition, many mucus glycoproteins show decreased sialylation but increased sulphation. We have recently shown that the pH of intracellular organelles is elevated in CF cells, due to defective chloride conductance in the vesicle membranes. We postulate that this may affect the activity of sialyl-, fucosyl- and sulphotransferases, and thus explain the abnormal glycosylation. Defects in sialylation of glycolipids might also generate receptors for Pseudomonas, which infects the respiratory tract of CF patients. 相似文献
15.
D L Brautigan 《The International journal of biochemistry》1988,20(8):745-752
1. Recent discoveries have implicated regulation of an apical membrane chloride channel as site of a defect in cystic fibrosis (CF). The channel fails to respond to stimuli that elevate intracellular cAMP. 2. This paper describes properties of reversible cycles of protein phosphorylation and considers substrate specificity, reactions with model peptides, and space-filling structural models. 3. Mutation of a channel regulatory protein is proposed to involve either: (a) change of phosphorylated serine residue to an unreactive residue, (b) change in a nearby residue that does not affect phosphorylation by cAMP-dependent kinase, but results in dephosphorylation by a different phosphatase, or (c) change in a nearby residue that produces a structure unreactive with cAMP-dependent protein kinase. 4. Perhaps in CF sidechains with branched structures at the beta carbons occur on either side of the phosphorylated serine, like in glycogen phosphorylase, and prohibit reaction of a regulatory protein with cAMP-dependent protein kinase. 相似文献
16.
Interaction of apical and basal membrane ion channels underlies electroreception in ampullary epithelia of skates. 总被引:1,自引:4,他引:1 下载免费PDF全文
The exquisite sensitivity of elasmobranch fishes to electric fields is thought to reside in electroreceptive organs called ampullae of Lorenzini. We measured the stimulus-response behavior of ampullary organs excised from skates. Under open-circuit conditions, the ampullary organ showed three distinct response states: spontaneous repetitive spikes, evoked spikes, and small, damped oscillatory responses. Under short-circuit conditions, the amplitude range for a linear current response to a sinusoidal (0.5 Hz) voltage clamp of an organ (assessed by spectral analysis of the harmonics generated) was 7-200 microV rms. Changes in the spike firing rate of the afferent nerve innervating the organ were evident for voltage clamps of the ampullary epithelium of 3 microV and the spike rate saturated for clamp steps exceeding 100 microV. Thus, the linear response range of the ampullary epithelium exceeded the range in spike firing rate of the afferent nerve. The steady-state transorgan electrical properties under voltage clamp conditions were obtained by analysis of complex admittance determinations in the frequency range 0.05-20 Hz for perturbations (< 100 microV rms) in the linear range. Admittance functions were distinctly related to the preparation states observed under open-circuit conditions. A negative real part in the organ admittance (i.e., a steady-state negative conductance generated by the preparation) was a common characteristic of the two (open-circuit) excitable states. The negative conductance was also confirmed by the direction of current flow through the ampullary epithelium in response to step voltage clamps.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
Baconnais S Delavoie F Zahm JM Milliot M Terryn C Castillon N Banchet V Michel J Danos O Merten M Chinet T Zierold K Bonnet N Puchelle E Balossier G 《Experimental cell research》2005,309(2):296-304
The absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na(+) absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections. We demonstrated that the ion content (Na(+), Mg(2+), P, S and Cl(-)) is significantly higher and the water content significantly lower in secretory granules from the CF cell line compared to the non-CF cell line. Using videomicroscopy, we observed that the secretory granule expansion was deficient in CF glandular cells. Transfection of CF cells with CFTR cDNA or inhibition of non-CF cells with CFTR(inh)-172, respectively restored or decreased the water content and granule expansion, in parallel with changes in ion content. We hypothesize that the decreased water and increased ion content in glandular secretory granules may contribute to the dehydration and increased viscosity of the ASL in CF. 相似文献
18.
19.
20.
Characterization of wild-type and deltaF508 cystic fibrosis transmembrane regulator in human respiratory epithelia 下载免费PDF全文
Kreda SM Mall M Mengos A Rochelle L Yankaskas J Riordan JR Boucher RC 《Molecular biology of the cell》2005,16(5):2154-2167
Previous studies in native tissues have produced conflicting data on the localization and metabolic fate of WT and deltaF508 cystic fibrosis transmembrane regulator (CFTR) in the lung. Combining immunocytochemical and biochemical studies utilizing new high-affinity CFTR mAbs with ion transport assays, we examined both 1) the cell type and region specific expression of CFTR in normal airways and 2) the metabolic fate of deltaF508 CFTR and associated ERM proteins in the cystic fibrosis lung. Studies of lungs from a large number of normal subjects revealed that WT CFTR protein localized to the apical membrane of ciliated cells within the superficial epithelium and gland ducts. In contrast, other cell types in the superficial, gland acinar, and alveolar epithelia expressed little WT CFTR protein. No deltaF508 CFTR mature protein or function could be detected in airway specimens freshly excised from a large number of deltaF508 homozygous subjects, despite an intact ERM complex. In sum, our data demonstrate that WT CFTR is predominantly expressed in ciliated cells, and deltaF508 CFTR pathogenesis in native tissues, like heterologous cells, reflects loss of normal protein processing. 相似文献