首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response of V(1) ATPase of the tobacco hornworm Manduca sexta to Mg(2+) and nucleotide binding in the presence of the enhancer methanol has been studied by CuCl(2)-induced disulfide formation, fluorescence spectroscopy, and small-angle X-ray scattering. When the V(1) complex was supplemented with CuCl(2) nucleotide-dependence of A-B-E and A-B-E-D cross-linking products was observed in absence of nucleotides and presence of MgADP+Pi but not when MgAMP.PNP or MgADP were added. A zero-length cross-linking product of subunits D and E was formed, supporting their close proximity in the V(1) complex. The catalytic subunit A was reacted with N-4[4-[7-(dimethylamino)-4-methyl]coumarin-3-yl]maleimide (CM) and spectral shifts and changes in fluorescence intensity were detected upon addition of MgAMP.PNP, -ATP, -ADP+Pi, or -ADP. Differences in the fluorescence emission of these nucleotide-binding states were monitored using the intrinsic tryptophan fluorescence. The structural composition of the V(1) ATPase from M. sexta and conformational alterations in this enzyme due to Mg(2+) and nucleotide binding are discussed on the basis of these and previous observations.  相似文献   

2.
Zhang Z  Inoue T  Forgac M  Wilkens S 《FEBS letters》2006,580(8):2006-2010
Vacuolar ATPases (V1V0 -ATPases) function in proton translocation across lipid membranes of subcellular compartments. We have used antibody labeling and electron microscopy to define the position of subunit C in the vacuolar ATPase from yeast. The data show that subunit C is binding at the interface of the ATPase and proton channel, opposite from another stalk density previously identified as subunit H [Wilkens S., Inoue T., and Forgac M. (2004) Three-dimensional structure of the vacuolar ATPase - Localization of subunit H by difference imaging and chemical cross-linking. J. Biol. Chem. 279, 41942-41949]. A picture of the vacuolar ATPase stalk domain is emerging in which subunits C and H are positioned to play a role in reversible enzyme dissociation and activity silencing.  相似文献   

3.
The Asian tiger mosquito, Aedes albopictus, is commonly infected by the gregarine parasite Ascogregarina taiwanensis, which develops extracellularly in the midgut of infected larvae. The intracellular trophozoites are usually confined within a parasitophorous vacuole, whose acidification is generated and controlled by the V(1)V(O) ATPase. This proton pump is driven by ATP hydrolysis, catalyzed inside the major subunit A. The subunit A encoding gene of the Aedes albopictus V(1)V(O) ATPase was cloned in pET9d1-His(3) and the recombinant protein, expressed in the Escherichia coli Rosetta 2 (DE3) strain, purified by immobilized metal affinity- and ion-exchange chromatography. The purified protein was soluble and properly folded. Analysis of secondary structure by circular dichroism spectroscopy showed that subunit A comprises 43% alpha-helix, 25% beta-sheet and 40% random coil content. The ability of subunit A of eukaryotic V-ATPases to bind ATP and/or ADP is demonstrated by photoaffinity labeling and fluorescence correlation spectroscopy (FCS). Quantitation of the FCS data indicates that the ADP-analogues bind slightly weaker to subunit A than the ATP-analogues. Tryptophan fluorescence quenching of subunit A after binding of different nucleotides provides evidence for secondary structural alterations in this subunit caused by nucleotide-binding.  相似文献   

4.
The vacuolar (H+)-ATPase: subunit arrangement and in vivo regulation   总被引:1,自引:0,他引:1  
The V-ATPases are responsible for acidification of intracellular compartments and proton transport across the plasma membrane. They play an important role in both normal processes, such as membrane traffic, protein degradation, urinary acidification, and bone resorption, as well as various disease processes, such as viral infection, toxin killing, osteoporosis, and tumor metastasis. V-ATPases contain a peripheral domain (V1) that carries out ATP hydrolysis and an integral domain (V0) responsible for proton transport. V-ATPases operate by a rotary mechanism involving both a central rotary stalk and a peripheral stalk that serves as a stator. Cysteine-mediated cross-linking has been used to localize subunits within the V-ATPase complex and to investigate the helical interactions between subunits within the integral V0 domain. An essential property of the V-ATPases is the ability to regulate their activity in vivo. An important mechanism of regulating V-ATPase activity is reversible dissociation of the complex into its component V1 and V0 domains. The dependence of reversible dissociation on subunit isoforms and cellular environment has been investigated. Qi and Wang contributed equally to this work.  相似文献   

5.
The vacuolar ATPases (V-type ATPases) are a family of ATP-dependent ion pumps and found in two principal locations, in endomembranes and in plasma membranes. This family of ATPases is responsible for acidification of intracellulare compartments and, in certain cases, ion transport across the plasma membrane of eucaryotic cells. V-ATPases are composed of two distinct domains: a catalytic V1 sector, in which ATP hydrolysis takes place, and the membrane-embedded sector, V0, which functions in ion conduction. In the past decade impressive progress has been made in elucidating the properties structure, function and moleculare biology. These knowledge sheds light also on the evolution of V-ATPases and their related families of A-(A1A0-ATPase) and F-type (F1F0-ATPases)ATPases.  相似文献   

6.
A recombinant form of subunit E (Vma4p) from yeast vacuolar ATPases (V-ATPases) has been overexpressed in Escherichia coli, purified to homogeneity, and explored by mass spectrometry. Analysis of the secondary structure of Vma4p by circular dichroism spectroscopy indicated 32% alpha-helix and 23% beta-sheet content. Vma4p formed a hybrid-complex with the nucleotide-binding subunits alpha and beta of the closely related F(1) ATPase of the thermophilic bacterium PS3 (TF(1)). The alpha(3)beta(3)E-hybrid-complex had 56% of the ATPase activity of the native TF(1). By comparison, an alpha(3)beta(3)-formation without Vma4p showed about 24% of total TF(1) ATPase activity. This is the first demonstration of a hydrolytically active hybrid-complex consisting of F(1) and V(1) subunits. The arrangement of subunit E in V(1) has been probed using the recombinant Vma4p, the alpha(3)beta(3)E-hybrid-complex together with V(1) and an A(3)B(3)HEG-subcomplex of the V(1) ATPase from Manduca sexta, respectively, indicating that subunit E is shielded in V(1).  相似文献   

7.
The A1Ao ATP synthase from archaea represents a class of chimeric ATPases/synthases, whose function and general structural design share characteristics both with vacuolar V1Vo ATPases and with F1Fo ATP synthases. The primary sequences of the two large polypeptides A and B, from the catalytic part, are closely related to the eukaryotic V1Vo ATPases. The chimeric nature of the A1Ao ATP synthase from the archaeon Methanosarcina mazei G?1 was investigated in terms of nucleotide interaction. Here, we demonstrate the ability of the overexpressed A and B subunits to bind ADP and ATP by photoaffinity labeling. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to map the peptide of subunit B involved in nucleotide interaction. Nucleotide affinities in both subunits were determined by fluorescence correlation spectroscopy, indicating a weaker binding of nucleotide analogues to subunit B than to A. In addition, the nucleotide-free crystal structure of subunit B is presented at 1.5 A resolution, providing the first view of the so-called non-catalytic subunit of the A1Ao ATP synthase. Superposition of the A-ATP synthase non-catalytic B subunit and the F-ATP synthase non-catalytic alpha subunit provides new insights into the similarities and differences of these nucleotide-binding ATPase subunits in particular, and into nucleotide binding in general. The arrangement of subunit B within the intact A1Ao ATP synthase is presented.  相似文献   

8.
The plasma membrane H+ V-ATPase from the midgut of larval Manduca sexta, commonly called the tobacco hornworm, is the sole energizer of epithelial ion transport in this tissue, being responsible for the alkalinization of the gut lumen up to a pH of more than 11 and for any active ion movement across the epithelium. This minireview deals with those topics of our recent research on this enzyme that may contribute novel aspects to the biochemistry and physiology of V-ATPases. Our research approaches include intramolecular aspects such as subunit topology and the inhibition by macrolide antibiotics, intermolecular aspects such as the hormonal regulation of V-ATPase biosynthesis and the interaction of the V-ATPase with the actin cytoskeleton, and supramolecular aspects such as the interactions of V-ATPase, K+/H+ antiporter, and ion channels, which all function as an ensemble in the transepithelial movement of potassium ions.  相似文献   

9.
Projection maps of a V1-Vma5p hybrid complex, composed of subunit C (Vma5p) of Saccharomyces cerevisiae V-ATPase and the C-depleted V1 from Manduca sexta, were determined from single particle electron microscopy. V1-Vma5p consists of a headpiece and an elongated wedgelike stalk with a 2.1×3.0 nm protuberance and a 9.5×7.5 globular domain, interpreted to include Vma5p. The interaction face of Vma5p in V1 was explored by chemical modification experiments.  相似文献   

10.
V-ATPases are rotary molecular motors that generally function as proton pumps. We recently solved the crystal structures of the V1 moiety of Enterococcus hirae V-ATPase (EhV1) and proposed a model for its rotation mechanism. Here, we characterized the rotary dynamics of EhV1 using single-molecule analysis employing a load-free probe. EhV1 rotated in a counterclockwise direction, exhibiting two distinct rotational states, namely clear and unclear, suggesting unstable interactions between the rotor and stator. The clear state was analyzed in detail to obtain kinetic parameters. The rotation rates obeyed Michaelis-Menten kinetics with a maximal rotation rate (Vmax) of 107 revolutions/s and a Michaelis constant (Km) of 154 μm at 26 °C. At all ATP concentrations tested, EhV1 showed only three pauses separated by 120°/turn, and no substeps were resolved, as was the case with Thermus thermophilus V1-ATPase (TtV1). At 10 μm ATP (⪡Km), the distribution of the durations of the ATP-waiting pause fit well with a single-exponential decay function. The second-order binding rate constant for ATP was 2.3 × 106 m−1 s−1. At 40 mm ATP (⪢Km), the distribution of the durations of the catalytic pause was reproduced by a consecutive reaction with two time constants of 2.6 and 0.5 ms. These kinetic parameters were similar to those of TtV1. Our results identify the common properties of rotary catalysis of V1-ATPases that are distinct from those of F1-ATPases and will further our understanding of the general mechanisms of rotary molecular motors.  相似文献   

11.
R. D. Allen 《Protoplasma》1995,189(1-2):1-8
Summary A model is presented for one type of membrane tubulation. In this model large transmembrane protein complexes link together to form helical bands. To form the helical bands the individual complexes within the band would need to form a slight bend and twist with adjacent complexes as they link together. Such linkages would lead to the band and lipid bilayer extending out from the plane of the membrane to form a tube of a diameter equal to or smaller than the radial diameter of the helix. This model is supported by two examples of membrane tubulation found inParamecium, in which proton pumps are the transmembrane complexes that are associated together to form the helically coiled bands. These include the helically linked F0F1 complexes of the mitochondrial inner membrane and the V0V1 complexes of the decorated tubules of the contractile vacuole complex. Such tubules result in very high surface-to-volume ratios and may be important in efficient ATP production or in forming proton gradients for transporting ions across membranes.  相似文献   

12.
The motor domain of A1A0 ATPases is composed of only two subunits, the stator subunit I and the rotor subunit c. Recent studies on the molecular biology of the A0 domains revealed the surprising finding that the gene encoding subunit c underwent several multiplication events leading to rotor subunits comprising 2, 3, or even 13 hairpin domains suggesting multimeric in different stoichiometry as well as monomeric rotors. The number of ion translocating groups per rotor ranges from 13 to 6. Furthermore, as deduced from the gene sequences H(+)-as well as Na(+)-driven rotors are found in archaea. Features previously thought to be distinctive for A0, F0 or V0 are all found in A0 suggesting that the differences encountered in the three classes of ATPases today emerged already very early in evolution. The extraordinary features and exceptional structural and functional variability in the rotor of A1A0 ATPases may have arisen as an adaptation to different cellular needs and the extreme physicochemical conditions in the early history of life.  相似文献   

13.
ATPases with unusual membrane-embedded rotor subunits were found in both F1F0 and A1A0 ATP synthases. The rotor subunit c of A1A0 ATPases is, in most cases, similar to subunit c from F0. Surprisingly, multiplied c subunits with four, six, or even 26 transmembrane spans have been found in some archaea and these multiplication events were sometimes accompanied by loss of the ion-translocating group. Nevertheless, these enzymes are still active as ATP synthases. A duplicated c subunit with only one ion-translocating group was found along with “normal” F0 c subunits in the Na+ F1F0 ATP synthase of the bacterium Acetobacterium woodii. These extraordinary features and exceptional structural and functional variability in the rotor of ATP synthases may have arisen as an adaptation to different cellular needs and the extreme physicochemical conditions in the early history of life.  相似文献   

14.
The low resolution structure of subunit d (Vma6p) of the Saccharomyces cerevisiae V-ATPase was determined from solution X-ray scattering data. The protein is a boxing glove-shaped molecule consisting of two distinct domains, with a width of about 6.5 nm and 3.5 nm, respectively. To understand the importance of the N- and C-termini inside the protein, four truncated forms of subunit d (d 11–345, d 38–345, d 1–328 and d 1–298) and mutant subunit d, with a substitution of Cys329 against Ser, were expressed, and only d 11–345, containing all six cysteine residues was soluble. The structural properties of d depends strongly on the presence of a disulfide bond. Changes in response to disulfide formation have been studied by fluorescence- and CD spectroscopy, and biochemical approaches. Cysteins, involved in disulfide bridges, were analyzed by MALDI-TOF mass spectrometry. Finally, the solution structure of subunit d will be discussed in terms of the topological arrangement of the V1VO ATPase.  相似文献   

15.
The first low-resolution shape of subunit F of the A1AO ATP synthase from the archaeon Methanosarcina mazei Gö1 in solution was determined by small angle X-ray scattering. Independent to the concentration used, the protein is monomeric and has an elongated shape, divided in a main globular part with a length of about 4.5 nm, and a hook-like domain of about 3.0 nm in length. The subunit-subunit interaction of subunit F inside the A1AO ATP synthase in the presence of 1-ethyl-3-(dimethylaminopropyl)-carbodiimide EDC was studied as a function of nucleotide binding, demonstrating movements of subunits F relative to the nucleotide-binding subunit B. Furthermore, in the intact A1AO complex, crosslinking of subunits D-E, A-H and A-B-D was obtained and the peptides, involved, were analyzed by MALDI-TOF mass spectrometry. Based on these data the surface of contact of B-F could be mapped in the high-resolution structure of subunit B of the A1AO ATP synthase.  相似文献   

16.
Archaeal ATP synthase (A-ATPase) is the functional homolog to the ATP synthase found in bacteria, mitochondria and chloroplasts, but the enzyme is structurally more related to the proton-pumping vacuolar ATPase found in the endomembrane system of eukaryotes. We have cloned, overexpressed and characterized the stator-forming subunits E and H of the A-ATPase from the thermoacidophilic Archaeon, Thermoplasma acidophilum. Size exclusion chromatography, CD, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and NMR spectroscopic experiments indicate that both polypeptides have a tendency to form dimers and higher oligomers in solution. However, when expressed together or reconstituted, the two individual polypeptides interact with high affinity to form a stable heterodimer. Analyses by gel filtration chromatography and analytical ultracentrifugation show the heterodimer to have an elongated shape, and the preparation to be monodisperse. Thermal denaturation analyses by CD and differential scanning calorimetry revealed the more cooperative unfolding transitions of the heterodimer in comparison to those of the individual polypeptides. The data are consistent with the EH heterodimer forming the peripheral stalk(s) in the A-ATPase in a fashion analogous to that of the related vacuolar ATPase.  相似文献   

17.
The mitochondrial ATP synthases shares many structural and kinetic properties with bacterial and chloroplast ATP synthases. These enzymes transduce the energy contained in the membrane's electrochemical proton gradients into the energy required for synthesis of high-energy phosphate bonds. The unusual three-fold symmetry of the hydrophilic domain, F1, of all these synthases is striking. Each F1 has three identical subunits and three identical subunits as well as three additional subunits present as single copies. The catalytic site for synthesis is undoubtedly contained in the subunit or an , interface, and thus each enzyme appears to contain three identical catalytic sites. This review summarizes recent isotopic and kinetic evidence in favour of the concept, originally proposed by Boyer and coworkers, that energy from the proton gradient is exerted not directly for the reaction at the catalytic site, but rather to release product from a single catalytic site. A modification of this binding change hypotheses is favored by recent data which suggest that the binding change is due to a positional change in all three subunits relative to the remaining subunits of F1 and F0 and that the vector of rotation is influenced by energy. The positional change, or rotation, appears to be the slow step in the process of catalysis and it is accelerated in all F1F0 ATPases studied by substrate binding and by the proton gradient. However, in the mammalian mitochondrial enzyme, other types of allosteric rate regulation not yet fully elucidated seem important as well.  相似文献   

18.
Vacuolar ATPases (V‐ATPases) are essential proton pumps that acidify the lumen of subcellular organelles in all eukaryotic cells and the extracellular space in some tissues. V‐ATPase activity is regulated by a unique mechanism referred to as reversible disassembly, wherein the soluble catalytic sector, V1, is released from the membrane and its MgATPase activity silenced. The crystal structure of yeast V1 presented here shows that activity silencing involves a large conformational change of subunit H, with its C‐terminal domain rotating ~150° from a position near the membrane in holo V‐ATPase to a position at the bottom of V1 near an open catalytic site. Together with biochemical data, the structure supports a mechanistic model wherein subunit H inhibits ATPase activity by stabilizing an open catalytic site that results in tight binding of inhibitory ADP at another site.  相似文献   

19.
One of the major effects of fluoride on oral bacteria is a reduction in acid tolerance, and presumably also in cariogenicity. The reduction appears to involve transport of protons across the cell membrane by the weak acid HF to dissipate the pH gradient, and also direct inhibition of the F1F0, proton-translocating ATPases of the organisms, especially for Streptococcus mutans. This direct inhibition by fluoride was found to be dependent on aluminum. The dependence on aluminum was indicated by the protection against fluoride inhibition afforded by the Al-chelator deferoxamine and by loss of protection after addition of umolar levels of Al3+, which were not inhibitory for the enzyme in the absence of fluoride. The F1 form of the enzyme dissociated from the cell membrane previously had been found to be resistant to fluoride in comparison with the F1F0 membrane-associated form. However, this difference appeared to depend on less aluminum in the F1 preparation in that the sensitivity of the F1 enzyme to fluoride could be increased by addition of umolar levels of Al3+. The effects of Al on fluoride inhibition were apparent when enzyme activity was assayed in terms of phosphate release from ATP or with an ATP-regenerating system containing phosphoenolpyruvate, pyruvate kinase, NADH and lactic dehydrogenase. Also, Be2+ but not other metal cations, e.g. Co2+, Fe2+, Fe3+, Mn2, Sn2+, and Zn2+, served to sensitize the enzyme to fluoride inhibition. The differences in sensitivities of enzymes isolated from various oral bacteria found previously appeared also to be related to differences in levels of Al. Even the fluoride-resistant enzyme of isolated membranes of Lactobacillus casei ATCC 4646 could be rendered fluoride-sensitive through addition of Al3+. Thus, the F1F0 ATPases of oral bacteria were similar to E1E2 ATPases of eukaryotes in being inhibited by Al-F complexes, and the inhibition presumably involved formation of ADP-Al-F inf3 sup- complexes during catalysis at the active sites of the enzymes.  相似文献   

20.
A critical point in the V1 sector and entire V1VO complex is the interaction of stalk subunits G (Vma10p) and E (Vma4p). Previous work, using precipitation assays, has shown that both subunits form a complex. In this work, we have analysed the N-terminal segment of subunit G (G1–59) of the V1VO ATPase from Saccharomyces cerevisiae by using nuclear magnetic resonance (NMR) spectroscopy. Analyses of 1H-15N heteronuclear single quantum coherence (HSQC) spectra of G1–59 in the absence and presence of the N-terminal peptides E1–18 and E18–38 as well as the produced and purified C-terminal segment (E39–233) shows specific interactions only with the peptide fragment E18–38. The binding of this peptide occurs via the residues M1, V2, S3, and K5 as well for V22, S23, K24, A25 and R26 of G1–59. The specific E18–38/G1–59 binding has been confirmed by fluorescence correlation spectroscopy data. The E18–38 peptide has been studied by CD spectroscopy and NMR. The 3D structure of this peptide adopts a stable helix-hinge-helix formation in solution. A model structure of the E18–38/G1–59 complex reveals the orientation of E18–38 relative to G1–59 via salt-bridges of the polar residues and van der Waals forces at the very N-terminus of both segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号