首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
An accumulation of 3H-labelled inositol phosphates is observed when prelabelled rat superior cervical sympathetic ganglia are exposed to [8-arginine]vasopressin or to muscarinic cholinergic stimuli. The response to vasopressin is much greater than the response to cholinergic stimuli. The response to vasopressin is blocked by a V1-vasopressin antagonist, and oxytocin is a much less potent agonist than vasopressin. Vasopressin causes no increase in the cyclic AMP content of ganglia. These ganglia therefore appear to have functional V1-vasopressin receptors that are capable of activating inositol lipid breakdown, but no V2-receptors coupled to adenylate cyclase. The first [3H]inositol-labelled products to accumulate in stimulated ganglia are inositol trisphosphate and inositol bisphosphate, suggesting that the initiating reaction in stimulated inositol lipid metabolism is a phosphodiesterase-catalysed hydrolysis of phosphatidylinositol 4,5-bisphosphate (and possibly also phosphatidylinositol 4-phosphate). This response to exogenous vasopressin occurs in ganglia incubated in media of reduced Ca2+ concentration. The physiological functions of the V1-vasopressin receptors of these ganglia remain unknown.  相似文献   

2.
When hepatocytes were incubated with [32P]Pi, the kinetics for the labelling of the monoester phosphate groups of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate were similar to each other and slightly slower than that for the labelling of the gamma-phosphate of ATP. Analysis of the water-soluble 3H-labelled materials derived from [3H]inositol-labelled hepatocytes revealed that, in addition to inositol and its mono-, bis- and tris-phosphates (Ins, InsP, InsP2 and InsP3), these cells contained two unidentified radioactive compounds which co-eluted with InsP on anion-exchange chromatography. When [3H]inositol-labelled hepatocytes were stimulated with 0.23 microM-vasopressin in the presence of 10 mM-Li+, there was an accumulation of radioactivity in InsP, InsP2 and InsP3 but not in Ins or the two unidentified compounds. Further analysis of these inositol phosphates by h.p.l.c. revealed that vasopressin also stimulates the accumulation of inositol tetrakisphosphate (InsP4) in these cells. Vasopressin-stimulated InsP and InsP2 accumulations were maximal in the presence of 1-10 mM-Li+ but InsP3 accumulation continued to increase up to 50 mM-Li+. Accumulated inositol phosphates were retained within the cell. Li+ from 1 to 50 mM did not influence the extent of vasopressin-stimulated inositol lipid degradation in hepatocytes. In the absence of Li+, radioactivity in vasopressin-stimulated hepatocytes accumulated almost entirely in free inositol. The vasopressin-stimulated accumulation of inositol phosphates in the presence of 10 mM-Li+ was abolished by a V1-vasopressin antagonist. Inositol phosphate accumulation was not influenced by ionophore A23187, dimethyl sulphoxide or indomethacin.  相似文献   

3.
The role of insulin in modulating phosphoinositide breakdown and accumulation of inositol phosphates was investigated in isolated rat pancreatic islets by using GPAIS (guinea-pig anti-insulin antiserum) that neutralizes effects of insulin in the medium. At either 3.0 mM- or 16.7 mM-glucose or 3.0 mM-glucose plus 10 microM-arecaidine propargyl ester (muscarinic receptor agonist), GPAIS (but not control serum) was able to increase InsP2 and InsP3, but not InsP, in myo-[3H] inositol-prelabelled islets. The effect of GPAIS on 3H incorporation into InsP3 was dose-dependent, with a half-maximal effect at a concentration able to bind 4004 +/- 163 microunits of insulin. A specific mass assay of the biologically relevant isomer Ins (1,4,5)P3 revealed a huge increase (greater than 3-folf). Formation of PtdIns, PtdInsP and PtdInsP2 was not affected by GPAIS. This is indirect evidence for an effect of insulin on inositide metabolism, and therefore endogenously released insulin may have led to an underestimation in earlier studies of effects of insulinotropic substances on inositol phosphate accumulation.  相似文献   

4.
The stimulated hydrolysis of inositol lipids and phosphatidylcholine (PtdCho) by bombesin, [Arg8]vasopressin ([Arg8]Vp) and prostaglandin F2 alpha (PGF2 alpha) was analysed in Swiss 3T3 cells pre-labelled to isotopic equilibrium with either [methyl-3H]choline, myo-[2-3H]inositol or [9,10 (n)-3H]palmitic acid. All three agonists activated the phospholipase D-catalysed hydrolysis of PtdCho as determined by the release of [3H]choline (Cho) and the formation of [3H]phosphatidylbutanol (PtdBut). The release of [3H]choline by each agonist exhibited similar sensitivity to prolonged pre-exposure to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). The release of [3H]choline exhibited the same dose dependency as the production of total inositol phosphates for each mitogen suggesting that the two responses might be mediated through identical receptors. Acute pre-treatment with TPA allowed the dissociation of inositol lipid hydrolysis from PtdCho breakdown, since it inhibited inositol phosphate accumulation but stimulated choline generation. The loss of mitogen stimulated choline release in cells pre-treated with the phorbol ester for 48 h was not due to loss of stimulated inositol phosphate production which was reproducibly enhanced in these 'down-regulated' cells.  相似文献   

5.
WRK 1 cells were labelled to equilibrium with 2-myo-[3H]inositol and stimulated with vasopressin. Within 3 s of hormone stimulation there was a marked accumulation of 3H-labelled InsP2 and InsP3 (inositol bis- and tris-phosphate), but not of InsP (inositol monophosphate). There was an associated, and rapid, depletion of 3H-labelled PtdInsP and PtdInsP2 (phosphatidylinositol mono- and bis-phosphates), but not of PtdIns (phosphatidylinositol), in these cells. Some 4% of the radioactivity in the total inositol lipid pool of WRK 1 cells was recovered in InsP2 and InsP3 after 10 s stimulation with the hormone. The selectivity of the vasopressin receptors of WRK 1 cells for a variety of vasopressin agonists and antagonists revealed these to be of the V1a subtype. There was no receptor reserve for vasopressin-stimulated inositol phosphate accumulation in WRK 1 cells. The accumulation of inositol phosphates was enhanced in the presence of Li+ions. Half-maximal accumulation of InsP, InsP2 and InsP3 in vasopressin-stimulated cells was observed with 0.9, 3.0 and 3.6 mM-Li+ respectively. Bradykinin and 5-hydroxytryptamine also provoked inositol phosphate accumulation in WRK 1 cells. The effects of sub-optimal concentrations of bradykinin and vasopressin upon inositol phosphate accumulation were additive, but those of optimal concentrations of the hormones were not.  相似文献   

6.
Phosphatidylinositol 4,5-bisphosphate has recently gained prominence as the central component of a receptor transduction process which generates inositol 1,4,5-trisphosphate and diacylglycerol in stimulated cells. Both of these products of phospholipid metabolism have intracellular second messenger functions with diacylglycerol formation leading to activation of protein kinase C and inositol 1,4,5-trisphosphate stimulating Ca2+ release from intracellular stores in the endoplasmic reticulum. There is mounting evidence that the phospholipase C which hydrolyses phosphatidylinositol 4,5-bisphosphate is coupled to activated receptors by a guanylnucleotide binding protein, analogous to Ns and Ni which couple stimulatory and inhibitory hormone receptors to adenylate cyclase. Most of the key elements of this signalling mechanism have been found in the nervous system and so too has an entirely novel and unexpected inositol phosphate ester, inositol 1,3,4,5-tetrakisphosphate, whose function is not yet known. Phosphatidylinositol 4,5-bisphosphate breakdown, detected as the accumulation of inositol phosphates in agonist-stimulated nervous tissue preparations, is a functional response that has been useful in assessing the relevance of receptors identified by radioligand binding assays, and which provides an essential link between receptor occupation and responses such as neurotransmitter release and modulation of neuronal excitability.  相似文献   

7.
The turnover of vasopressin-stimulated 32P-phosphoinositides and 32P-phosphatidic acid and accumulation of [2-3H]-inositol phosphates were examined in hepatocytes from rats infused i.v. with saline and E. coli endotoxin for 3 hrs. Within 60s of VP stimulation the decrease in phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate labeling as well as the increased uptake of 32P into phosphatidic acid were similar in both groups. However, at a later time (300s) the 32P-phosphatidylinositol turnover was greatly decreased concomitantly with a higher labeling of phosphatidic acid. The accumulation of [2-3H]-inositol phosphates in ET-cells was significantly decreased both at 30s and 600s after VP addition. The distribution of [2-3H]-inositol labeling accumulated in the different inositol phosphate fractions over the first 30s of VP stimulation showed a tendency to lower accumulation of inositol trisphosphate, and a significantly lower accumulation of inositol bisphosphate simultaneously with a higher labeling of the inositol tetrakisphosphate fraction. These observations reflect an early effect of ET-infusion on VP-stimulated inositol lipid turnover and on the subsequent metabolism of the released inositol phosphates.  相似文献   

8.
Astrocyte-enriched cultures prepared from the newborn rat cortex incorporated [3H]myo-inositol into intracellular free inositol and inositol lipid pools. Noradrenaline and carbachol stimulated the turnover of these pools resulting in an increased accumulation of intracellular [3H]inositol phosphates. The effects of noradrenaline and carbachol were dose-dependent and blocked by specific alpha 1-adrenergic and muscarinic cholinergic receptor antagonists, respectively. The increase in [3H]inositol phosphate accumulation caused by these receptor antagonists was virtually unchanged when cultures were incubated in Ca2+-free medium, but was abolished when EGTA was also present in the Ca2+-free medium. Cultures of meningeal fibroblasts, the major cell type contaminating the astrocyte cultures, also accumulated [3H]myo-inositol, but no increased accumulation of [3H]inositol phosphates was found in response to either noradrenaline or carbachol.  相似文献   

9.
We examined the mechanism by which adenosine inhibits prolactin secretion from GH3 cells, a rat pituitary tumour line. Prolactin release is enhanced by vasoactive intestinal peptide (VIP), which increases cyclic AMP, and by thyrotropin-releasing hormone (TRH), which increases inositol phosphates (IPx). Analogues of adenosine decreased prolactin release, VIP-stimulated cyclic AMP accumulation and TRH-stimulated inositol phospholipid hydrolysis and IPx generation. Inhibition of InsP3 production by R-N6-phenylisopropyladenosine (R-PIA) was rapid (15 s) and was not affected by the addition of forskolin or the removal of external Ca2+. Addition of adenosine deaminase or the potent adenosine-receptor antagonist, BW-A1433U, enhanced the accumulation of cyclic AMP by VIP, indicating that endogenously produced adenosine tonically inhibits adenylate cyclase. The potency order of adenosine analogues for inhibition of cyclic AMP and IPx responses (measured in the presence of adenosine deaminase) was N6-cyclopentyladenosine greater than R-PIA greater than 5'-N-ethylcarboxamidoadenosine. This rank order indicates that inhibitions of both cyclic AMP and InsP3 production are mediated by adenosine A1 receptors. Responses to R-PIA were blocked by BW-A1433U (1 microM) or by pretreatment of cells with pertussis toxin. A greater amount of toxin was required to eliminate the effect of R-PIA on inositol phosphate than on cyclic AMP accumulation. These data indicate that adenosine, in addition to inhibiting cyclic AMP accumulation, decreases IPx production in GH3 cells, possibly by directly inhibiting phosphoinositide hydrolysis.  相似文献   

10.
S Marc  D Leiber    S Harbon 《The Biochemical journal》1988,255(2):705-713
1. In the intact guinea-pig myometrium, carbachol and oxytocin stimulated a specific receptor-mediated phospholipase C activation, catalysing the breakdown of PtdIns(4,5)P2 with the sequential generation of InsP3, InsP2 and InsP. Stimulation of muscarinic receptors also triggered an inhibition of cyclic AMP accumulation caused by prostacyclin. 2. NaF plus AlCl3 mimicked the effects of carbachol and oxytocin by inducing, in a dose-dependent manner, the generation of all three inositol phosphates as well as uterine contractions. AlCl3 enhanced the fluoride effect, supporting the concept that A1F4- was the active species. Under similar conditions, fluoroaluminates activated the guanine nucleotide regulatory protein Gi, reproducing the inhibitory effect of carbachol on cyclic AMP concentrations. 3. Both carbachol- and oxytocin-mediated increases in inositol phosphates, as well as contractions, were insensitive to pertussis toxin, under conditions where the expression of Gi was totally prevented. Cholera toxin, which activates Gs and enhances cyclic AMP accumulation, failed to affect basal or oxytocin-evoked inositol phosphate generation, but induced a slight, though consistent, attenuation of the muscarinic inositol phosphate response, which was similarly evoked by forskolin. 4. The data provide evidence that, in the myometrium, (a) a G protein mediates the generation of inositol phosphates and the Ca2+-dependent contractile event, (b) the relevant G protein that most probably couples muscarinic and oxytocin receptors to phospholipase C is different from Gi and Gs, the proteins that couple receptors to adenylate cyclase, and (c) cyclic AMP does not seem to control the phosphoinositide cycle, but rather exerts a negative regulation at the muscarinic-receptor level.  相似文献   

11.
The metabolic pathway of inositol phospholipids represents a series of synthetic and hydrolytic reactions with inositol as a by-product. Hence, the rate of [3H]inositol release from prelabeled phospholipids can be used as a reflection of activity of this pathway. In the frog sympathetic ganglion prelabeled with [3H]inositol, we studied the effect of synaptic activity (orthodromic stimulation) on release of 3H-label into the medium. This release was interpreted as [3H]inositol release. The value was low at rest and increased significantly by 32% during orthodromic stimulation (20 Hz for 5 min). However, on cessation of the stimulation, [3H]inositol release increased rapidly by 148% and remained elevated for at least 45 min. This increase in [3H]inositol release during and after the stimulation period was reduced by suffusion of the ganglia with adenosine. We hypothesized that synaptic activation releases a long-lasting stimulatory agonist and a short-lasting inhibitory (adenosine) agonist or agonists affecting [3H]inositol release. To demonstrate the presence of a stimulatory agonist, two sympathetic ganglia were used. One was prelabeled with [3H]inositol, and the other was not. The two ganglia were placed together in a 5-microliter droplet of Ringer's solution containing atropine. Orthodromic stimuli applied to the nonlabeled ganglion elicited release of [3H]inositol from the nonstimulated ganglion. To test whether the adenosine formed during orthodromic stimulation inhibits [3H]inositol release, we destroyed endogenous adenosine by suffusion of the ganglia with adenosine deaminase during the stimulation period. We found that adenosine deaminase induced large increases in [3H]inositol release during the stimulation period, in contrast to an increase seen only during the poststimulation period when adenosine deaminase was omitted. Because [3H]inositol release is assumed to parallel changes in content of inositol phosphates, we anticipated no changes of the levels of these compounds during orthodromic stimulation. However, measurements showed that levels of inositol phosphates and inositol phospholipids were all elevated except for phosphatidylinositol 4-phosphate. On termination of the stimulus, they remained elevated, with a further increase in levels of inositol trisphosphate and phosphatidylinositol 4-phosphate. We conclude that endogenous adenosine inhibits [3H]inositol release, possibly by modulating several of the steps of the inositol phospholipid pathway.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
We examined the level of 1,2-diacylglycerol and inositol phosphates in normal and EJ-H-ras-transformed BALB/3T3 fibroblasts by prelabelling the cells with [3H]glycerol, [3H]inositol, [14C]glucose, [14C]arachidonic acid, and [14C]palmitic acid. Steady-state level of inositol phosphates, however, was the same in control and transformed cells. Diacyglycerol labelling by [14C]arachidonic acid was the same in control and transformed cells. Insulin dramatically increased diacylglycerol labeling by [14C]glucose in normal cells, whereas it did not affect ras-transformed fibroblasts. Neurotransmitter-induced inositol lipid turnover was greatly enhanced in ras-transformed cells; conversely, platelet-derived growth factor and thrombin-stimulated normal cells to a greater extent than transformed fibroblasts. Taken together these results suggest that ras transformation may induce multifarious effects on signal transduction: it may cause de novo synthesis of diacylglycerol and subversion of neurotransmitter and growth factor receptor coupling to inositol lipid metabolism.  相似文献   

14.
The relationship between occupancy of thrombin receptors on platelets and enhanced phosphoinositide hydrolysis was analysed by examination of the dose-response relationship, the effects of thrombin inhibitors and the contribution of secondary effects. Washed human platelets were labelled with [3H]inositol, and agonist-induced accumulation of labelled inositol phosphates was measured. The dose-response curves and the time courses for alpha-thrombin- or gamma-thrombin-induced accumulation of inositol phosphates were similar to those for dense-granule secretion. Addition of the thrombin inhibitor hirudin to thrombin-activated platelets revealed that the continuous presence of active thrombin was required to maintain the accumulation of labelled inositol phosphates; the total production of inositol phosphates increased with longer periods of exposure to thrombin, reaching a maximum between 5 and 10 min. After activation with thrombin, the ability of a second, greater, addition of thrombin to induce additional phosphoinositide hydrolysis decreased with time; it was absent within 10 min after the first addition. The failure to sustain accumulation of labelled inositol phosphates or to respond to a second addition of thrombin beyond 10 min was not due to depletion of the pool of labelled precursors, because the platelets retained their ability to respond to collagen. Addition of ADP-consuming enzymes decreased sensitivity to thrombin, but inhibition of cyclo-oxygenase with indomethacin did not impair the thrombin-induced hydrolysis of phosphoinositides. It was concluded that thrombin-induced hydrolysis of phosphoinositides has characteristics consistent with mediation by a receptor that is similar to that that triggers dense-granule secretion, requires continuous presence of active thrombin to be maintained, is mediated by a receptor that displays thrombin-induced desensitization, and is only partially enhanced by secondary agents.  相似文献   

15.
The two mammalian neuropeptides substance P (SP) and neurokinin A (NKA) have been demonstrated to stimulate DNA synthesis in connective tissue cells, suggesting that peripheral neurons may play a role in development and tissue regeneration. In this study we have tried to identify intracellular messengers required for SP- and NKA-induced DNA synthesis. SP and NKA, as well as platelet-derived growth factor (PDGF) stimulated formation of inositol phosphates in smooth muscle cells (SMC), whereas no effect on inositol phosphates formation occurred in response to nonmitogenic neuropeptides. Pretreatment of the cells with pertussis toxin markedly decreased DNA synthesis induced by NKA. This toxin inhibits formation of inositol phosphates by acting on a regulatory G-protein. Calcium and calmodulin antagonists also inhibited NKA-induced DNA synthesis. These results imply that the mitogenic signal(s) produced by activated neuropeptide receptors involves formation of inositol phosphate and activation of a calcium/calmodulin dependent process. We further report that other neuropeptides occurring in peripheral neurons, i.e., vasoactive intestinal polypeptide, calcitonin gene-related peptide, neuropeptide Y, somatostatin, or cholecystokinin, are without growth-stimulatory effect on cultured SMC.  相似文献   

16.
The effects of in vivo electrical stimulation of the sympathetic nerve of the eye on phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis in rabbit iris and release of arachidonate and prostaglandin (PG) E2 into aqueous humor were investigated. myo-[3H]Inositol or [1-14C]arachidonate was injected intracamerally into each eye 3 h before electrical stimulation of one of the sympathetic trunks. Tissue phosphoinositides were determined by TLC, and 3H-labeled inositol phosphates were analyzed by either ion-exchange chromatography or HPLC. The aqueous humor was analyzed for 14C-labeled arachidonate and PGE2 by radiochromatography and for unlabeled PGE2 by radioimmunoassay. The results obtained from this study can be summarized as follows: (a) The rates of in vivo incorporation of myo-[3H]inositol into phosphoinositides and accumulation of 3H-labeled inositol phosphates in the iris muscle increased with time and then leveled off between 3 and 5 h. (b) Distribution of 3H radioactivity in inositol phosphates, as determined by HPLC, showed that of the total radioactivity in inositol phosphates, 53.6% was recovered in myo-inositol 1-phosphate, 36% in myo-inositol bisphosphate, 0.95% in myo-inositol 1,3,4-trisphosphate (1,3,4-IP3), and 2.6% in 1,4,5-IP3. (c) Electrical stimulation of the sympathetic nerve resulted in a significant loss of 3H radioactivity from PIP2 and a concomitant increase of that in IP3, an observation indicating that PIP2 is the physiological substrate for alpha 1-adrenergic receptors in this tissue. (d) Release of IP3 and liberation of arachidonate for PGE2 synthesis are dependent on the duration of stimulation and the intensity (voltage) of stimulus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effect of adenosine on phosphoinositide hydrolysis was examined in 1321N1 human astrocytoma cells. Adenosine, L-N6-phenylisopropyladenosine (L-PIA), and 5'-(N-ethylcarboxamido)adenosine (NECA) inhibited histamine-stimulated accumulation of inositol phosphates in a concentration-dependent manner. The potency order of adenosine analogues for inhibition of inositol phosphate accumulation was L-PIA greater than adenosine greater than NECA, a finding indicating that A1-class adenosine receptors are involved in the inhibition. The reduction in inositol phosphate accumulation by L-PIA was blocked by an adenosine receptor antagonist, 8-phenyltheophylline. Stimulation of A1-class adenosine receptors inhibited isoproterenol-stimulated cyclic AMP accumulation as well as histamine-induced inositol phosphate accumulation. Both inhibitory effects were blocked by pretreatment of the cells with pertussis toxin [islet-activating protein (IAP)]. L-PIA also inhibited guanosine 5'-(gamma-thio)triphosphate (GTP gamma S)-stimulated accumulation of inositol phosphates in membrane preparations, and 8-phenyl-theophylline antagonized the inhibition. L-PIA could not inhibit GTP gamma S-induced accumulation of inositol phosphates in IAP-treated membranes. Gi/Go, purified from rabbit brain, inhibited GTP gamma S-stimulated accumulation of inositol phosphates in a concentration-dependent manner in membrane preparations. These results suggest that stimulation of A1-class adenosine receptors interacts with the IAP-sensitive G protein(s), resulting in the inhibitions of phospholipase C as well as adenylate cyclase in human astrocytoma cells.  相似文献   

18.
Muscarinic-receptor stimulation by 0.1 mM-carbachol in longitudinal muscle of the guinea-pig ileum increases the incorporation of [3H]inositol into inositol-containing phospholipid. This effect was blocked by 16 microM-atropine. After 60 min incubation, carbachol increased the accumulation of total inositol phosphates 20-fold in the presence of 10 mM-Li+. Less than 20% of the total inositol phosphate corresponded to inositol 1-phosphate by ion-exchange chromatography, whereas of the remainder about two-thirds corresponded to inositol bisphosphate and one third to inositol trisphosphate. It is concluded that stimulation of muscarinic receptors in guinea-pig ileum enhances breakdown of polyphosphoinositides, suggesting that this may be a primary event associated with Ca2+ mobilization in the guinea-pig ileum.  相似文献   

19.
The accumulation of inositol phosphates in myo-[3H]inositol-labelled human neutrophils stimulated with the chemotactic peptide fMet-Leu-Phe was measured. The challenge with the chemotactic peptide caused the generation of inositol monophosphate (InsP), inositol bisphosphate (InsP2) and inositol trisphosphate (InsP3). The formation of the three inositol phosphates followed a differential time course: InsP3 accumulated very rapidly and transiently, whereas InsP increased steadily for more than 2 min. Inositol phosphate formation was only partially decreased by procedures which prevented the fMet-Leu-Phe-dependent increase of cytosolic free Ca2+ concentration.  相似文献   

20.
Calcitonin gene-related peptide (CGRP) has previously been shown to coexist with acetylcholine in spinal cord motoneurons and to stimulate adenylate cyclase in skeletal muscle cells. We now demonstrate that in cultured chick myotubes whose phosphoinositides have been labeled with [3H]inositol, CGRP enhanced the accumulation of [3H]inositol mono-, bis-, and trisphosphates. Rat CGRP-I (rCGRP) (0.1 microM) elicited a transient increase in [3H]inositol 1,4,5-trisphosphate, as well as a more sustained elevation of [3H]inositol 1,3,4-trisphosphate levels. In the presence of Li+, rCGRP evoked an approximately 3-fold increase of [3H]inositol monophosphate levels, which persisted for up to 1 h. This effect of rCGRP was concentration-dependent, the half-maximal response being obtained at 1 nM. Since rCGRP also accelerated the rate of synthesis of [3H]inositol-containing lipids, it appears that the peptide acts by stimulating phosphoinositide turnover in chick myotubes. Agents that either mimic or elevate intracellular cyclic AMP also enhanced the synthesis of [3H]inositol-containing lipids, and the accumulation of inositol phosphates, suggesting that the effects of rCGRP are mediated, at least in part, via the activation of adenylate cyclase. This hypothesis was strengthened by the non-additivity of the inositol phosphate responses elicited by rCGRP and other cAMP-mobilizing agents, and by the sensitivity of these responses to various pharmacological treatments. The present results provide an example of positive interaction between cAMP and the phosphoinositide signaling system. They further suggest that a coexisting neuropeptide may exert pleiotropic actions upon its target cell by stimulating multiple signal transduction pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号