首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Aqueous extracts of cigarette tar produce hydroxyl radicals that are spin trapped by 5,5-dimethyl-1-pyrroline-N-oxide. The addition of catalase almost completely inhibits and superoxide dismutase partially inhibits spin adduct formation. The addition of ethylenediamine tetraacetic acid greatly increases the amount of hydroxyl radical adduct observed; in contrast, diethylenetriamine pentaacetic acid causes complete inhibition of spin adduct formation. We suggest that the hydroxyl radical arises from the metal-mediated decomposition of hydrogen peroxide, and that hydrogen peroxide is formed from the reduction of dioxygen by the semiquinones present in the cigarette tar.  相似文献   

2.
This review compares and contrasts the chemistry of cigarette smoke, wood smoke, and the smoke from plastics and building materials that is inhaled by persons trapped in fires. Cigarette smoke produces cancer, emphysema, and other diseases after a delay of years. Acute exposure to smoke in a fire can produce a loss of lung function and death after a delay of days or weeks. Tobacco smoke and the smoke inhaled in a burning building have some similarities from a chemical viewpoint. For example, both contain high concentrations of CO and other combustion products. In addition, both contain high concentrations of free radicals, and our laboratory has studied these free radicals, largely by electron spin resonance (ESR) methods, for about 15 years. This article reviews what is known about the radicals present in these different types of smokes and soots and tars and summarizes the evidence that suggests these radicals could be involved in cigarette-induced pathology and smoke-inhalation deaths. The combustion of all organic materials produces radicals, but (with the exception of the smoke from perfluoropolymers) the radicals that are detected by ESR methods (and thus the radicals that would reach the lungs) are not those that arise in the combustion process. Rather they arise from chemical reactions that occur in the smoke itself. Thus, a knowledge of the chemistry of the smoke is necessary to understand the nature of the radicals formed. Even materials as similar as cigarettes and wood (cellulose) produce smoke that contains radicals with very different lifetimes and chemical characteristics, and mechanistic rationales for this are discussed. Cigarette tar contains a semiquinone radical that is infinitely stable and can be directly observed by ESR. Aqueous extracts of cigarette tar, which contain this radical, reduce oxygen to superoxide and thus produce both hydrogen peroxide and the hydroxyl radical. These solutions both oxidize alpha-1-proteinase inhibitor (a1PI) and nick DNA. Because of the potential role of radicals in smoke-inhalation injury, we suggest that antioxidant therapy (such as use of an inhaler for persons brought out of a burning building) might prove efficacious.  相似文献   

3.
One-electron reduction of diaziquone (AZQ) by purified rat liver NADPH cytochrome c reductase was associated with formation of AZQ semiquinone, superoxide anions, hydrogen peroxide, and hydroxyl radicals as indicated by ESR spin-trapping studies. Reactive oxygen formation correlated with AZQ-dependent production of single and double PM2 plasmid DNA strand breaks mediated by this system as detected by gel electrophoresis. Direct two-electron reduction of AZQ by purified rat liver NAD(P)H (quinone acceptor) oxidoreductase (QAO) was also associated with formation of AZQ semiquinone, superoxide anions, hydrogen peroxide, and hydroxyl radicals as detected by ESR spin trapping. Furthermore, PM2 plasmid DNA strand breaks were detected in the presence of this system. Plasmid DNA strand breakage was inhibited by dicumarol (49 +/- 5%), catalase (57 +/- 2.3%), SOD (42.2 +/- 3.6%) and ethanol (41.1 +/- 3.9%) showing QAO and reactive oxygen formation was involved in the PM2 plasmid DNA strand breaks observed. These results show that both one- and two-electron enzymatic reduction of AZQ give rise to formation of reactive oxygen species and DNA strand breaks. Autoxidation of the AZQ semiquinone and hydroquinone in the presence of molecular oxygen appears to be responsible for these processes. QAO appears to be involved in the metabolic activation of AZQ to free radical species. The cellular levels and distribution of this enzyme may play an important role in the response of tumor and normal cells to this antitumor agent.  相似文献   

4.
Acetonitrile extracts of cigarette tar inhibit state 3 and state 4 respiration of intact mitochondria. Exposure of respiring submitochondrial particles to acetonitrile extracts of cigarette tar results in a dose-dependent inhibition of oxygen consumption and reduced nicotinamide adenine dinucleotide (NADH) oxidation. This inhibition was not due to a solvent effect since acetonitrile alone did not alter oxygen consumption or NADH oxidation. Intact mitochondria are less sensitive to extracts of tar than submitochondrial particles. The NADH-ubiquinone (Q) reductase complex is more sensitive to inhibition by tar extract than the succinate-Q reductase and cytochrome complexes. Nicotine or catechol did not inhibit respiration of intact mitochondria. Treatment of submitochondrial particles with cigarette tar results in the formation of hydroxyl radicals, detected by electron spin resonance (ESR) spin trapping. The ESR signal attributable to the hydroxyl radical spin adduct requires the presence of NADH and is completely abolished by catalase and to a lesser extent superoxide dismutase (SOD). Catalase and SOD did not protect the mitochondrial respiratory chain from inhibition by tar extract, indicating that the radicals detected by ESR spin trapping are not responsible for the inhibition of the electron transport. We propose that tar causes at least two effects: (1) Tar components interact with the electron transport chain and inhibit electron flow, and (2) tar components interact with the electron transport chain, ultimately to form hydroxyl radicals.  相似文献   

5.
This study demonstrates the ability of cigarette smoke condensate to generate hydrogen peroxide and to hydroxylate deoxyguanosine (dG) residues in isolated DNA to 8-hydroxydeoxyguanosine (8-OHdG). Both the formation of hydrogen peroxide and that of 8-OHdG in DNA was significantly decreased when catalase or tyrosinase was added to the smoke condensates, and this also occurred when pure hydroquinone or catechol, two major constitutes in cigarette smoke, was used instead of smoke condensate. Moreover, pure hydroquinone and catechol both caused dose-dependent formation of hydrogen peroxide and 8-OHdG, and there was good correlation between the amounts of hydrogen peroxide and 8-OHdG formed. These findings suggest that (i) hydroquinone and catechol may be responsible for the ability of cigarette smoke to cause 8-OHdG formation in DNA, (ii) this oxidative DNA-damage is due to the action of hydroxyl radicals formed during dissociation of hydrogen peroxide and (iii) the hydrogen peroxide in cigarette smoke is generated via autooxidation of hydroquinone and catechol.  相似文献   

6.
The present investigation was made to evaluate biologically relevant quinones as possible catalysts in the generation of hydroxyl radicals from hydrogen peroxide and superoxide radicals. ESR spectra demonstrated that menadione, plastoquinone, and ubiquinone derivatives could all be reduced to their semiquinone forms by electron transfer from superoxide radicals. Reductive homolytic cleavage of H2O2 was observed to be dependent upon the presence of semiquinones in the reaction medium. Our data strongly support the concept that quinones normally involved in physiological processes may also play a role as catalysts of the Haber-Weiss reaction in the biological generation of hydroxyl radicals.  相似文献   

7.
Cigarette smoke can cause DNA single strand breaks in cultured human lung cells (T. Nakayama et al., Nature, 314 (1985) 462-464) but the mechanisms behind this DNA damage have not been clearly elucidated. In the present study we have investigated the possibility that one of the major constituents in cigarette smoke, hydroquinone, may be important for mediating smoke-induced DNA damage in the human epithelial lung cell line, A 549, and the mechanisms behind this damage. Cells were exposed to cigarette smoke, hydrogen peroxide, or hydroquinone, in the absence and presence of different inhibitors, and the resulting DNA damage was assessed either as DNA single strand break formation or formation of the oxidative DNA adduct, 8-hydroxydeoxyguanosine. It was found that (i) exposure to cigarette smoke, hydrogen peroxide or hydroquinone causes a rapid decrease in the intracellular thiol level and a considerable DNA single strand break formation, (ii) the formation of DNA single strand breaks in cells exposed to cigarette smoke is inhibited by catalase, dimethylthiourea, and o-phenantroline, suggesting that hydroxyl radicals generated from iron-catalyzed hydrogen peroxide dissociation are involved in the DNA damage, (iii) hydroquinone causes considerable DNA strand break formation that is blocked by aurintricarboxylic acid, an inhibitor of endonuclease activation, and by BAPTA, an intracellular calcium chelator, (iv) addition of hydroquinone to a smoke condensate greatly enhances its ability to cause DNA single strand breaks, and (v) smoke, but not hydroquinone, causes formation of 8-hydroxydeoxyguanosine, a DNA damage product induced by the action of hydroxyl radicals on the DNA base, deoxyguanosine. These findings suggest that the ability of cigarette smoke to cause DNA single strand breaks in cultured lung cells is due to mechanisms involving hydroxyl radical attack on DNA and endonuclease activation. They also suggest that hydroquinone is an important contributor to the DNA damaging effect of cigarette smoke on human lung cells.  相似文献   

8.
Since superoxide radicals are involved in many metabolically important as well as in some other, detrimental cellular processes, the reactivity of gamma-ray-induced superoxide radicals and its dismutation products singlet molecular oxygen and hydrogen peroxide with DNA have been studied. Superoxide dismutase which removes superoxide radicals and inhibits the formation of singlet oxygen in the solution protects the biologically active replicative form of DNA (from bacteriophage theta X174) against inactivation by ionizing radiation. Catalase which removes hydrogen peroxide also protects the DNA. Attempts with various chemical sources of singlet oxygen to determine whether this species inactivates DNA did not give an unequivocal answer. It is concluded from the presented experiments that a combination of the protonated form of the superoxide radical (HO-2) and H2O2 do inactivate DNA.  相似文献   

9.
R J Lorentzen  P O Ts'o 《Biochemistry》1977,16(7):1467-1473
The ability of the isomeric quinone metabolites of benzo[a]pyrene, benzo[a]pyrene-6,12-dione, benzo[a]pyrene-1,6-dione, and benzo[a]pyrene-3,6-dione to undergo reversible, univalent oxidation-reduction cycles involving the corresponding benzo[a]pyrenediols and intermediate semiquinone radicals has been characterized. Under anaerobic conditions, all three benzo[a]pyrenediones are easily reduced to benzo[a]pyrenediols, even by mild biological agents such as NAD(P)H, cysteamine, and glutathione. The benzo[a]pyrenediols, in turn, are very rapidly autoxidized to the benzo[a]pyrenediones when exposed to air. Substantial amounts of hydrogen peroxide are produced during these autoxidations, and other reactive reduced oxygen species, such as the superoxide and hydroxyl radicals, are probably formed transiently as well. The benzo[a]pyrenediol-benzo[a]pyrenedione interconversions proceed by one-electron steps; the corresponsing semiquinone radicals can be monitored by electron spin resonance spectroscopy as inter mediates during these reactions carried out at high pH. Benzo[a]pyrenediones induce DNA strand scission when incubated with bacteriophage T7 DNA. This damage is modified by conditions which indicate that reduced oxygen species propagate the free-radical reactions responsible for the strand scission. Benzo[a]pyrenediones are electron-acceptor substrates for NADH dehydrogenase from Clostridium kluyveri. Catalytic amounds of these benzo[a]pyrene metabolites, together with this respiratory enzyme function as cyclic oxidation-reduction couples which link NADH and molecular oxygen in the continuous production of hydrogen peroxide. These data, together with preliminary results with cells in culture, indicate that benzo[a]pyrenediones are potentially harmful metabolites of benzo[a]pyrene, acting by processes which lead to their regeneration rather than depletion; nucleic acid and call damage is probably produced by the reactive reduced oxygen species resulting from such regenerative oxidation-reduction cycles.  相似文献   

10.
《Free radical research》2013,47(3-6):143-148
Iron plays a central role in oxidative injury, reportedly because it catalyzes superoxide- and hydrogen peroxide-dependent reactions yielding a powerful oxidant such as the hydroxyl radical. Iron is also thought to mediate the cardiotoxic and antitumour effects of adriamycin and related compounds. NADPH-supplemented microsomes reduce adriamycin to a semiquinone radical, which in turn re-oxidizes in the presence of oxygen to form superoxide and hence hydrogen peroxide. During this redox cycling membrane-bound nonheme iron undergoes superoxide dismutase- and catalase-insensitive reductive release. Membrane iron mobilization triggers lipid peroxidation, which is markedly enhanced by simultaneous addition of superoxide dismutase and catalase. The results indicate that : i) lipid peroxidation is mediated by the release of iron, yet the two reactions are governed by different mechanisms; and ii) oxygen radicals are not involved in or may actually inhibit adriamycin-induced lipid peroxidation. Microsomal iron delocalization and lipid peroxidation might represent oxyradical-independent mechanisms of adriamycin toxicity.  相似文献   

11.
We have established, for the first time, a reliable method to quantitate hydrogen peroxide (H2O2) generated in aqueous extracts of cigarette smoke tar. The aqueous tar extract was passed through a short reverse-phase column and its H2O2 concentration determined by differential pulse polarography using an automatic reference subtraction system. The H2O2 concentration increased with aging, pH and temperature; the presence of superoxide dismutase lead to lower H2O2 concentrations. This method was applied to many kinds of research and commercial cigarettes. With a few exceptions, the amount of H2O2 formed after a fixed time from each cigarette smoke was proportional to its tar yield.  相似文献   

12.
Reactive oxygen species (ROS) are produced by a wide variety of chemicals and physiological processes in which enzymes catalyse the transfer of electrons from a substrate to molecular oxygen. The immediate products of such reactions, superoxide anion radicals and hydrogen peroxide can be metabolised by enzymes such as superoxide dismutase (SOD) and catalase (CAT), respectively, and depending on its concentration by Vitamin C (Vit C). Under certain circumstances the ROS form highly reactive hydroxyl radicals. We examined human sperm and lymphocytes after treatment with six oestrogenic compounds in the Comet assay, which measures DNA damage, and observed that all caused damage in both cell types. The damage was diminished in nearly all cases by catalase, and in some instances by SOD and Vit C. This response pattern was also seen with hydrogen peroxide. This similarity suggests that the oestrogen-mediated effects could be acting via the production of hydrogen peroxide since catalase always markedly reduced the response. The variable responses with SOD indicate a lesser involvement of superoxide anion radicals due to SOD-mediated conversion of superoxide to hydrogen peroxide generally causing a lower level of DNA damage than other ROS. The variable Vit C responses are explained by a reduction of hydrogen peroxide at low Vit C concentrations and a pro-oxidant activity at higher concentrations. Together these data provide evidence that inappropriate exposure to oestrogenic compounds could lead to free-radical mediated damage. It is believed that the observed activities were not generated by cell free cell culture conditions because increased responses were observed over and above control values when the compounds were added, and also increasing dose-response relationships have been found after treatment with such oestrogenic compounds in previously reported studies.  相似文献   

13.
During autoxidation of 1,4-hydroquinone (H2Q, less than 1 mM) at pH 7.4 and 37 degrees C, stoichiometric amounts of 1,4-benzoquinone (Q) and hydrogen peroxide were formed during the initial reaction. The reaction kinetics showed a significant induction period which was abolished by minute amounts of Q. Hydrogen peroxide and catalase were without effect on the autoxidation process. Transition metals apparently were not involved, since chelators like EDTA, DETAPAC, and desferrioxamine or FeSO4 had no influence on the autoxidation kinetics. Superoxide dismutase (SOD) did not abolish the induction period but dramatically enhanced the autoxidation rate by more than two orders of magnitude. The stimulatory effect was first-order in SOD concentration but showed saturation kinetics. The dependence of Q and hydrogen peroxide formation rates on H2Q concentration shows a biphasic behaviour: dependence on the square at low H2Q, but on the square root at high H2Q concentration. As revealed by calculatory simulations the results can be adequately described by the known reaction rate constants. The reaction starts with the comproportionation of H2Q and Q to yield two semiquinone molecules which autoxidize to give two superoxide radicals and two molecules of Q which enter into a new cycle of comproportionation. Because of unfavourable equilibria the autocatalytic reaction soon comes to steady state, and the further reaction is governed by the rate of superoxide removal. At excess SOD, the comproportionation reaction is rate-limiting, thus explaining the saturation effects of SOD. The experiments do not allow a decision between the two functions of SOD; the conventional action as a superoxide:superoxide oxidoreductase or as a semiquinone:superoxide oxidoreductase. In the latter reaction SOD is thought to be reduced by semiquinone with Q formation. In the second step the reduced enzyme would be re-oxidized by a superoxide radical which is formed during autoxidation of the second semiquinone molecule generated in the comproportionation reaction. From thermodynamic considerations, the latter function of SOD appears to be plausible.  相似文献   

14.
Catecholamine neurotransmitters such as norepinephrine, dopamine, and related catecholamine derivatives reduce nitroheterocyclic drugs such as nitrofurantoin, nifurtimox, nifuroxime, nitrofurazone, misonidazole, and metronidazole in slightly alkaline solutions. Drugs which contain 5-nitrofurans are reduced at lower pH than drugs which contain 2- and 5-nitroimidazoles. 5-Nitroimidazole derivatives such as metronidazole and ronidazole are known to be more difficult to reduce than 2-nitroimidazole derivatives, due to their lower redox potential. Catecholamines, when reducing nitro drugs, undergo concomitant oxidation to form semiquinone radicals. Both semiquinone radicals and nitro anion radicals formed in a reaction of nitro drug and catecholamine derivative were detected by electron spin resonance spectroscopy. Oxygen consumption studies in solutions containing nitro drug and catecholamine derivative showed that nitro anion radicals formed under aerobic conditions reduce oxygen to form the superoxide radical and hydrogen peroxide. Quinones formed in the reaction of catecholamine and nitro drug were detected by optical spectroscopy. Biosynthetic precursors and some metabolic products of catecholamines were also used in these studies, and they all exhibited reactions similar to catecholamines. Bovine chromaffin granules which synthesize and store catecholamines produced the nitrofurantoin anion radical when intact granules were treated with nitrofurantoin. These radicals formed inside the granules were observed by ESR spectroscopy. The formation of nitrofurantoin radical, semiquinone radicals of catecholamines, and oxygen-derived radicals by chromaffin granules is proposed to cause damage to adrenal medulla, and this process may lead to neurotoxicity.  相似文献   

15.
Anaerobic reduction of hydrogen peroxide in a xanthine/xanthine oxidase system by adriamycin semiquinone in the presence of chelators and radical scavengers was investigated by direct electron paramagnetic resonance and spin trapping techniques. Under these conditions, adriamycin semiquinone appears to react with hydrogen peroxide forming the hydroxyl radical in the presence of chelators such as ethylenediaminetetraacetic acid and diethylenetriaminepentaacetic acid. In the absence of chelators, a related, but unknown oxidant is formed. In the presence of desferrioxamine, adriamycin semiquinone does not disappear in the presence of hydrogen peroxide at a detectable rate. The presence of adventitious iron is therefore implicated during adriamycin semiquinone-catalyzed reduction of hydrogen peroxide. Formation of alpha-hydroxyethyl radical and carbon dioxide radical anion from ethanol and formate, respectively, was detected by spin trapping. Both the hydroxyl radical and the related oxidant react with these scavengers, forming the corresponding radical. In the presence of scavengers from which reducing radicals are formed, the rate of consumption of hydrogen peroxide in this system is increased. This result can be explained by a radical-driven Fenton reaction.  相似文献   

16.
The formation of reactive oxygen intermediates (ROI) during redox cycling of newly synthesized potential antitumor 2,5-bis (1-aziridinyl)-1,4-benzoquinone (BABQ) derivatives has been studied by assaying the production of ROI (superoxide, hydroxyl radical, and hydrogen peroxide) by xanthine oxidase in the presence of BABQ derivatives. At low concentrations (< 10 microM) some BABQ derivatives turned out to inhibit the production of superoxide and hydroxyl radicals by xanthine oxidase, while the effect on the xanthine-oxidase-induced production of hydrogen peroxide was much less pronounced. Induction of DNA strand breaks by reactive oxygen species generated by xanthine oxidase was also inhibited by BABQ derivatives. The DNA damage was comparable to the amount of hydroxyl radicals produced. The inhibiting effect on hydroxyl radical production can be explained as a consequence of the lowered level of superoxide, which disrupts the Haber-Weiss reaction sequence. The inhibitory effect of BABQ derivatives on superoxide formation correlated with their one-electron reduction potentials: BABQ derivatives with a high reduction potential scavenge superoxide anion radicals produced by xanthine oxidase, leading to reduced BABQ species and production of hydrogen peroxide from reoxidation of reduced BABQ. This study, using a unique series of BABQ derivatives with an extended range of reduction potentials, demonstrates that the formation of superoxide and hydroxyl radicals by bioreductively activated antitumor quinones can in principle be uncoupled from alkylating activity.  相似文献   

17.
Free radicals are well-established transient intermediates in chemical and biological processes. Singlet oxygen, though not a free radical, is also a fairly common reactive chemical species. It is rare that singlet oxygen is studied with the electron spin resonance (ESR) technique in biological systems, because there are few suitable detecting agents. We have recently researched some semiquinone radicals. Specifically, our focus has been on bipyrazole derivatives, which slowly convert to semiquinone radicals in DMSO solution in the presence of potassium tert-butoxide and oxygen. These bipyrazole derivatives are dimers of 3-methyl-1-phenyl-2-pyrazolin-5-one and have anti-ischemic activities and free radical scavenging properties. In this work, we synthesized a new bipyrazole derivative, 4,4'-bis(1p-carboxyphenyl-3-methyl-5-hydroxyl)-pyrazole, DRD156. The resulting semiquinone radical, formed by reaction with singlet oxygen, was characterized by ESR spectroscopy. DRD156 gave no ESR signals from hydroxyl radical, superoxide, and hydrogen peroxide. DRD156, though, gives an ESR response with hypochlorite. This agent, nevertheless, has a much higher ability to detect singlet oxygen than traditional agents with the ESR technique.  相似文献   

18.
S Minamisawa  E Komuro  E Niki 《Life sciences》1990,47(24):2207-2215
Cigarette smoke has been found to induce the hemolysis of rabbit erythrocytes. The particulate phase had more profound effect than the gas phase. Neither free radical scavengers such as ascorbic acid, uric acid and water-soluble vitamin E analogue nor antioxidant enzymes such as catalase and superoxide dismutase suppressed the cigarette smoke-induced hemolysis, suggesting that free radicals, hydrogen peroxide, and superoxide were not the active species.  相似文献   

19.
Cigarette smoke induces a multitude of bulky/aromatic DNA adducts in vivo as revealed by 32P-postlabeling assay. The formation of such adducts is thought to involve metabolic activation of aromatic chemicals especially polycyclic aromatic hydrocarbons (PAHs) present in tumor-initiating cigarette tar fractions, via cytochrome P450-associated monooxygenases. Because radicals are present in both the gas and particulate (tar) phase of cigarette smoke and in aqueous extracts of cigarette smoke condensate (CSC), we addressed the question as to whether cytochrome P450-independent, possibly free radical-mediated reactions may contribute, also, to formation of cigarette smoke-associated bulky DNA adducts. Rat-lung DNA was incubated with aqueous extracts of CSC in the absence of microsomes under various conditions and analyzed by 32P-postlabeling. Radioactively labeled bulky reaction products were found to accumulate in a time- and CSC concentration-dependent manner. The resulting chromatographic profiles resembled cigarette smoke-associated DNA-adduct patterns observed in vivo. Pretreatment of aqueous CSC extract with radical scavengers/reducing agents (ascorbic acid, glutathione) diminished adduct formation in a concentration-dependent manner. Adduct formation in vitro may involve oxygen-free radicals, which are known to be present in aqueous CSC extracts and could (i) attack DNA directly to produce bulky adducts, (ii) induce radical sites on DNA covalently binding CSC components, or (iii) convert CSC components to DNA-reactive electrophiles. In addition, DNA may react with direct-acting mutagens in CSC. Adduct fractions derived from in vitro and in vivo experiments showed similar chromatographic behavior, suggesting that metabolic activation as well as processes not involving metabolism lead to formation of smoking-induced bulky DNA adducts in vivo.  相似文献   

20.
Aqueous cigarette tar extracts damage human alpha-1-proteinase inhibitor   总被引:3,自引:0,他引:3  
The elastase inhibitory capacity (EIC) of human alpha-1-proteinase inhibitor (alpha 1PI) is severely compromised by aqueous cigarette tar extract (ACTE). An aqueous extract of the tar from two cigarettes causes a loss of EIC of at least 60% in 24 h at 37 degrees C (pH 7.4) and the damaging capability of the ACTE is retained for many hours. Hydrogen peroxide appears to be an essential component of the mechanism by which ACTE damages alpha 1 PI, since catalase substantially protects alpha 1PI from ACTE-mediated damage. Only mild protection is offered by 10 mM diethylenetriamine pentaacetic acid, indicating only a minor role for transition metal ions in the alpha 1PI-damaging process. Hydroxyl radicals are unlikely agents of alpha 1PI damage in the ACTE system, as judged from hydroxyl radical scavenger studies. Ascorbate and various thiols offer protection to different degrees, dependent on the incubation conditions. Of several amino acids tested, cysteine and methionine (but not methionine sulfoxide) are the only two that protect alpha 1PI. We suggest that components of cigarette smoke particulate matter extracted into the aqueous lung fluid environment may cause local deficiencies in alpha 1PI in smokers' lungs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号