首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SNARE protein trafficking in polarized MDCK cells   总被引:3,自引:0,他引:3  
A key feature of polarized epithelial cells is the ability to maintain the specific biochemical composition of the apical and basolateral plasma membrane domains. This polarity is generated and maintained by the continuous sorting of apical and basolateral components in the secretory and endocytic pathways. Soluble N-ethyl maleimide-sensitive factor attachment protein receptors (SNARE) proteins of vesicle-associated membrane protein (VAMP) and syntaxin families have been suggested to play a role in the biosynthetic transport to the apical and basolateral plasma membranes of polarized cells, where they likely mediate membrane fusion. To investigate the involvement of SNARE proteins in membrane trafficking to the apical and basolateral plasma membrane in the endocytic pathway we have monitored the recycling of various VAMP and syntaxin molecules between intracellular compartments and the two plasma membrane domains in Madin–Darby canine kidney (MDCK) cells. Here we show that VAMP8/endobrevin cycles through the apical but not through the basolateral plasma membrane. Furthermore, we found that VAMP8 localizes to apical endosomal membranes in nephric tubule epithelium and in MDCK cells. This asymmetry in localization and cycling behavior suggests that VAMP8/endobrevin may play a role in apical endosomal trafficking in polarized epithelium cells.  相似文献   

2.
The cystic fibrosis transmembrane conductance regulator (CFTR) interacts with multiple N-ethylmaleimide sensitive factor attachment protein (SNARE) molecules largely via its N-terminal cytoplasmic domain. The earliest known among these SNAREs are the cognate Q-SNARE pair of Syntaxin 1A (STX1A) and SNAP23 on the plasma membrane. These SNAREs affect CFTR chloride channel gating. CFTR exocytosis/recycling in intestinal epithelial cells is dependent on another SNARE located in the apical plasma membrane, STX3. Members of the STX8/STX7/vesicle transport through interaction with t-SNAREs homolog 1b/VAMP8 SNARE complex, which function in early to late endosome/lysosome traffic, are all known to interact with CFTR. Two SNAREs, STX6 and STX16 that function at the trans-Golgi network (TGN), have now been revealed as members of the CFTR SNARE interactome. We summarize here the SNAREs that interact with CFTR and discuss the roles of these SNAREs in the intracellular trafficking of CFTR and CFTR-associated pathophysiology.  相似文献   

3.
To understand molecular mechanisms that regulate the intricate and dynamic organization of the endosomal compartment, it is important to establish the morphology, molecular composition, and functions of the different organelles involved in endosomal trafficking. Syntaxins and vesicle-associated membrane protein (VAMP) families, also known as soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs), have been implicated in mediating membrane fusion and may play a role in determining the specificity of vesicular trafficking. Although several SNAREs, including VAMP3/cellubrevin, VAMP8/endobrevin, syntaxin 13, and syntaxin 7, have been localized to the endosomal membranes, their precise localization, biochemical interactions, and function remain unclear. Furthermore, little is known about SNAREs involved in lysosomal trafficking. So far, only one SNARE, VAMP7, has been localized to late endosomes (LEs), where it is proposed to mediate trafficking of epidermal growth factor receptor to LEs and lysosomes. Here we characterize the localization and function of two additional endosomal syntaxins, syntaxins 7 and 8, and propose that they mediate distinct steps of endosomal protein trafficking. Both syntaxins are found in SNARE complexes that are dissociated by alpha-soluble NSF attachment protein and NSF. Syntaxin 7 is mainly localized to vacuolar early endosomes (EEs) and may be involved in protein trafficking from the plasma membrane to the EE as well as in homotypic fusion of endocytic organelles. In contrast, syntaxin 8 is likely to function in clathrin-independent vesicular transport and membrane fusion events necessary for protein transport from EEs to LEs.  相似文献   

4.
The SNAREs syntaxin 7, syntaxin 8, vti1b, and endobrevin/VAMP8 function in the fusion of late endosomes. Although the core complex formed by these SNAREs is very similar to the neuronal SNARE complex, it differs from the neuronal complex in that three of the four SNAREs contain extended N-terminal regions of unknown structure and function. Here we show that the N-terminal regions of syntaxin 7, syntaxin 8, and vti1b contain well folded alpha-helical domains. Multidimensional NMR spectroscopy revealed that in syntaxin 7 and vti1b, the domains form three-helix bundles resembling those of syntaxin 1, Sso1p, and Vam3p. The three-helix bundle domain of vti1b is the first of its kind identified in a SNARE outside the syntaxin family. Only syntaxin 7 adopts a closed conformation, whereas in vti1b and syntaxin 8, the N-terminal domains do not interact with the adjacent SNARE motifs. Accordingly, the rate of SNARE complex assembly is retarded about 7-fold when syntaxin 7 contains its N-terminal domain, whereas the N-terminal domains of vti1b and syntaxin 8 have no influence on assembly kinetics. We conclude that three-helix bundles represent a common fold for SNARE N-terminal domains, not restricted to the syntaxin family. However, they differ in their ability to adopt closed conformations and thus to regulate the assembly of SNARE complexes.  相似文献   

5.
Gastric parietal cells possess an amplified apical membrane recycling system dedicated to regulated apical recycling of H-K-ATPase. While amplified in parietal cells, apical recycling is critical to polarized secretory processes in most epithelial cells. To clarify putative regulators of apical recycling, we prepared immunoisolated parietal cell H-K-ATPase-containing recycling membranes from human stomachs and analyzed protein contents by tryptic digestion and mass spectrometry. We identified and validated by Western blots many of the proteins previously identified on immunoisolated rabbit tubulovesicles, including Rab11, Rab25, syntaxin 3, secretory carrier membrane proteins (SCAMPs), and vesicle-associated membrane protein (VAMP)2. In addition, we detected several previously unrecognized proteins, including Rab10, VAMP8, syntaxin 7, and syntaxin 12/13. We also identified the K(+) channel component KCNQ1. Immunostaining of human gastric mucosal sections confirmed the presence of each of these proteins in parietal cells and their colocalization with H-K-ATPase on tubulovesicles. To investigate the role of the identified soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins in apical recycling, we transfected them as DsRed2 fusions into an enhanced green fluorescent protein (EGFP)-Rab11a-expressing Madin-Darby canine kidney (MDCK) cell line. Syntaxin 12/13 and VAMP8 caused a collapse of the EGFP-Rab11a compartment, whereas a less dramatic effect was observed in cells transfected with syntaxin 3, syntaxin 7, or VAMP2. The five DsRed2-SNARE chimeras were also transfected into a MDCK cell line overexpressing Rab11-FIP2(129-512). All five of the chimeras were drawn into the collapsed apical recycling system. This study, which represents the first proteomic analysis of an immunoisolated vesicle population from native human tissue, demonstrates the diversity of putative regulators of the apical recycling system.  相似文献   

6.
Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of alpha-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins.  相似文献   

7.
Clathrin-coated vesicles (CCVs) mediate transport between the plasma membrane, endosomes and the trans Golgi network. Using comparative proteomics, we have identified coated-vesicle-associated kinase of 104 kDa (CVAK104) as a candidate accessory protein for CCV-mediated trafficking. Here, we demonstrate that the protein colocalizes with clathrin and adaptor protein-1 (AP-1), and that it is associated with a transferrin-positive endosomal compartment. Consistent with these observations, clathrin as well as the cargo adaptors AP-1 and epsinR can be coimmunoprecipitated with CVAK104. Small interfering RNA (siRNA) knockdown of CVAK104 in HeLa cells results in selective loss of the SNARE proteins syntaxin 8 and vti1b from CCVs. Morpholino-mediated knockdown of CVAK104 in Xenopus tropicalis causes severe developmental defects, including a bent body axis and ventral oedema. Thus, CVAK104 is an evolutionarily conserved protein involved in SNARE sorting that is essential for normal embryonic development.  相似文献   

8.
Lung surfactant is crucial for reducing the surface tension of alveolar space, thus preventing the alveoli from collapse. Lung surfactant is synthesized in alveolar epithelial type II cells and stored in lamellar bodies before being released via the fusion of lamellar bodies with the apical plasma membrane. SNAREs (soluble N‐ethylmaleimide‐sensitive fusion protein‐attachment protein receptors) play an essential role in membrane fusion. We have previously demonstrated the requirement of t‐SNARE (target SNARE) proteins, syntaxin 2 and SNAP‐23 (N‐ethylmaleimide‐sensitive factor‐attachment protein 23), in regulated surfactant secretion. Here, we characterized the distribution of VAMPs (vesicle‐associated membrane proteins) in rat lung and alveolar type II cells. VAMP‐2, ?3 and ?8 are shown in type II cells at both mRNA and protein levels. VAMP‐2 and ?8 were enriched in LB (lamellar body) fraction. Immunochemistry studies indicated that VAMP‐2 was co‐localized with the LB marker protein, LB‐180. Functionally, the cytoplasmic domain of VAMP‐2, but not VAMP‐8 inhibited surfactant secretion in type II cells. We suggest that VAMP‐2 is the v‐SNARE (vesicle SNARE) involved in regulated surfactant secretion.  相似文献   

9.
SNARE proteins are crucial for intracellular membrane fusion in all eukaryotes. These proteins assemble into tight complexes that connect membranes and may induce fusion. The crystal structure of the neuronal core complex is represented by an unusually long bundle of four alpha-helices connected by 16 layers of mostly hydrophobic amino acids. Here we report the 1.9 A resolution crystal structure of an endosomal SNARE core complex containing four SNAREs: syntaxin 7, syntaxin 8, vti1b and endobrevin/VAMP-8. Despite limited sequence homology, the helix alignment and the layer structure of the endosomal complex are remarkably similar to those of the neuronal complex. However, subtle variations are evident that characterize different SNARE subfamilies. We conclude that the structure of the SNARE core complex is an evolutionarily conserved hallmark of all SNARE complexes and is intimately associated with the general role of SNAREs in membrane fusion.  相似文献   

10.
Abstract : The synaptic plasma membrane proteins syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) are central participants in synaptic vesicle trafficking and neurotransmitter release. Together with the synaptic vesicle protein synaptobrevin/vesicle-associated membrane protein (VAMP), they serve as receptors for the general membrane trafficking factors N -ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment protein (α-SNAP). Consequently, syntaxin, SNAP-25, and VAMP (and their isoforms in other membrane trafficking pathways) have been termed SNAP receptors (SNAREs). Because protein phosphorylation is a common and important mechanism for regulating a variety of cellular processes, including synaptic transmission, we have investigated the ability of syntaxin and SNAP-25 isoforms to serve as substrates for a variety of serine/threonine protein kinases. Syntaxins 1A and 4 were phosphorylated by casein kinase II, whereas syntaxin 3 and SNAP-25 were phosphorylated by Ca2+ - and calmodulin-dependent protein kinase II and cyclic AMP-dependent protein kinase, respectively. The biochemical consequences of SNARE protein phosphorylation included a reduced interaction between SNAP-25 and phosphorylated syntaxin 4 and an enhanced interaction between phosphorylated syntaxin 1A and the synaptic vesicle protein synaptotagmin I, a potential Ca2+ sensor in triggering synaptic vesicle exocytosis. No other effects on the formation of SNARE complexes (comprised of syntaxin, SNAP-25, and VAMP) or interactions involving n-Sec1 or α-SNAP were observed. These findings suggest that although phosphorylation does not directly regulate the assembly of the synaptic SNARE complex, it may serve to modulate SNARE complex function through other proteins, including synaptotagmin I.  相似文献   

11.
The importance of soluble N-ethyl maleimide (NEM)-sensitive fusion protein (NSF) attachment protein (SNAP) receptors (SNAREs) in synaptic vesicle exocytosis is well established because it has been demonstrated that clostridial neurotoxins (NTs) proteolyze the vesicle SNAREs (v-SNAREs) vesicle-associated membrane protein (VAMP)/brevins and their partners, the target SNAREs (t-SNAREs) syntaxin 1 and SNAP25. Yet, several exocytotic events, including apical exocytosis in epithelial cells, are insensitive to numerous clostridial NTs, suggesting the presence of SNARE-independent mechanisms of exocytosis. In this study we found that syntaxin 3, SNAP23, and a newly identified VAMP/brevin, tetanus neurotoxin (TeNT)-insensitive VAMP (TI-VAMP), are insensitive to clostridial NTs. In epithelial cells, TI-VAMP–containing vesicles were concentrated in the apical domain, and the protein was detected at the apical plasma membrane by immunogold labeling on ultrathin cryosections. Syntaxin 3 and SNAP23 were codistributed at the apical plasma membrane where they formed NEM-dependent SNARE complexes with TI-VAMP and cellubrevin. We suggest that TI-VAMP, SNAP23, and syntaxin 3 can participate in exocytotic processes at the apical plasma membrane of epithelial cells and, more generally, domain-specific exocytosis in clostridial NT-resistant pathways.  相似文献   

12.
Mast cells upon stimulation through high affinity IgE receptors massively release inflammatory mediators by the fusion of specialized secretory granules (related to lysosomes) with the plasma membrane. Using the RBL-2H3 rat mast cell line, we investigated whether granule secretion involves components of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery. Several isoforms of each family of SNARE proteins were expressed. Among those, synaptosome-associated protein of 23 kDa (SNAP23) was central in SNARE complex formation. Within the syntaxin family, syntaxin 4 interacted with SNAP23 and all vesicle-associated membrane proteins (VAMPs) examined, except tetanus neurotoxin insensitive VAMP (TI-VAMP). Overexpression of syntaxin 4, but not of syntaxin 2 nor syntaxin 3, caused inhibition of FcepsilonRI-dependent exocytosis. Four VAMP proteins, i.e., VAMP2, cellubrevin, TI-VAMP, and VAMP8, were present on intracellular membrane structures, with VAMP8 residing mainly on mediator-containing secretory granules. We suggest that syntaxin 4, SNAP23, and VAMP8 may be involved in regulation of mast cell exocytosis. Furthermore, these results are the first demonstration that the nonneuronal VAMP8 isoform, originally localized on early endosomes, is present in a regulated secretory compartment.  相似文献   

13.
WNK4, a serine/threonine kinase, plays a critical role in the expression of membrane proteins in the cell surface; however, the underlying mechanism of WNK4 is not clear. Here, we demonstrate that WNK4 inhibits the fusion of plasma membrane delivering vesicle with sorting/recycling endosome through disrupting SNARE formation of syntaxin13, an endosomal t-SNARE and VAMP2, the v-SNARE in plasma membrane delivering vesicle. Their interaction and co-localization were enhanced by hyperosmotic stimulation which is known for WNK4 activation. The kinase domain of WNK4 interacts with the transmembrane domain (TM) of syntaxin13 and this interaction was abolished when the TM was replaced with that of syntaxin16. Interestingly, cell fractionation using sucrose gradients revealed that WNK4 inhibited the formation of the syntaxin13/VAMP2 SNARE complex in the endosomal compartment, but not syntaxin16/VAMP2 or syntaxin13/VAMP7. Syntaxin13 was not phosphorylated by WNK4 and WNK4KI also showed the same binding strength and similar inhibitory regulation on SNARE formation of syntaxin13. Physiological relevance of this mechanism was proved with the expression of NCC (Na+ C1? co-transporter) in the cell surface. The inhibiting activity of WNK4 on surface expression of NCC was abolished by syntaxin13 siRNA transfection. These results suggest that WNK4 attenuates PM targeting of NCC proteins through regulation of syntaxin13 SNARE complex formation with VAMP2 in recycling and sorting endosome.  相似文献   

14.
Both syntaxin4 and VAMP2 are implicated in insulin regulation of glucose transporter-4 (GLUT4) trafficking in adipocytes as target (t) soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) and vesicle (v)-SNARE proteins, respectively, which mediate fusion of GLUT4-containing vesicles with the plasma membrane. Synaptosome-associated 23-kDa protein (SNAP23) is a widely expressed isoform of SNAP25, the principal t-SNARE of neuronal cells, and colocalizes with syntaxin4 in the plasma membrane of 3T3-L1 adipocytes. In the present study, two SNAP23 mutants, SNAP23-DeltaC8 (amino acids 1 to 202) and SNAP23-DeltaC49 (amino acids 1 to 161), were generated to determine whether SNAP23 is required for insulin-induced translocation of GLUT4 to the plasma membrane in 3T3-L1 adipocytes. Wild-type SNAP23 (SNAP23-WT) promoted the interaction between syntaxin4 and VAMP2 both in vitro and in vivo. Although SNAP23-DeltaC49 bound to neither syntaxin4 nor VAMP2, the SNAP23-DeltaC8 mutant bound to syntaxin4 but not to VAMP2. In addition, although SNAP23-DeltaC8 bound to syntaxin4, it did not mediate the interaction between syntaxin4 and VAMP2. Moreover, overexpression of SNAP23-DeltaC8 in 3T3-L1 adipocytes by adenovirus-mediated gene transfer inhibited insulin-induced translocation of GLUT4 but not that of GLUT1. In contrast, overexpression of neither SNAP23-WT nor SNAP23-DeltaC49 in 3T3-L1 adipocytes affected the translocation of GLUT4 or GLUT1. Together, these results demonstrate that SNAP23 contributes to insulin-dependent trafficking of GLUT4 to the plasma membrane in 3T3-L1 adipocytes by mediating the interaction between t-SNARE (syntaxin4) and v-SNARE (VAMP2).  相似文献   

15.
Previously, we have demonstrated physical and functional interactions of the voltage-gated potassium channel Kv2.1 with the plasma membrane protein components of the exocytotic SNARE complex, syntaxin 1A, and the t-SNARE, syntaxin 1A/SNAP-25, complex. Importantly, the physical interaction of Kv2.1 with syntaxin was shown to be involved in the facilitation of secretion from PC12 cells, which was independent of potassium currents. Recently, we showed that also VAMP2, the vesicular SNARE, interacts physically and functionally with Kv2.1. Here, we first set out to test the interaction of the full SNARE, syntaxin/SNAP-25/VAMP2, complex with the channel. Using the interaction of VAMP2 with Kv2.1 in Xenopus oocytes as a probe, we showed that coexpression of the t-SNARE complex with VAMP2 abolished the VAMP2 effect on channel inactivation and reduced the amount of VAMP2 that coprecipitated with Kv2.1. Further, in vitro pull down assays showed that the full SNARE complex failed to interact with Kv2.1 N- and C-termini in tandem, in contrast to the individual SNARE components. This suggests that the interactions of the SNARE components with Kv2.1 are abolished upon their recruitment into a full SNARE complex, which does not interact with the channel. Other important findings arising from the in vitro study are that the t-SNARE complex, in addition to syntaxin, interacts with a specific C-terminal channel domain, C1a, shown to mediate the facilitation of release by Kv2.1 and that the presence of Kv2.1 N-terminus has crucial contribution to these interactions. These findings provide important insights into the understanding of the complex molecular events involved in the novel phenomenon of secretion facilitation in neuroendocrine cells by Kv2.1.  相似文献   

16.
SNARE proteins mediate membrane fusion in the secretory pathway of eukaryotic cells. Genetic deletion and siRNA-based knockdown have been instrumental in assigning given SNAREs to defined intracellular transport steps. However, SNARE depletion occasionally results in barely detectable phenotypes. To understand how cells cope with SNARE loss, we have knocked down several SNAREs functioning in early endosome fusion. Surprisingly, knockdown of syntaxin 13, syntaxin 6 and vti1a, alone or in combinations, did not result in measurable changes of endosomal trafficking or fusion. We found that the residual SNARE levels (typically ∼10%) were sufficient for a substantial amount of SNARE–SNARE interactions. Conversely, in wild-type cells, most SNARE molecules were concentrated in clusters, constituting a spare pool not readily available for interactions. Additionally, the knockdown organelles exhibited enhanced docking. We conclude that SNAREs are expressed at much higher levels than needed for maintenance of organelle fusion, and that loss of SNAREs is compensated for by the co-regulation of the docking machinery.  相似文献   

17.
Generation of epithelial cell polarity requires mechanisms to sort plasma membrane proteins to the apical and basolateral domains. Sorting involves incorporation into specific vesicular carriers and subsequent fusion to the correct target membranes mediated by specific SNARE proteins. In polarized epithelial cells, the SNARE protein syntaxin 4 localizes exclusively to the basolateral plasma membrane and plays an important role in basolateral trafficking pathways. However, the mechanism of basolateral targeting of syntaxin 4 itself has remained poorly understood. Here we show that newly synthesized syntaxin 4 is directly targeted to the basolateral plasma membrane in polarized Madin-Darby canine kidney (MDCK) cells. Basolateral targeting depends on a signal that is centered around residues 24-29 in the N-terminal domain of syntaxin 4. Furthermore, basolateral targeting of syntaxin 4 is dependent on the epithelial cell-specific clathrin adaptor AP1B. Disruption of the basolateral targeting signal of syntaxin 4 leads to non-polarized delivery to both the apical and basolateral surface, as well as partial intercellular retention in the trans-Golgi network. Importantly, disruption of the basolateral targeting signal of syntaxin 4 leads to the inability of MDCK cells to establish a polarized morphology which suggests that restriction of syntaxin 4 to the basolateral domain is required for epithelial cell polarity.  相似文献   

18.
Reticulons are proteins of neuroendocrine cells localized primarily to the endoplasmic reticulum membrane. Despite their implication in cellular processes like apoptosis or axonal regeneration, their intracellular molecular function is still largely unknown. Here, we show that reticulon 1-C can be detected in a protein complex of 150-200 kDa, and that a number of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, i.e. syntaxin 1, syntaxin 7, syntaxin 13 and VAMP2, can be co-immunoprecipitated with reticulon 1-C. Moreover, it localizes to a nocodazole-sensitive, but calreticulin-negative domain of the endoplasmic reticulum. Finally, overexpression in PC12 cells of a reticulon 1-C fragment which binds to SNAREs, significantly enhances human growth hormone secretion. These results suggest that reticulons are involved in vesicle trafficking events, including regulated exocytosis.  相似文献   

19.
Assembly of SNARE proteins into quaternary complexes is a critical step in membrane docking and fusion. Here, we have studied the influence of the transmembrane segments on formation of the late endosomal SNARE complex. The complex was assembled in vitro from full-length recombinant SNAREs and from mutants, where the transmembrane segments were either deleted or replaced by oligo-alanine sequences. We show that endobrevin, syntaxin 7, syntaxin 8, and vti1b readily form a complex. This complex forms a dimer as well as multimeric structures. Interestingly, the natural transmembrane segments accelerate the conversion of the quaternary complex to the dimeric form and are essential for multimerization. These in vitro results suggest that the transmembrane segments are responsible for supramolecular assembly of the endosomal SNARE complex.  相似文献   

20.
The focus of this review is the regulated trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) in distal compartments of the protein secretory pathway and the question of how changes in CFTR cellular distribution may impact on the functions of polarized epithelial cells. We summarize data concerning the cellular localization and activity of CFTR and attempt to synthesize often conflicting results from functional studies of regulated endocytosis and exocytosis in CFTR-expressing cells. In some instances, findings that are inconsistent with regulated CFTR trafficking may result from the use of overexpression systems or nonphysiological experimental conditions. Nevertheless, judging from data on other transporters, an appropriate cellular context is necessary to support regulated CFTR trafficking, even in epithelial cells. The discovery that disease mutations can influence CFTR trafficking in distal secretory and recycling compartments provides support for the concept that regulated CFTR recycling contributes to normal epithelial function, including the control of apical CFTR channel density and epithelial protein secretion. Finally, we propose molecular mechanisms for regulated CFTR endocytosis and exocytosis that are based on CFTR interactions with other proteins, particularly those whose primary function is membrane trafficking. These models provide testable hypotheses that may lead to elucidation of CFTR trafficking mechanisms and permit their experimental manipulation in polarized epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号