首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Glutathione reductase and lipoamide dehydrogenase are structurally and mechanistically related flavoenzymes catalyzing various one and two electron transfer reactions between NAD(P)H and substrates with different structures. 2. The two enzymes differ in their coenzyme and functional specificities. Lipoamide dehydrogenase shows higher coenzyme preference while glutathione reductase displays greater functional specificity. 3. Binding preference of the two flavoenzymes for nicotinamide coenzymes is demonstrated by 31P-NMR spectroscopy. 4. The presence of arginines in glutathione reductase which is inactivated by phenyl glyoxal, is likely to be responsible for the NADPH-activity of glutathione reductase. 5. The substrate binding sites of the two enzymes are similar, though their functional details differ. 6. The active-site histidine of glutathione reductase functions primarily as the proton donor during catalysis. While the active-site histidine of lipoamide dehydrogenase stabilizes the thiolate anion intermediate and relays a proton in the catalytic process.  相似文献   

2.
The influence of aspartate-168 on the proton-donating and -accepting properties of histidine-195 (the active site acid/base catalyst in lactate dehydrogenase) was evaluated by use of site-directed mutagenesis to change the residue to asparagine and to alanine. Despite the fact that asparagine could form a hydrogen bond to histidine while alanine could not, the two mutant enzymes have closely similar catalytic and ligand-binding properties. Both bind pyruvate and its analogue (oxamate) 200 times more weakly than the wild-type enzyme but show little disruption in their binding of lactate and its unreactive analogue, trifluorolactate. Neither mutation alters the binding of coenzymes (NADH and NAD+) or the pK of the histidine-195 residue in the enzyme-coenzyme complex. We conclude that a strong histidine-aspartate interaction is only formed when both coenzyme and substrate are bound. Deletion of the negative charge of aspartate shifts the equilibrium between enzyme-NADH-pyruvate (protonated histidine) and enzyme-NAD+-lactate (unprotonated histidine) toward the latter. In contrast to the wild-type enzyme, the rate of catalysis in both directions in the mutants is limited by a slow hydride ion transfer step.  相似文献   

3.
Studies of pH-dependent kinetics implicate two ionizable groups in the dehydrogenase and esterase reactions catalysed by high-Km aldehyde dehydrogenase from rat liver mitochondria. Sensitized photooxidation completely arrests the bifunctional activities of the dehydrogenase. Carboxamidomethylation abolishes the dehydrogenase activity, whereas acetimidination eliminates the esterase activity. These results suggest that histidine (pKa near 6) and cysteine (pKa near 10) are likely the catalytic residues for the dehydrogenase activity, while the esterase activity is functionally related to histidine (pKa near 7) and a residue with the pKa value of 10-11. The two residues, a carboxyl group and an arginine, that discriminate between NAD+ and NADP+ are present at the coenzyme binding site of the mitochondrial high-Km aldehyde dehydrogenase from rat liver.  相似文献   

4.
Circular dichroism spectra and circular dichroism difference spectra, generated when porcine heart mitochondrial and supernatant malate dehydrogenase bind coenzymes or when enzyme dihydroincotinamide nucleotide binary complexes bind substrate analogs, are presented. No significant changes are observed in protein chromophores in the 200- to 240-nm spectral range indicating that there is apparently little or no perturbation of the alpha helix or peptide backbone when binary or ternary complexes are formed. Quite different spectral perturbances occur in the two enzymes with reduced coenzyme binding as well as with substrate-analog binding by enzyme-reduced coenzyme binding. Comparison of spectral perturbations in both enzymes with oxidized or reduced coenzyme binding suggests that the dihydronicotinamide moiety of the coenzyme interacts with or perturbs indirectly the environment of aromatic amino acid residues. Reduced coenzyme binding apparently perturbs tyrosine residues in both mitochondrial malate dehydrogenase and lactic dehydrogenase. Reduced coenzyme binding perturbs tyrosine and tryptophan residues in supernatant malate dehydrogenase. The number of reduced coenzyme binding sites was determined to be two per 70,000 daltons in the mitochondrial enzyme, and the reduced coenzyme dissociation constants, determined through the change in ellipticity at 260 nm, with dihydronicotinamide adenine dinucleotide binding, were found to be good agreement with published values (Holbrook, J. J., and Wolfe, R. G. (1972) Biochemistry 11, 2499-2502) obtained through fluorescence-binding studies and indicate no apparent extra coenzyme binding sites. When D-malate forms a ternary complex with malate dehydrogenase-reduced coenzyme complexes, perturbation of both adenine and dihydronicotinamide chromophores is evident. L-Malate binding, however, apparently produces only a perturbation of the adenine chromophore in such complexes. Since the coenzyme has been found to bind in an open conformation on the surface of the enzyme and the substrate analogs bind at or very near the dihydronicotinamide moiety binding site, protein conformational changes are implicated during ternary complex formation with D-malate which can effect the adenine chromophore at some distance from the substrate binding site.  相似文献   

5.
Malate dehydrogenase: a model for structure, evolution, and catalysis.   总被引:11,自引:0,他引:11       下载免费PDF全文
Malate dehydrogenases are widely distributed and alignment of the amino acid sequences show that the enzyme has diverged into 2 main phylogenetic groups. Multiple amino acid sequence alignments of malate dehydrogenases also show that there is a low degree of primary structural similarity, apart from in several positions crucial for nucleotide binding, catalysis, and the subunit interface. The 3-dimensional structures of several malate dehydrogenases are similar, despite their low amino acid sequence identity. The coenzyme specificity of malate dehydrogenase may be modulated by substitution of a single residue, as can the substrate specificity. The mechanism of catalysis of malate dehydrogenase is similar to that of lactate dehydrogenase, an enzyme with which it shares a similar 3-dimensional structure. Substitution of a single amino acid residue of a lactate dehydrogenase changes the enzyme specificity to that of a malate dehydrogenase, but a similar substitution in a malate dehydrogenase resulted in relaxation of the high degree of specificity for oxaloacetate. Knowledge of the 3-dimensional structures of malate and lactate dehydrogenases allows the redesign of enzymes by rational rather than random mutation and may have important commercial implications.  相似文献   

6.
Ligand binding and stabilization of malate- and lactate dehydrogenase   总被引:1,自引:0,他引:1  
Binding of coenzymes, coenzyme fragments and phenolate ligands to malate- and lactate dehydrogenase was studied. From linear competition in titration experiments, the coenzyme binding site was concluded to bind all the ligands employed. The analogy between the phenolate ligands and tetraiodofluorescein which is known to bind at the adenosine binding site suggests binding of phenolates at this site. Coenzymes and coenzyme fragments retard the irreversible thermal inactivation of the enzymes. The retardation effect decreases in the order NADH greater than NAD greater than ADPR greater than or equal to AMP for both enzymes. Phenolate ligands binding to the adenosine pocket do not stabilize the enzymes. The stabilization is concluded to originate from the interaction of coenzyme phosphate and nicotinamide with the enzymes. The interactions with the adenosine moiety and with the second ribose seem to be ineffective in retardation of thermal denaturation.  相似文献   

7.
6-Phosphogluconate dehydrogenase is a potential target for new drugs against African trypanosomiasis. Phosphorylated aldonic acids are strong inhibitors of 6-phosphogluconate dehydrogenase, and 4-phospho-d-erythronate (4PE) and 4-phospho-d-erythronohydroxamate are two of the strongest inhibitors of the Trypanosoma brucei enzyme. Binding of the substrate 6-phospho-d-gluconate (6PG), the inhibitors 5-phospho-d-ribonate (5PR) and 4PE, and the coenzymes NADP, NADPH and NADP analogue 3-amino-pyridine adenine dinucleotide phosphate to 6-phospho-d-gluconate dehydrogenase from T. brucei was studied using isothermal titration calorimetry. Binding of the substrate (K(d) = 5 microm) and its analogues (K(d) =1.3 microm and K(d) = 2.8 microm for 5PR and 4PE, respectively) is entropy driven, whereas binding of the coenzymes is enthalpy driven. Oxidized coenzyme and its analogue, but not reduced coenzyme, display a half-site reactivity in the ternary complex with the substrate or inhibitors. Binding of 6PG and 5PR poorly affects the dissociation constant of the coenzymes, whereas binding of 4PE decreases the dissociation constant of the coenzymes by two orders of magnitude. In a similar manner, the K(d) value of 4PE decreases by two orders of magnitude in the presence of the coenzymes. The results suggest that 5PR acts as a substrate analogue, whereas 4PE mimics the transition state of dehydrogenation. The stronger affinity of 4PE is interpreted on the basis of the mechanism of the enzyme, suggesting that the inhibitor forces the catalytic lysine 185 into the protonated state.  相似文献   

8.
The formation of binary complexes between sturgeon apoglyceralddhyde-3-phosphate dehydrogenase, coenzymes (NAD+ and NADH) and substrates (phosphate, glyceraldehyde 3-phosphate and 1,3-bisphosphoglycerate) has been studied spectrophotometrically and spectrofluorometrica-ly. Coenzyme binding to the apoenzyme can be characterized by several distinct spectroscopic properties: (a) the low intensity absorption band centered at 360 nm which is specific of NAD+ binding (Racker band); (b) the quenching of the enzyme fluorescence upon coenzyme binding; (c) the quenching of the fluorescence of the dihydronicotinamide moiety of the reduced coenzyme (NADH); (D) the hypochromicity and the red shift of the absorption band of NADH centered at 338 nm; (e) the coenzyme-induced difference spectra in the enzyme absorbance region. The analysis of these spectroscopic properties shows that up to four molecules of coenzyme are bound per molecule of enzyme tetramer. In every case, each successively bound coenzyme molecule contributes identically to the total observed change. Two classes of binding sites are apparent at lower temperatures for NAD+ Binding. Similarly, the binding of NADH seems to involve two distinct classes of binding sites. The excitation fluorescence spectra of NADH in the binary complex shows a component centered at 260 nm as in aqueous solution. This is consistent with a "folded" conformation of the reduced coenzyme in the binary complex, contradictory to crystallographic results. Possible reasons for this discrepancy are discussed. Binding of phosphorylated substrates and orthophosphate induce similar difference spectra in the enzyme absorbance region. No anticooperativity is detectable in the binding of glyceraldehyde 3-phosphate. These results are discussed in light of recent crystallographic studies on glyceraldehyde-3-phosphate dehydrogenases.  相似文献   

9.
Previously we found that replacement of seven amino acid residues in a loop region markedly shifted the coenzyme specificity of malate dehydrogenase from NAD(H) toward NADP(H). In the present study, we replaced the seven amino acid residues in the corresponding region of an NAD(H)-dependent lactate dehydrogenase with those of NADP(H)-dependent malate dehydrogenase, and examined the coenzyme specificity of the resulting mutant enzyme. Coenzyme specificity was significantly shifted by 399-fold toward NADPH when k cat/Km(coenzyme) was used as the measure of coenzyme specificity. The effect of the replacements on coenzyme specificity is discussed based on in silico simulation of the three-dimensional structure of the lactate dehydrogenase mutant.  相似文献   

10.
Kinetic analysis has shown that isoquinoline, papaverine and berberine act as reversible competitive inhibitors to muscle lactate dehydrogenase and mitochondrial malate dehydrogenase with respect to the coenzyme NADH. The inhibitor constants Ki vary from 7.5 microM and 12.6 microM berberine interaction with malate dehydrogenase and lactate dehydrogenase respectively to 91.4 microM and 196.4 microM with papaverine action on these two enzymes. Isoquinoline was a poor inhibitor with Ki values of 200 microM (MDH) to 425 microM (LDH). No inhibition was observed for both enzymes in terms of their respective second substrate (oxaloacetic acid - malate dehydrogenase; pyruvate - lactate dehydrogenase). A fluorimetric analysis of the binding of the three alkaloids show that the dissociation constants (Kd) for malate dehydrogenase are 2.8 microM (berberine), 46 microM (papaverine) and 86 microM (isoquinoline); the corresponding values for lactate dehydrogenase are 3.1 microM, 52 microM and 114 microM. In all cases the number of binding sites averaged at 2 (MDH) and 4 (LDH). The binding of the alkaloids takes place at sites close to the coenzyme binding site. No conformational non equivalence of subunits is evident.  相似文献   

11.
As shown by X-ray crystallography, horse liver alcohol dehydrogenase undergoes a global conformational change upon binding of NAD+ or NADH, involving a rotation of the catalytic domain relative to the coenzyme binding domain and the closing up of the active site to produce a catalytically efficient enzyme. The conformational change requires a complete coenzyme and is affected by various chemical or mutational substitutions that can increase the catalytic turnover by altering the kinetics of the isomerization and rate of dissociation of coenzymes. The binding of NAD+ is kinetically limited by a unimolecular isomerization (corresponding to the conformational change) that is controlled by deprotonation of the catalytic zinc-water to produce a negatively-charged zinc-hydroxide, which can attract the positively-charged nicotinamide ring. The deprotonation is facilitated by His-51 acting through a hydrogen-bonded network to relay the proton to solvent. Binding of NADH also involves a conformational change, but the rate is very fast. After the enzyme binds NAD+ and closes up, the substrate displaces the hydroxide bound to the catalytic zinc; this exchange may involve a double displacement reaction where the carboxylate group of a glutamate residue first displaces the hydroxide (inverting the tetrahedral coordination of the zinc), and then the exogenous ligand displaces the glutamate. The resulting enzyme-NAD+-alcoholate complex is poised for hydrogen transfer, and small conformational fluctuations may bring the reactants together so that the hydride ion is transferred by quantum mechanical tunneling. In the process, the nicotinamide ring may become puckered, as seen in structures of complexes of the enzyme with NADH. The conformational changes of alcohol dehydrogenase demonstrate the importance of protein dynamics in catalysis.  相似文献   

12.
The crystal structure of malate dehydrogenase from Escherichia coli has been determined with a resulting R-factor of 0.187 for X-ray data from 8.0 to 1.87 A. Molecular replacement, using the partially refined structure of porcine mitochondrial malate dehydrogenase as a probe, provided initial phases. The structure of this prokaryotic enzyme is closely homologous with the mitochondrial enzyme but somewhat less similar to cytosolic malate dehydrogenase from eukaryotes. However, all three enzymes are dimeric and form the subunit-subunit interface through similar surface regions. A citrate ion, found in the active site, helps define the residues involved in substrate binding and catalysis. Two arginine residues, R81 and R153, interacting with the citrate are believed to confer substrate specificity. The hydroxyl of the citrate is hydrogen-bonded to a histidine, H177, and similar interactions could be assigned to a bound malate or oxaloacetate. Histidine 177 is also hydrogen-bonded to an aspartate, D150, to form a classic His.Asp pair. Studies of the active site cavity indicate that the bound citrate would occupy part of the site needed for the coenzyme. In a model building study, the cofactor, NAD, was placed into the coenzyme site which exists when the citrate was converted to malate and crystallographic water molecules removed. This hypothetical model of a ternary complex was energy minimized for comparison with the structure of the binary complex of porcine cytosolic malate dehydrogenase. Many residues involved in cofactor binding in the minimized E. coli malate dehydrogenase structure are homologous to coenzyme binding residues in cytosolic malate dehydrogenase. In the energy minimized structure of the ternary complex, the C-4 atom of NAD is in van der Waals' contact with the C-3 atom of the malate. A catalytic cycle involves hydride transfer between these two atoms.  相似文献   

13.
Yeast (Saccharomyces cerevisiae) alcohol dehydrogenase I (SceADH) binds NAD+ and NADH less tightly and turns over substrates more rapidly than does horse (Equus caballus) liver alcohol dehydrogenase E isoenzyme (EcaADH), and neither enzyme uses NADP efficiently. Amino acid residues in the proposed adenylate binding pocket of SceADH were substituted in attempts to improve affinity for coenzymes or reactivity with NADP. Substitutions in SceADH (Gly202Ile or Ser246Ile) with the corresponding residues in the adenine binding site of the homologous EcaADH have modest effects on coenzyme binding and other kinetic constants, but the Ser246Ile substitution decreases turnover numbers by 350-fold. The Ser176Phe substitution (also near adenine site) significantly decreases affinity for coenzymes and turnover numbers. In the consensus nucleotide-binding betaalphabeta fold sequence, SceADH has two alanine residues (177-GAAGGLG-183) instead of the Leu200 in EcaADH (199-GLGGVG-204); the Ala178-Ala179 to Leu substitution significantly decreases affinity for coenzymes and turnover numbers. Some NADP-dependent enzymes have an Ala corresponding to Gly183 in SceADH; the Gly183Ala substitution significantly decreases affinity for coenzymes and turnover numbers. NADP-dependent enzymes usually have a neutral residue instead of the Asp (Asp201 in SceADH) that interacts with the hydroxyl groups of the adenosine ribose, along with a basic residue (at position 202 or 203) to stabilize the 2'-phosphate of NADP. The Gly203Arg change in SceADH does not significantly affect the kinetics. The Gly183Ala or Gly203Arg substitutions do not enable SceADH to use NADP+ as coenzyme. SceADH with the single Asp201Gly or double Asp201Gly:Gly203Arg substitutions have similar, low activity with NADP+. The results suggest that several of the amino acid residues participate in coenzyme binding and that conversion of specificity for coenzyme requires multiple substitutions.  相似文献   

14.
1. Yeast alcohol dehydrogenase (EC 1.1.1.1) is inhibited by stoicheiometric concentrations of diethyl pyrocarbonate. The inhibition is due to the acylation of a single histidine residue/monomer (mol.wt. 36000). 2. Alcohol dehydrogenase is also inhibited by stoicheiometric amounts of 5,5'-dithiobis-(2-nitrobenzoate), owing to the modification of a single cysteine residue/monomer. 3. Native alcohol dehydrogenase binds two molecules of reduced coenzyme/molecule of enzyme (mol.wt. 144000). 4. Modification of a single histidine residue/monomer by treatment with diethyl pyrocarbonate prevents the binding of acetamide in the ternary complex, enzyme-NADH-acetamede, but does not prevent the binding of NADH to the enzyme. 5. Modification of a single cysteine residue/monomer does not prevent the binding of acetamide to the ternary complex. After the modification of two thiol groups/monomer by treatment with 5,5'-dithiobis-(2-nitrobenzoate), the capacity of enzyme to bind coenzyme in the ternary complex was virtually abolished. 6. From the results presented in this paper we conclude that at least one histidine and one cysteine residue are closely associated in the substrate-binding site of alcohol dehydrogenase.  相似文献   

15.
Bovine mitochondrial malate dehydrogenase (EC 1.1.1.37) was inactivated by the specific modifications of a single histidine residue upon reaction with iodoacetamide. NADH protected against this loss of activity and reaction with the histidine residue, suggesting that the histidine is at the NADH binding site. N-Ethylmaleimide also modified the enzyme by reacting with 1 sulfhydryl residue. The reaction rate with N-ethylmaleimide was increased by decreasing the pH from neutrality or by the addition of urea. NADH protected against the modification of the sulfhydryl group under all the conditions tested, again suggesting active site specificity for this inactivation. This enzyme has a subunit weight of 33,000 and is a dimer. The native malate dehydrogenase will bind only 1 mol of NADH and it is thus assumed that there is only a single active site per dimer.  相似文献   

16.
Fluorescence polarization studies of porcine mitochondrial malate dehydrogenase labeled with fluorescein isothiocyanate or fluorescamine indicated a concentration-dependent dissociation of the dimeric molecule with a KD OF 2 X 10(7) N at pH 8.0. These results were confirmed by the concentration dependence of the stability of the enzyme at elevated temperatures and the creation of hybrid molecules with fluorescein and Rhodamine B labeled subunits, in which energy transfer was observed. The binding of NADH resulted in a small shift of the subunit dissociation curve toward monomer, demonstrating that monomer has twice the affinity for reduced coenzyme. NAD+ binding prevented dissociation of the dimer, even at concentrations below 10(-8) N. These results indicate that binding of reduced or oxidized coenzymes results in different conformation changes, which are transferred to the subunit interface.  相似文献   

17.
Sanghani PC  Davis WI  Zhai L  Robinson H 《Biochemistry》2006,45(15):4819-4830
The active-site zinc in human glutathione-dependent formaldehyde dehydrogenase (FDH) undergoes coenzyme-induced displacement and transient coordination to a highly conserved glutamate residue (Glu-67) during the catalytic cycle. The role of this transient coordination of the active-site zinc to Glu-67 in the FDH catalytic cycle and the associated coenzyme interactions were investigated by studying enzymes in which Glu-67 and Arg-368 were substituted with Leu. Structures of FDH.adenosine 5'-diphosphate ribose (ADP-ribose) and E67L.NAD(H) binary complexes were determined. Steady-state kinetics, isotope effects, and presteady-state analysis of the E67L enzyme show that Glu-67 is critical for capturing the substrates for catalysis. The catalytic efficiency (V/K(m)) of the E67L enzyme in reactions involving S-nitrosoglutathione (GSNO), S-hydroxymethylglutathione (HMGSH) and 12-hydroxydodecanoic acid (12-HDDA) were 25 000-, 3000-, and 180-fold lower, respectively, than for the wild-type enzyme. The large decrease in the efficiency of capturing GSNO and HMGSH by the E67L enzyme results mainly because of the impaired binding of these substrates to the mutant enzyme. In the case of 12-HDDA, a decrease in the rate of hydride transfer is the major factor responsible for the reduction in the efficiency of its capture for catalysis by the E67L enzyme. Binding of the coenzyme is not affected by the Glu-67 substitution. A partial displacement of the active-site zinc in the FDH.ADP-ribose binary complex indicates that the disruption of the interaction between Glu-67 and Arg-368 is involved in the displacement of active-site zinc. Kinetic studies with the R368L enzyme show that the predominant role of Arg-368 is in the binding of the coenzyme. An isomerization of the ternary complex before hydride transfer is detected in the kinetic pathway of HMGSH. Steps involved in the binding of the coenzyme to the FDH active site are also discerned from the unique conformation of the coenzyme in one of the subunits of the E67L.NAD(H) binary complex.  相似文献   

18.
Incubation of pig heart NADP-dependent isocitrate dehydrogenase with ethoxyformic anhydride (diethylpyrocarbonate) at pH 6.2 results in a 9-fold greater rate of loss of dehydrogenase than of oxalosuccinate decarboxylase activity. The rate constants for loss of dehydrogenase and decarboxylase activities depend on the basic form of ionizable groups with pK values of 5.67 and 7.05, respectively, suggesting that inactivation of the two catalytic functions results from reaction with different amino acid residues. The rate of loss of dehydrogenase activity is decreased only slightly in the presence of manganous isocitrate, but is reduced up to 10-fold by addition of the coenzymes or coenzyme analogues, such as 2'-phosphoadenosine 5'-diphosphoribose (Rib-P2-Ado-P). Enzyme modified at pH 5.8 fails to bind NADPH, but exhibits manganese-enhanced isocitrate binding typical of native enzyme, indicating that reaction takes place in the region of the nucleotide binding site. Dissociation constants for enzyme . coenzyme-analogue complexes have been calculated from the decrease in the rate of inactivation as a function of analogue concentration. In the presence of isocitrate, activating metals (Mn2+, Mg2+, Zn2+) decrease the Kd value for enzyme . Rib-P2-Ado-P, while the inhibitor Ca2+ increases Kd. The strengthened binding of nucleotide produced by activating metal-isocitrate complexes may be essential for the catalytic reaction, reflecting an optimal orientation of NADP+ to facilitate hydride transfer. Measurements of ethoxyformyl-histidine formation at 240 nm and of incorporation of [14C]ethoxy groups in the presence and absence of Rib-P2-Ado-P indicate that loss of activity may be related to modification of approximately one histidine. The critical histidine appears to be located in the nucleotide binding site in a region distal from the substrate binding site.  相似文献   

19.
Malate dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum is purified 50-fold to electrophoretic homogeneity. The purified enzyme crystallizes readily. Native malate dehydrogenase shows a relative molecular mass of 144 000. It is a tetramer of identical subunits with a relative molecular mass of 36 600. Malate dehydrogenase from Thermoplasma uses both NADH and NADPH as coenzyme to reduce oxaloacetate. The enzyme shows A-side (pro-R) stereospecificity for both coenzymes. The pH optimum for the reduction of oxaloacetate in the presence of NADH is found to be at pH 8.1. At pH 7.4 the Km value for oxaloacetate is found to be 5.6 microM while for NADH a value of 11.7 microM is found. The homogeneous enzyme shows a turnover number of kcat = 108 s-1.  相似文献   

20.
Nicotinamide adenine dinucleotide-linked malate dehydrogenase has been purified from Pseudomonas testosteroni (ATCC 11996). The purification represents over 450-fold increase in specific activity. The amino acid composition of the enzyme was determined and found to be quite different from the composition of the malate dehydrogenases from animal sources as well as from Escherichia coli. Despite this difference, however, the data show that the enzymatic properties of the purified enzyme are remarkably similar to those of other malate dehydrogenases that have been previously studied. The Pseudomonas enzyme has a molecular weight of 74,000 and consists of two subunits of identical size. In addition to L-malate, the enzyme slowly oxidizes other four-carbon dicarboylates having an alpha-hydroxyl group of S configuration such as meso- and (-) tartrate. Rate-determining steps, which differ from that of the reaction involving L-malate, are discussed for the reaction involving these alternative substrates. Oxidation of hydroxymalonate, a process previously undetected with other malate dehydrogenases, is demonstrated fluorometrically. Hydroxymalonate and D-malate strongly enhance the fluorescence of the reduced nicotinamide adenine dinucleotide bound to the enzyme. The enzyme is A-stereospecific with respect to the coenzyme. Malate dehydrogenase is present in a single form in the Pseudomonas. The susceptibility of the enzyme to activation or inhibition by its substrates-particularly the favoring of the oxidation of malate at elevated concentrations-strongly resembles the properties of the mitochondrial enzymes. The present study reveals that whereas profound variations in chemical composition have occurred between the prokaryotic and eukaryotic enzymes, the physical and catalytic properties of malate dehydrogenase, unlike lactate dehydrogenase, are well conserved during the evolutionary process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号