共查询到20条相似文献,搜索用时 0 毫秒
1.
Cytoplasmic T antigens of mouse and human cells transformed by a simian virus 40 tsA mutant
下载免费PDF全文

Simian virus 40 T antigens accumulate in the cytoplasm of simian virus 40 tsA207 transformants of primary mouse kidney or human retinoblastoma cells grown at 40 degrees C in 10% serum. 相似文献
2.
Phosphorylation of T-antigen and control T-antigen expression in cells transformed by wild-type and tsA mutants of simian virus 40. 总被引:7,自引:13,他引:7
下载免费PDF全文

Chinese hamster lung (CHL) cells transformed by wild-type simian virus 40 (cell line CHLWT15) or transformed by the simian virus 40 mutants tsA30 (cell lines CHLA30L1 and CHLA30L2) or tsA239 (cell line CHLA239L1) were used to determine the rates of turnover and synthesis of the T-antigen protein and the rate of turnover of the phosphate group(s) attached to the T-antigen at both the permissive and restrictive temperatures. The phosphate group turned over several times within the lifetime of the protein to which it was attached, with the exception of the phosphate group in the tsA transformants at 40 degrees C, which turned over at the same rate as the T-antigen protein. The steady-state levels of the T-antigens (molecular weights, 92,000 [92K] and 17K) and the amount of simian virus 40-specific RNA was also determined in each of the lines. The CHLA30L1 line contained two to three times more early simian virus 40 RNA than the CHLA30L2 line; although neither line formed colonies in agar at 40 degrees C, CHLA30L1 overgrew a normal monolayer at 40 degrees C. The rate of 92K-T-antigen synthesis was 1.5 times faster in CHLA30L1 than in CHLA30L2 at 33 degrees C and 4 times faster at 40 degrees C. The different phenotype of these two presumably isogenic cell lines seem to be related to the levels of the T-antigens. The ratios of the 92K T-antigen to the 17K T-antigens were similar in the two lines. Transformed CHL cell lines, unlike transformed mouse 3T3 cell lines, were found to contain very small amounts of the 56K T-antigen. 相似文献
3.
Transformation of BALB/c-3T3 cells by tsA mutants of simian virus 40: effect of transformation technique on the transformed phenotype. 总被引:1,自引:8,他引:1
下载免费PDF全文

Simian virus 40 tsA-transformed BALB/c-3T3 cells isolated as foci of overgrowth in liquid medium were compared with those isolated as colonies in soft agar. Efficiencies of transformation were equivalent in the two procedures. Cells isolated as foci were able to grow in agar and vice versa. No difference in temperature sensitivity of the transformed phenotype was detected when tsA transformants selected in agar were compared with those selected as foci. The use of the two different transformation procedures, then, did not form the basis for generation of different transformed phenotypes, and transformants generated in both ways were dependent upon expression of the A gene for maintenance of the transformed state. 相似文献
4.
Toshinori Ide Yoshiaki Tsuji Tsuyoshi Nakashima Sadahiko Ishibashi 《Experimental cell research》1984,150(2)
Normal human diploid cells, TIG-1, ceased to proliferate at about the 62 population doubling level (PDL). Transformed clones isolated from TIG-1 cells infected with wtSV40 and those with tsA900 SV40 cultured at 34 °C were subcultured up to about 80 PDL. When the culture temperature of tsA SV40-transformed cells was shifted from 34 to 39.5 °C at 51 PDL, the growth curve of these transformed cells changed to that of normal young cells. When shifted to 39.5 °C after 62 PDL, cells immediately reached the end of their proliferative lifespan even under such favourable conditions for growth as low cell density in fresh medium. Growth of wtSV40-transformed cells did not change markedly at either temperature. These findings suggest that the clock of aging progresses in transformed cells as in normal cells, around 62 PDL being the senescent state in both cases, and that T-antigen of the tsA mutant of SV40 supports the extension of the lifespan of human cells only at the permissive temperature. 相似文献
5.
Structure of integrated simian virus 40 DNA in transformed mouse cells 总被引:10,自引:0,他引:10
The structure of integrated viral DNA sequences in four lines of simian virus 40 (SV40)-transformed Balb/c 3T3 cells has been probed using restriction endonucleases and the Southern (1975) transfer method. By considering data from a large number of restriction digests of DNA from each line, and by using a novel method of handling the data, we have constructed fairly detailed physical maps of the integrated DNA in each line. The most striking of the features of the maps described here is that none is easily explained by the integration of a single SV40 genome into the DNA of the host cell. Three of the lines contain at least two distinct integrated segments and the fourth contains a single segment longer than the viral DNA. Considered individually, only two of the seven segments that we have mapped might be unit length. Of the remaining five, two are longer and three are shorter than the viral genome. It seems likely, therefore, that at least in SV40-transformed Balb/c 3T3 cells simple, single integrations are rare.The endpoints of these seven segments of integrated DNA fall at many positions distributed over the entire genome, confirming earlier studies (Ketner &; Kelly, 1976; Botchan et al., 1976), which indicated that SV40 integration is not absolutely site-specific.Finally, one of the lines mapped here (SVB209) does not possess an intact SV40 early region, an observation that suggests the possibility that a normal viral large T polypeptide is not synthesized by this line. 相似文献
6.
Replication of Chinese hamster embryo cells transformed by temperature-sensitive T-antigen mutants of simian virus 40.
下载免费PDF全文

Chinese hamster embryo cells transformed by simian virus 40 temperature-sensitive T-antigen mutants replicated when confluent at 40.5 degrees C, regardless of the selection method, selection temperature, or virus strain used. 相似文献
7.
Expression of tumor-specific transplantation antigen in cell lines transformed by wild-type of tsA mutant simian virus 40.
下载免费PDF全文

The simian virus 40-induced tumor-specific surface antigen(s) (TSSA) and tumor-specific transplantation antigen(s) (TSTA)were detected in cells transformed by wild-type or temperature-sensitive mutant simian virus 40 by an antibody-mediated cytolytic assay for TSSA and an immunization test for TSTA. Cells transformed by tsA mutants, which lose their transformed phenotype when grown at nonpermissive temperatures, nonetheless do express TSSA and TSTA as well as T-antigen at both temperatures. 相似文献
8.
Characterization of simian cells tranformed by temperature-sensitive mutants of simian virus 40.
下载免费PDF全文

Seven lines derived from primary African green monkey kidney cells, which had survived lytic infection by wild-type simian virus 40 (SV40) or temperature-sensitive mutants belonging to the A and B complementation groups, were established. These cultures synthesize SV40 tumor (T) antigen constitutively and have been passaged more than 60 times in vitro. The cells released small amounts of virus even at high passage levels but eventually became negative for the spontaneous release of virus. Virus rescued from such "nonproducer" cells by the transfection technique exhibited the growth properties of the original inoculum virus. Four of the cell lines were tested for the presence of altered growth patterns commonly associated with SV40-induced transformation. Although each of the cell lines was greater than 99% positive for T antigen, none of the cultures could be distinguished from primary or stable lines of normal simian cells on the basis of morphology, saturation density in high or low serum concentrations, colony formation on plastic or in soft agar, hexose transport, or concanavalin A agglutinability. However, the cells could be distinguished from the parental green monkey kidney cells by a prolonged life span, the presence of T antigen, a resistance to the replication of superinfecting SV40 virus or SV40 viral DNA, and, with three of the four lines, an ability to complement the growth of human adenovirus type 7. These properties were expressed independent of the temperature of incubation. These results indicate that the presence of an immunologically reactive SV40 T antigen is not sufficient to ensure induction of phenotypic transformation and suggest that a specific interaction between viral and cellular genes and/or gene products may be a necessary requirement. 相似文献
9.
It was shown previously that mouse bone marrow cells transformed by simian virus 40 (SV40) show a reversible cell density-dependent phenotypic transition between the nonmacrophage (rapidly growing) and the macrophage (stationary) states; cells in low-density cultures are in the growing phase, express SV40 T antigen strongly as revealed by immunofluorescence, and lose typical macrophage properties such as immune phagocytosis; whereas cells in high-density cultures are in the stationary (nongrowing) phase, express SV40 T antigen weakly, and recover their macrophage properties (Takayama, 1980). In the hope of clarifying the relationship between T antigen, cell growth, and macrophage-specific cellular function, we examined the behavior at 33 and 39 degrees C of mouse bone marrow cells transformed by an SV40 gene A mutant (tsA640) whose mutation renders the molecular weight of 90K (large) T antigen temperature sensitive. The results presented in this paper suggest that functional large T antigen is required for cells in the stationary phase to initiate multiplication when transferred at lower density and is not necessary for a majority of them to maintain the nongrowing state (viability) at both high and lower cell densities, whereas it is required for cells in the growing phase to keep multiplying without losing their viability. The results also suggest that the functional large T antigen does not play a direct role in maintaining the cells as either phagocytic or nonphagocytic. It is also suggested that the physiological or tsA mutation-mediated arrest of growth may or may not be accompanied by induction and/or maintenance of cellular phagocytic activity depending on the culture state. 相似文献
10.
Na+ channels from lobster nerve membranes stored frozen in sucrose were incorporated into artificial liposomes. Crude soybean phospholipids or mixtures of purified phospholipids were suitable for reconstitution provided the latter included phosphatidylserine or another acidic phospholipid. The 22Na flux into the reconstituted vesicles was increased (2 to 3-fold) by veratridine (0.25 – 1 mM) or grayanotoxin I (50 –150 μM) and the increment was abolished by 10 nM tetrodotoxin (Ki = 2 nM). The reconstituted vesicles were inactivated after incubation for 15 min at 40° and exposure to 20 μM dicyclohexylcardobiimide inhibited by 80% the response to the drugs. 相似文献
11.
Properties of permissive monkey cells transformed by UV-irradiated simian virus 40. 总被引:7,自引:13,他引:7
下载免费PDF全文

African green monkey cells (CV1 line) were infected with UV-irradiated simian virus 40 (SV40), and permissive lines of stably transformed cells were established. These cell lines display the SV40 T-antigen and the growth characteristics typical of nonpermissive transformed cells (e.g., reduced cell density inhibition, reduced serum dependence, ability to overgrow normal cells, and colony formation in soft agar). The level of permissiveness to superinfecting SV40 is fully comparable with that of nontransformed CV1 and BSC-1 lines. The transformed monkey lines also support SV40 plaque production under agar. By Cot analysis, the transformed permissive cells contain, on an average, 1 to 2 SV40 genome equivalents, and the majority of the viral sequences are associated with the high-molecular-weight cellular DNA. No spontaneous production of infectious SV40 has been observed. The transformed permissive monkey cells failed to support the replication of SV40 tsA mutants at the restrictive temperature. To account for this, it is suggested that the gene A product has separate functions for transformation and initiation of viral DNA synthesis, and only the former function is expressed in the transformed permissive monkey cells. 相似文献
12.
Roles of the simian virus 40 tumor antigens in transformation of Chinese hamster lung cells: studies with simian virus 40 double mutants. 总被引:4,自引:1,他引:4
下载免费PDF全文

Simian virus 40 mutants containing both a tsA mutation (rendering the 90,000 molecular weight [90K] T-antigen thermolabile) and a deletion between 0.54 and 0.59 map units (reducing the size and the amount of the 20K t-antigen) were used to transform Chinese hamster lung cells. The frequencies of transformation by the double mutants were comparable to that of the tsA mutant alone by both the focus and agar assays except when the cells were serum depleted before infection. Growth-arrested cells were transformed (using the agar assay) by the deletion mutants at less than 2% the frequency found when the 20K t-antigen was normal. Growth arrest had very little effect on the temperature sensitivity of the resultant transformed cell lines whether or not the deletion was present. 相似文献
13.
Growth control in simian virus 40-transformed rat cells: temperature-independent expression of the transformed phenotype in tsA transformants derived by agar selection.
下载免费PDF全文

Fisher rat fibroblasts (FR 3T3), transformed with the tsA30 mutant of simian virus 40 and selected by colony formation in soft agar, maintained the transformed phenotype at high temperature, whereas most transformants isolated from foci were found to undergo a phenotypic reversion toward the normal state in their saturation density, ability to grow in soft agar, and rate of 2-deoxyglucose transport. The temperature-independent phenotype observed in agar-selected transformants was not due to a reversion of the viral mutation. These results, similar to those previously obtained with polyoma virus tsa mutants, further suggest that two distinct mechanisms may operate in both cases for maintaining the transformed phenotype. Immunofluorescence studies suggested a different regulation of T antigen synthesis in these two classes of transformants. 相似文献
14.
Membrane vesicles were prepared from mouse fibroblasts transformed by SV40 virus (SV3T3). Following disruption of the cells by nitrogen cavitation, the membrane vesicles were obtained by differential centrifugation. As measured by enzyme markers, they consist mainly of membrane from the plasma membrane and smooth and rough endoplasmic reticulum. The vesicles transport Pi by two separate, mediated systems: one is independent of Na+, and the other is secondary active transport driven by a Na+ gradient. Electrical and chemical energy can be provided by a Na+ gradient to drive the concentrative uptake of Pi by the vesicles, one or both forces being used to energize transport. Evidence is provided that both the electrical and chemical potentials produced by the asymmetric distribution of Na+ across the membrane of SV3T3 membrane vesicles are utilized to concentrate phosphate in the vesicles. Phosphate transport by the vesicles cannot be accounted for by a small contamination of this fraction with mitochondria (1 to 4%). The Pi transport properties of the membrane vesicles differ from those of the fraction enriched in mitochondria in the following respects: their kinetic properties, and their responses to a Na+ gradient, N-ethylmaleimide, mersalyl, and succinate/acetate. However, the membrane vesicles share some properties of Pi transport with mitochondria. Cyanide, azide, oligomycin, 2,4-dinitrophenol, and carbonyl cyanide m-cholophenylhydrazone, inhibitors of Pi transport by mitochondria, also inhibit membrane vesicle, Pi transport. The vesicles retain all the features of Pi transport by SV3T3 cells that have been examined. They provide a simplified system for a determination of the details of the mechanism of Pi transport under conditions where transport is dissociated from intracellular reactions and in the presence of a defined electrochemical driving force. 相似文献
15.
Characterization of different tumor antigens present in cells transformed by simian virus 40. 总被引:40,自引:0,他引:40
In addition to large T and small t antigens, cells transformed by simian virus 40 (SV40) commonly contain other proteins which specifically immunoprecipitate with SV40 anti-T serum and which are not detected in untransformed cells. The additional tumor antigens (T-Ags) fall into two groups: those having a close structural relationship with normal SV40 T-Ags, and those unrelated to large T and small t. The latter are probably nonviral T-Ags (NVT-Ags). The NVT-Ags comprise a family of proteins of molecular weight 50,000-55,000. Fingerprint analysis shows that NVT-Ags have few if any peptides in common with large T or small t, and that they lack the amino terminal tryptic peptide and the peptides unique to small t. NVT-Ags from different species have different fingerprints, but those isolated from different transformants of the same cell line are identical. The size of NVT is unaltered in cells transformed by mutants of SV40 with deletions in the region 0.60-0.55 map units. The mRNA for NVT does not hybridize to SV40 DNA. The other forms of T-Ag isolated from transformed cells fall into three classes: shortened forms of large T (truncated large T); multiple species of T-Ag with molecular weights very similar to, but distinct from, those of normal large T (large T doublets and triplets); and elongated forms of large T (super T). These proteins all contain the normal amino terminus of SV40 T-Ags, and the truncated forms of large T lack peptides from the carboxy terminal half of large T. One species of super T (molecular weight 130,000) contains only those methionine tryptic peptides present in normal large T, although it may contain some peptides in more than one copy. 相似文献
16.
Accumulation of cells with 4N DNA content at nonpermissive temperature in rat embryo diploid cells transformed by tsA mutant of simian virus 40 总被引:1,自引:0,他引:1
Primary rat embryo cells were transformed by a tsA mutant (tsA640) of simian virus 40 (SV40). Proliferation of all four independent diploid transformants was suppressed at a nonpermissive temperature (40.3 degrees C), being accompanied by a marked increase in the fraction of cells with a 4N DNA content (a 4N peak in the flow cytofluorogram). However, in this case, the fraction of cells with a 2N DNA content (a 2N peak in the flow cytofluorogram) was preserved. Both effects (suppression of proliferation and increase in the 4N peak) diminished when transformed cells were superinfected with wild-type SV40. The increased 4N peak was preserved, albeit not completely, for at least 24 hours, when cells were further incubated in the presence of hydroxyurea at the nonpermissive temperature. On the other hand, the preserved 2N peak all but disappeared within 24 hours, when cells were further incubated in the presence of colcemid at the nonpermissive temperature. These results suggest that the thermolabile large T antigen of SV40 directly or indirectly induces an accumulation of cells with a 4N DNA content, at the nonpermissive temperature, by prolonging the G2 (and/or late S) period. 相似文献
17.
18.
Role of simian virus 40 gene A function in maintenance of transformation. 总被引:35,自引:73,他引:35
下载免费PDF全文

Mouse, hamster, and human cells were transformed at the permissive temperature by mutants from simian virus 40 (SV40) complementation group A in order to ascertain the role of the gene A function in transformation. The following parameters of transformation were monitored with the transformed cells under permissive and nonpermissive conditions: morphology; saturation density; colony formation on plastic, on cell monolayers, and in soft agar; uptake of hexose; and the expression of SV40 tumor (T) and surface (S) antigens. Cells transformed by the temperature-sensitive (ts) mutants exhibited the phenotype of transformed cells at the nonrestrictive temperature for all of the parameters studied. However, when grown at the restrictive temperature, they were phenotypically similar to normal, untransformed cells. Growth curves showed that the (ts) A mutant-transformed cells exhibited the growth characteristics of wild-type virus-transformed cells at the permissive temperature and resembled normal cells when placed under restrictive conditions. There were 3-to 51-fold reductions in the levels of saturation density, colony formation, and uptake of hexose when the mutant-transformed cells were the elevated temperature as compared to when they were grown at the permissive temperature. Mutant-transformed cells from the nonpermissive temperature were able to produce transformed foci when shifted down to permissive conditions, indicating that the phenotypically reverted cells were still viable and that the reversion was a reversible event. SV40 T antigen was present in the cells at both temperatures, but S antigen was not detected in cells maintained at the nonpremissive temperature. All of the wild-type virus-transformed cells exhbited a transformed cells exhibited a transformed phenotype when grown under either restrictive or nonrestrictive conditions. Thers results indicate that the SV40 group A mutant-transformed cells are temperature sensitive for the maintenance of growth properties characteristics of transformation. Virus rescued from the mutant-transformed cells by the transfection method was ts, suggesting that the SV40 gene A function, rather than a cellular one, is responsible for the ts behavior of the cells. 相似文献
19.
The structure and expression of the integrated viral DNA in mouse cells transformed by simian virus 40 总被引:5,自引:0,他引:5
P W Rigby W Chia C E Clayton M Lovett 《Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain)》1980,210(1180):437-450
20.
Biological and biochemical studies of cells transformed by simian virus 40 temperature-sensitive gene A mutants and A mutant revertants. 总被引:3,自引:0,他引:3
下载免费PDF全文

The growth properties of hamster cells transformed by wild-type Simian virus 40 (SV40), by early SV40 temperature-sensitive mutants of the A complementation group, and by spontaneous revertants of these mutants were studied. All of the tsA mutant-transformed cells were temperature sensitive in their ability to form clones in soft agar and on monolayers of normal cells except for CHLA-30L1, which was not temperature sensitive in the latter property. All cells transformed by stable revertants of well-characterized tsA mutants possessed certain growth properties in common with wild-type-transformed cells at both temperatures. Virus rescued from tsA transformants including CHLA30L1 was temperature sensitive for viral DNA replication, whereas that rescued from revertant and wild-type transformants was not thermolabile in this regard. T antigen present in crude extracts of tsA-transformed cells including CHLA30L1, grown at 33 degreeC, was temperature sensitive by in vitro immunoassay, whereas that from wild-type-transformed cells was relatively stable. T antigen from revertant transformants was more stable than the tsA protein. Partially purified T antigen from revertant-transformed cells was nearly as stable as wild-type antigen in its ability to bind DNA after heating at 44 degrees C, whereas T antigen from tsA30 mutant-transformed cells was relatively thermolabile. These results further indicate that T antigen is a product of the SV40 A gene. Significantly more T antigen was found in extracts of CHLA30L1 grown to high density at the nonpermissive temperature than in any other tsA-transformed cell similarly grown. This is consistent with the suggestion that the amount of T antigen synthesized in CHLA30L1 is large enoughto allow partial expression of the transformed phenotype at the restrictive temperature. Alternatively, the increase in T antigen concentration may be secondary to one or more genetic alterations that independently affect the transformed phenotype of these cells. 相似文献