首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
The central nervous system of Ixodes scapularis is fused into a single compact synganglion. The esophagus runs through the synganglion and divides it into supraesophageal and subesophageal parts. The supraesophageal portion contains a single protocerebrum with four pairs of glomeruli, paired optic lobes and cheliceral ganglia, and a single stomodeal bridge. The subesophageal portion contains a centrally located network of commissures and connectives, a pair of palpal ganglia, paired olfactory lobes of the first pedal ganglia, four pairs of pedal ganglia, and a single opisthosomal ganglion. A retrocerebral organ complex (ROC) in close vicinity of the digestive tract, as described in some other tick species, apparently is lacking. Perhaps the function of the ROC is performed by the paired, large, ganglion-like bodies that lie anterolaterad to the cheliceral ganglia. The rind, which is formed from the neuronal somata and glial cells, surrounds the central fibrous core or neuropile. Neurosecretory cells (NSC) are distinct among rind cells due to their large size and concentration of cytoplasmic neurosecretions. NSC are present throughout the synganglion, although the subesophageal portion contains larger groups of these cells. Histological serial sections, stained with Meola's (Trans Am Microsc Soc 89:66-71, '70) paraldehyde fuchsin (PAF) procedure revealed 24 PAF-stained, putative neurosecretory regions in the synganglion of virgin, unfed females. All of these regions appear to be connected and associated with the nearest ganglion and are correspondingly named. Eighteen PAF-positive regions occur in the synganglion. In addition, PAF-negative (green-stained) cells occupy 6 distinct regions in the synganglion of unfed, unmated females.  相似文献   

2.
Histological techniques and paraldehyde-fuchsin (PAF) staining were used to study the synganglion and to locate neurosecretory regions and neurosecretion within the synganglion of the chicken mite, Dermanyssus gallinae. The synganglion, which is formed internally by neuropilar ganglia, gives rise to a single esophageal and paired cheliceral, palpal, pedal (I-IV), and opisthosomal nerves. The neuropilar ganglia are interconnected by commissures and connectives within the synganglion. Twelve PAF-positive neurosecretory regions are present in unfed protonymphs, unfed deutonymphs, virgin males and females, and mated males. There are 11 PAF-positive neurosecretory regions in larvae, 24–72 hours post-fed deutonymphs and mated females. Neurosecretory regions in these developmental stadia are described in relation to their positions adjacent to individual neuropilar ganglia.  相似文献   

3.
FMRFamide-like immunoreactivity was studied in the argasid tick Ornithodoros parkeri and the ixodid tick Dermacentor variabilis using immunocytochemistry based on the peroxidase-antigeroxidase method. FMRFamide-like immunoreactive cells are widely distributed in various regions of the tick synganglion including protocerebral, cheliceral, stomodeal, palpal, pedal I–IV, and opisthosomal regions in both species. However, there is one layer of immunoreactive cells located on the dorsal surface of the postoesophageal part of the synganglion that is found only in D. variabilis. Besides the immunoreactivity within the cell body and its axons, the neuropile and the neural lamella (the extracellular sheath of the synganglion) are rich in immunoreactive materials. Some coxal muscles are innervated by the FMRFamide-like immunoreactive processes of the nerve from the pedal ganglion.  相似文献   

4.
The synganglion of Dermacentor variabilis Say is a single nerve mass, condensed around the esophagus and within the periganglionic sinus of the ciculatory system. Protocerebral, cheliceral (including stomodeal bridge), and pedipalpal ganglia lie in the pre-esophageal portion of the nerve mass and bear optic, cheliceral, and pedipalpal nerves respectively. The unpaired stomodeal and the recurrent nerve which forms the hyper-esophageal ganglion arise from the stomodeal bridge. Paired primary and accessory nerves to the retrocerebral organ complex have mixed protocerebral-cheliceral origins. Pedal ganglia (including ventral olfactory lobes of pedal ganglia I) and composite opisthosomal ganglion lie in the post-esophageal nerve mass and bear pedal nerve trunks and two pairs of opisthosomal nerves respectively. Internally, the synganglion consists of cellular rind and fibrous core. A welldefined neurilemma with a laminar matrix covers nerve mass and peripheral nerves. The rind contains the somata of ganglionic neurons and ensheathing glial cells and is restricted to the synganglion mass. It is limited by two specialized glial layers, the external perineurium and internal subperineurium. Discrete glomerular formations are present within the protocerebrum and olfactory lobes. Olfactory glomeruli located in pedal ganglia I are associated with a pair of globuli cell groups. Possible physiological relationships between anatomical specializations of the synganglion, extraneural sinuses and circulating hemocytes are considered. The evolutionary significances of condensation in the stomatogastric neuropile regions and throughout the synganglion, together with the simplification and loss of glomerular formations, are discussed.  相似文献   

5.
Immunocytochemistry was used to describe the distribution of serotonin-like immunoreactive (5HT-IR) neurons and neuronal processes in the central nervous system (CNS), the synganglion, of two ixodid tick species; the winter tick, Dermacentor albipictus and the lone star tick, Amblyomma americanum. 5HT-IR neurons were identified in the synganglion of both tick species. D. albipictus had a significantly higher number of 5HT-IR neurons than A. americanum. The labeling pattern and number of 5HT-IR neurons were significantly different between sexes in D. albipictus, but were not significantly different between sexes in A. americanum. 5HT-IR neurons that were located in the cortex of the synganglion projected processes into the neuropils, invading neuromeres in the supraesophageal ganglion including the protocerebrum, postero-dorsal, antero-dorsal and cheliceral neuromeres. In the subesophageal ganglion, dense 5HT-IR neuronal processes were found in the olfactory lobes, pedal, and opisthosomal neuromeres. Double-labeling with neurobiotin backfilled from the first leg damaged at the Haller’s organ revealed serotoninergic neuronal processes surrounding the glomeruli in the olfactory lobes. The high number of the 5HT-IR neurons and the extensive neuronal processes present in various regions of the synganglion suggest that serotonin plays a significant role in tick physiology. This article reports the results of research only. Mention of a proprietary product does not constitute an endorsement or a recommendation by the USDA for its use. The U.S. Government’s right to retain a non-exclusive, royalty free license in and to any copyright is acknowledged.  相似文献   

6.
Immunocytochemical staining based on a peroxidase-antiperoxidase method showed neurosecretory cells (NSC) reactive to bovine insulin in five of 18 paraldehyde fuchsin-positive neurosecretory regions (NSR) in the synganglion of unfed adult Dermacentor variabilis. This is the first report of a neuropeptide in an ixodid tick. The insulin-specific immunoreactive cells included the posterior medial group of the protocerebral center, posterior group of dorsal opisthosomal center, anterior lateral group of the dorso-lateral cheliceral center, dorsal group of the frontal stomodeal center, and anterior group of the ventral palpal center. After feeding and mating, females no longer had immunoreactive cells in three of five NSR found in virgin, unfed females. However, two cells of the posterior group in dorsal opisthosomal center and anterior lateral group of the dorso-lateral cheliceral center remained immunoreactive throughout feeding. Fed, mated males continued to display immunoreactive cells in four of five NSR found in the virgin, unfed males. All developmental stages of nymphs examined had insulin-specitic immunoreactive cells in two of the five NSR found in unfed adults, including two positively stained cells of the posterior group in dorsal opisthosomal center and anterior group of ventral palpal neurosecretory center.  相似文献   

7.
Small arthropods show a highly condensed central nervous system, which is accompanied by the loss of the ancestral metameric organization. This results in the formation of one solid mass, a synganglion. Although numerous studies investigated the morphology of Archegozetes longisetosus, the organization of the nervous system is to date unknown. Using synchrotron X‐ray microtomography, we investigated the organization of the nervous system in the adult stage and the development of the synganglion over all five free‐living life stages (larva, proto‐, deuto‐, tritonymph and adult). The general morphology of the synganglion resembles that of other studied mites (in the classic sense) and ticks, being subdivided into a sub‐ and supraesophageal region, and consisting of cortex and neuropil. All nerves entering the walking legs except the first consist of two rami. This split is not based on a functional division into a motor and a sensory ramus, but both rami contain motor and sensory neurites. Within the synganglion, we found structures that resemble the ancestral metameric organization of the nervous system of arthropods. The development of the synganglion of A. longisetosus shows a more or less linear increase in volume, but cortex and neuropil grow at different rates over the five life stages. Between the second and third nymphal stage, the volume of the neuropil increases at a faster rate than the cortex. J. Morphol. 277:537–548, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
Using immunocytochemistry based on a monoclonal antibodyagainst Diploptera punctata allatostatin I and horseradishperoxidase-diaminobenzidine reaction, the presence of allatostatin-likeimmunoreactivity is demonstrated in the synganglion of Dermacentorvariabilis females. The immunoreactive cells are located in theprotocerebral, cheliceral, palpal, stomodeal, postesophageal, and opisthosomalregions of the synganglion. Strongly immunoreactive granules accumulate in theboundary area of the subganglia in the preesophageal part of the synganglion.This suggests that the immunoreactive materials may be released directly fromthere. In addition, a putative neurohemal area is found in the anterior area ofthe opisthosomal ganglion, where abundant immunoreactive materials are stored.Weak immunoreactivity and fewer immunoreactive cells are seen in newly moltedfemales compared with one month old, unfed females. Thus, the immunoreactiveproducts may be depleted during molting and synthesized in females beforefeeding.  相似文献   

9.
Histological observations using specialized techniques reveal neurosecretory cells in 18 centers throughout the rind (cortex) of the central nerve mass or synganglion of Dermacentor variabilis. Many cells contribute to complicated networks of neurosecretory pathways and tracts in pre- and post-esophageal portions of the synganglion. The four types of neurohemal-neuroendocrine associations found in Dermacentor resemble structures found in soft ticks (Argasidae) and in other Arachnida, but are more diverse than those described from any other single species. Neurosecretory terminals are distributed diffusely and in two concentrated associations within the perineurium of the synganglion and major peripheral nerves. Terminals are also distributed in the perineurial layers of lateral segmental organs which lie in the general hemocoel at the level of the pedal nerves. A retrocerebral organ complex surrounds the esophagus at its junction with the midgut. The complex includes dorsal and ventro-lateral lobes (containing neurosecretory terminals and intrinsic secretory cells) and the proventricular (neurohemal) plexus. This plexus seems to be a modified (concentrated) cardioglial association. Cardioglial associations are also formed by the neurosecretory innervation of vascular walls of the dorsal aorta and circulatory sinuses which envelope the synganglion and major peripheral nerves. Inferential considerations of neurosecretory and endocrine interactions in the Acari are based on these anatomical and histological data which also provide the basis for evolutionary considerations of anatomical relationships and specializations in the neurosecretory systems of other Arachnida.  相似文献   

10.
Neurosecretory cells are arranged in 16 NSC centers in the different regions of the brain of O. tholozani. The component cells belong to 13 different types, of which five types are paraldehyde fuchsin positive and the remaining types are negative. Three of these cell types are here described for the first time. Some of these NSC show an affinity to certain localities inside the brain. Cells comprising a neurohaemal organ were found near the exit of the esophagus.  相似文献   

11.
土壤高钙胁迫是干旱-半干旱区影响树木生长的重要环境因子,为阐明干旱-高钙对树木非结构性碳水化合物(Non-structural carbohydrate,NSC)的含量和分配的影响,以麻栎幼苗为研究对象,阐明干旱和干旱-高钙条件对其生长、光合特征及非结构碳水化合物含量与分配的影响。结果表明:干旱显著降低麻栎幼苗生物量,而干旱-高钙处理较干旱进一步降低了麻栎生物量;干旱-高钙在处理初期就能显著抑制麻栎幼苗净光合速率,处理3个月后干旱和干旱-高钙处理的麻栎幼苗光合速率均显著低于对照;干旱处理麻栎幼苗平均非结构性碳水化合物含量增加19.90%,干旱-高钙处理麻栎幼苗整株的平均NSC含量则显著降低25.62%;干旱和干旱-高钙对麻栎幼苗NSC在不同器官间分配也产生不同影响,干旱条件下麻栎幼苗茎中NSC含量增加最多,较对照增加了52.34%,且淀粉的增高幅度(61.94%)高于可溶性糖(25.53%),干旱、高钙共同作用下麻栎幼苗全株平均NSC含量显著减少的同时,NSC积累在叶中,叶NSC含量显著提高32.31%,根、茎中NSC含量则分别显著降低了49.38%和35.31%。干旱-高钙胁迫降低麻栎幼苗NSC含量,且会减少NSC向枝干和根系分配。  相似文献   

12.
Neuropeptides are crucial regulators of development and various physiological functions but little is known about their identity, expression and function in vectors of pathogens causing serious diseases, such as ticks. Therefore, we have used antibodies against multiple insect and crustacean neuropeptides to reveal the presence of these bioactive molecules in peptidergic neurons and cells of the ixodid tick Rhipicephalus appendiculatus. These antibodies have detected 15 different immunoreactive compounds expressed in specific central and peripheral neurons associated with the synganglion. Most central neurons arborize in distinct areas of the neuropile or the putative neurohaemal periganglionic sheath of the synganglion. Several large identified neurons in the synganglion project multiple processes through peripheral nerves to form elaborate axonal arborizations on the surface of salivary glands or to terminate in the lateral segmental organs (LSO). Additional neuropeptide immunoreactivity has been observed in intrinsic secretory cells of the LSO. We have also identified two novel clusters of peripheral neurons embedded in the cheliceral and paraspiracular nerves. These neurons project branching axons into the synganglion and into the periphery. Our study has thus revealed a complex network of central and peripheral peptidergic neurons, putative neurohaemal and neuromodulatory structures and endocrine cells in the tick comparable with those found in insect and crustacean neuroendocrine systems. Strong specific staining with a large variety of antibodies also indicates that the tick nervous system and adjacent secretory organs are rich sources of diverse neuropeptides related to those identified in insects, crustaceans or even vertebrates. This work was supported by Slovak grant agencies: Agentúra na podporu vyskumu a vyvoja (APVV-51-039105) and Vedecká grantová agentúra (VEGA 2-6090-26 and 2/6155/26).  相似文献   

13.
李永刚  张元明 《生态学报》2018,38(23):8408-8416
苔藓结皮作为生物土壤结皮演替的最高阶段和生物量的最主要贡献者,具有很强的环境适应性,对维持荒漠地表稳定和改善微环境具有重要作用。非结构性碳水化合物是植物重要的组成部分,能够抵御环境胁迫对植物造成的损伤。目前,荒漠藓类植物非结构碳水化合物对干旱的响应机制尚不清楚。选取古尔班通古特沙漠南缘和腹地苔藓结皮中优势藓类植物齿肋赤藓(Syntrichia caninervis)为研究对象,对其在复水后脱水过程中非结构性碳水化合物含量变化特征进行了分析。结果表明:植株含水量在脱水24 h内下降趋势显著,此后趋于稳定。可溶性总糖、蔗糖、果糖、淀粉含量在脱水1h内显著下降。可溶性总糖、蔗糖、果糖、淀粉含量在脱水2—16 h没有显著的变化。但16—24 h可溶性总糖、蔗糖、果糖、淀粉含量出现显著增加,脱水24—48 h,腹地齿肋赤藓可溶性总糖、蔗糖、果糖、淀粉含量缓慢下降到复水前水平,而南缘可溶性总糖、蔗糖、果糖含量低于复水前水平。复水前不同地区齿肋赤藓非结构性碳水化合物含量存在显著性差异,脱水结束后两个地区齿肋赤藓非结构碳水化合物含量无显著差异。结果说明齿肋赤藓在不同地区其非结构性碳水化合物含量不同,在同一脱复水过程中不同地区齿肋赤藓非结构性碳水化合物含量表现出不同的变化趋势,主要原因是可溶性糖含量对脱水过程中水分胁迫的响应不同。齿肋赤藓脱水过程中非结构性碳水化合物的研究,有助于抗旱非维管植物在干旱环境中从降雨湿润进入干旱过程的适应策略研究。  相似文献   

14.
Low temperatures are associated high‐altitude treelines, but the functional mechanism of treeline formation remains controversial. The relative contributions of carbon limitation (source activity) and growth limitation (sink activity) require more tests across taxa and regions. We examined temporal variations of mobile carbon supply in different tissues of Abies fargesii across treeline ecotones on north‐ and south‐facing slopes of the Qinling Mountains, China. Non‐structural carbohydrate (NSC) concentrations in tissues along the altitudinal gradient on both slopes changed significantly in the early and late growing season, but not in the mid‐growing season, indicating the season‐dependent carbon supply status. Late in the growing season on both slopes, trees at the upper limits had the highest NSC concentrations and total soluble sugars and lowest starch concentrations compared to trees at the lower elevations. NSC concentrations tended to increase in needles and branches throughout the growing season with increasing elevation on both slopes, but declined in roots and stems. NSC concentrations across sampling dates also indicated increases in needles and branches, and decreases in roots and stem with increasing elevation. Overall altitudinal trends of NSC in A. fargesii revealed no depletion of mobile carbon reserves at upper elevation limits, suggesting limitation of sink activity dominates tree life across treeline ecotones in both north‐ and south‐facing slopes. Carbon reserves in storage tissues (especially roots) in the late growing season might also play an important role in winter survival and early growth in spring at upper elevations on both slopes, which define the uppermost limit of A. fargesii.  相似文献   

15.
Resprouting is an ancestral trait in angiosperms that confers resilience after perturbations. As climate change increases stress, resprouting vigor is declining in many forest regions, but the underlying mechanism is poorly understood. Resprouting in woody plants is thought to be primarily limited by the availability of non-structural carbohydrate reserves (NSC), but hydraulic limitations could also be important. We conducted a multifactorial experiment with two levels of light (ambient, 2–3% of ambient) and three levels of water stress (0, 50 and 80 percent losses of hydraulic conductivity, PLC) on two Mediterranean oaks (Quercus ilex and Q. faginea) under a rain-out shelter (n = 360). The proportion of resprouting individuals after canopy clipping declined markedly as PLC increased for both species. NSC concentrations affected the response of Q. ilex, the species with higher leaf construction costs, and its effect depended on the PLC. The growth of resprouting individuals was largely dependent on photosynthetic rates for both species, while stored NSC availability and hydraulic limitations played minor and non-significant roles, respectively. Contrary to conventional wisdom, our results indicate that resprouting in oaks may be primarily driven by complex interactions between hydraulics and carbon sources, whereas stored NSC play a significant but secondary role.  相似文献   

16.
The role of the synganglion in oocyte development in Ornithodoros parkeri was investigated by ligation and transplantation experiments. Ligation between legs 2 and 3 to isolate the synganglion from the ovary and ligation between legs 1 and 2 to keep both the synganglion and the ovary in the posterior ends were performed on mated females on different days after feeding. Results show that vitellogenesis was inhibited significantly if the synganglion was separated from the ovary within the first few days after feeding. However, transplantation of synganglia from 3 kinds of donors (unfed virgin, fed virgin, and fed mated females) into the synganglionless posterior portions induced vitellogenesis and oocyte development to final maturation. The supra- and subesophageal parts of the synganglion showed a similar gonadotropic activity after each was transplanted separately into the ligated synganglionless posterior portions. These results indicate that the synganglion produces an egg development stimulation factor (EDSF) that possibly is present in a storage form in unfed and/or fed virgin females in which vitellogenesis has not progressed and is released in females after feeding and mating. However, the characterization of EDSF and precise sites of production and storage await further investigation.  相似文献   

17.
Sheath rot disease (ShR) caused by Sarocladium oryzae (S. oryzae) infection is an emerging disease that causes severe yield loss by restricting the translocation of non‐structural carbohydrates (NSC). Potassium (K) nutrition plays a critical role in disease resistance and the exportation of NSC. However, the physiological mechanisms of K with respect to ShR have not been thoroughly elucidated to date. The objectives of this study were to reveal the mechanisms by which K increases ShR resistance by regulating NSC translocation of rice, therefore, a field experiment combined with an inoculation experiment was conducted. We demonstrate that ShR disease incidence and disease index decreased dramatically with an increasing K application. K deficiency sharply induced the accumulation of NSC in the flag leaf (FL) and flag leaf sheath (FLS) under S. oryzae infection condition, which reduced the contribution of transferred NSC to final yield. A permutational multivariate analysis showed that K deficiency had a greater (49.0%, P < 0.001) effect on the NSC content variation in FL than that of S. oryzae infection (15.0%, P < 0.001). S. oryzae infection dramatically increased the difference in apparent transferred mass of NSC and cell membrane injury of diseased organs between K‐deficient and K‐sufficient rice. Finally, we demonstrate that cell membrane injury was a limiting factor imposed by K deficiency, which restricts the export of NSC from source organs. This work highlights the importance of K in improving ShR resistance by regulating NSC translocation (particularly the stem NSC).  相似文献   

18.
The endocytobionts from ovaries of partially engorged femaleDermacentor reticulatus ticks, inoculated intracoelomally into females of three tick species,D. reticulatus, Ixodes ricinus andHaemaphysalis inermis, caused considerable morphological alterations in the examined cells and tissues of the synganglion, fat body, tracheal complex and ovary of these recipients.  相似文献   

19.
Engorged nymphs (Rhipicephalus appendiculatus) were inoculated parenterally with Thogoto (THO) virus (approximately 1 microl per nymph; 10(6)-10(7) PFU/ml). The adult females which resulted were used as the source of infected ticks for this study. Hemolymph, salivary glands, synganglion, gut, ovary, and Malpighian tubules were collected on each day of the blood meal and titrated for THO virus by plaque assay. The percent of tissues infected with virus was 16% or less on the day of attachment. Percent infection rose for all tissues throughout 6-7 days of feeding, reaching 40-100% infection during the rapid phase of engorgement. For the first 4 days of feeding, virus titer in the synganglion was higher than in salivary glands (means of 6.4-34.7 PFU/synganglion and 1.6-8.8 PFU/salivary gland pair). From days 5-7, virus titer was generally higher in the salivary gland than the synganglion (means of 422, 408, and 817 PFU/gland pair and means of 62, 811, and 9 PFU/synganglion). However, because a salivary gland pair is much heavier than a synganglion, the virus concentration in the synganglion was much higher than in the salivary gland during the slow phase of feeding. During the rapid phase of feeding, the difference in virus titer between the synganglion and salivary gland reduced. This difference between the early and late stages of feeding may explain why a previous study [J. Gen. Virol. 70 (1989) 1093], using immunofluorescence and immuno-gold labelling, failed to detect virus in the salivary gland early in feeding. These data provide evidence to explain that R. appendiculatus can transmit THO virus within 24h of attachment, an important epidemiological finding.  相似文献   

20.
秦岭东段栓皮栎叶片非结构性碳水化合物含量的季节动态   总被引:1,自引:0,他引:1  
研究树木叶片非结构性碳水化合物(Nonstructural carbohydrate,NSC)组分的季节变化是掌握树木碳代谢规律的基础,也有利于判断以往研究仅凭生长季单次或几次(5次)的取样方法是否存在一定局限性。以秦岭东段栓皮栎(Quercus variabilis Blume)优势群落为研究对象,在其分布的海拔上下限(650 m和970 m),于2016年5月至2017年5月,通过月尺度周期性取样(共计9次),测定栓皮栎叶片NSC及其组分含量,并观测同期叶片物候变化。结果显示:(1)栓皮栎叶片NSC及其组分季节变化差异显著(P0.05),可溶性糖、淀粉和NSC变异系数分别为20.99%、52.28%和25.96%;(2)整体而言,栓皮栎叶片NSC最小值在展叶初期(3月末—4月初,5%左右),最大值在展叶末期(5月上旬,12%左右),之后NSC呈持续下降趋势。不同海拔NSC极值出现时间略有不同,叶片物候可能是影响年内极值的主要原因。(3)栓皮栎叶片NSC组成以可溶性糖为主(65%),这可能是树种在暖温带所采取的生长策略。(4)海拔对栓皮栎叶片NSC及其组分影响差异不显著,低海拔栓皮栎叶片NSC及其组分含量略大于高海拔。研究结果,栓皮栎叶片NSC含量存在明显的季节波动,适当加大NSC采样频率对于正确理解树木碳代谢十分必要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号