首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Muscarinic and nicotinic cholinergic receptors and choline acetyltransferase activity were studied in postmortem brain tissue from patients with histopathologically confirmed Parkinson's disease and matched control subjects. Using washed membrane homogenates from the frontal cortex, hippocampus, caudate nucleus, and putamen, saturation analysis of specific receptor binding was performed for the total number of muscarinic receptors with [3H]quinuclidinyl benzilate, for muscarinic M1 receptors with [3H]pirenzepine, for muscarinic M2 receptors with [3H]oxotremorine-M, and for nicotinic receptors with (–)-[3H]nicotine. In comparison with control tissues, choline acetyltransferase activity was reduced in the frontal cortex and hippocampus and unchanged in the caudate nucleus and putamen of parkinsonian patients. In Parkinson's disease the maximal binding site density for [3H]quinuclidinyl benzilate was increased in the frontal cortex and unaltered in the hippocampus, caudate nucleus, and putamen. Specific [3H]pirenzepine binding was increased in the frontal cortex, unaltered in the hippocampus, and decreased in the caudate nucleus and putamen. In parkinsonian patients Bmax values for specific [3H]oxotremorine-M binding were reduced in the cortex and unchanged in the hippocampus and striatum compared with controls. Maximal (–)-[3H]nicotine binding was reduced in both the cortex and hippocampus and unaltered in both the caudate nucleus and putamen. Alterations of the equilibrium dissociation constant were not observed for any ligand in any of the brain areas examined. The present results suggest that both the innominatocortical and the septohippocampal cholinergic systems degenerate in Parkinson's disease. The reduction of cortical [3H]oxotremorine-M and (–)-[3H]nicotine binding is compatible with the concept that significant numbers of the binding sites labelled by these ligands are located on presynaptic cholinergic nerve terminals, whereas the increased [3H]pirenzepine binding in the cortex may reflect postsynaptic denervation supersensitivity.  相似文献   

2.
Abstract: Specific binding of tritiated dopamine, spiperone, and N-propylnorapomorphine was examined in subcellular fractions from bovine caudate nucleus. All fractions contained at least two sets of specific binding sites for [3H]spiperone (KD 1aPP= 0.2 nM, KD 2aPP= 2.2 nM), the higher affinity sites accounting for one-third to one-eighth of the total. [3H]Spiperone binding was slightly enriched over the total particulate fraction in P2, P3, SPM, and a crude fraction of synaptic mitochondria. A microsomal subfraction (P3B2) exhibited the highest specific binding capacity obtained, representing a fourfold enrichment over the total particulate fraction. [3H]Dopamine exhibited apparent binding to a single class of high-affinity sites in all fractions examined (KDaPP= 4.0 nM). A greater than twofold enrichment was observed in all fractions except myelin and P3, with a fivefold enrichment in SPM and P3B2. At least two classes of receptors were labeled by [3H]-N-propylnorapomorphine (KD 1aPP= 0.55 nM, KD 2aPP= 20 nM), using 50 nM-spiperone together with 100 nM-dopamine to define nonspecific binding. Although binding to the higher affinity site was displaced by spiperone, and lower affinity binding by dopamine, comparison of receptor densities with values obtained by using [3H]spiperone and [3H]dopamine directly suggested that [3H]-N-propylnorapomorphine labeled additional sites. We have also examined a postsynaptic membrane (PSM) fraction obtained from SPM by successive extraction with salt and EGTA followed by sonication and separation on a density gradient. [3H]Spiperone binding in PSM was enriched two- to threefold over unfractionated SPM with a concomitant decrease in [3H]dopamine binding. The enrichment in spiperone receptors was almost entirely due to an increase in the number of lower affinity binding sites, suggesting that these sites may be associated with the postsynaptic membrane.  相似文献   

3.
The interactions of S-nitrosoglutathione (GSNO) with the ionotropic glutamate receptors were studied on synaptic membranes isolated from the pig cerebral cortex. GSNO displaced the binding of [3H]glutamate, 3-[(R)-2-carboxypiperazin-4-yl][3H]propyl-1-phosphonate ([3H]CPP), a competitive N-methyl-D-aspartate (NMDA) antagonist, and [3H]kainate, with IC50 values in the low micromolar range. It failed to displace (S)-5-fluoro-[3H]willardiine, a selective agonist of 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. Reduced and oxidized glutathione were almost as effective as GSNO in glutamate and CPP binding. Of the three, GSNO was the most potent in kainate binding. They all stimulated [3H]dizocilpine binding in a concentration-dependent manner. This effect was additive to that of glycine and not mimicked by NO donors such as S-nitroso-N-acetylpenicillamine, 5-amino-3-morpholinyl-1,2,3-oxadiazolium chloride (SIN-1) and nitroglycerin. We assume that GSNO may act as an endogenous ligand at the NMDA and non-NMDA classes of glutamate receptors. In this manner it may facilitate NO transfer and target its delivery to specific sites in these receptors.  相似文献   

4.
The biochemical and pharmacological properties of nuclear [3H]flunitrazepam in brain tissues were studied. Nuclear [3Hflunitrazepam binding is saturable for both central and peripheral binding sites. Inosine and hypoxanthine displace nuclear [3H]flunitrazepam binding with greater potency than the membrane [3H]flunitrazepam binding. Triiodothyronine (T3) increases the maximum number of binding sites (Bmax) of nuclear [3H]flunitrazepam binding in vitro while thyroxine (T4) does not have any effect. Diazepam reduces the affinity of nuclear125I-T3 binding in vitro, while the Bmax is not affected significantly. Mild digestion of chromatin, using micrococcal nuclease, reveals that a major portion of nuclear [3H]flunitrazepam binding sites are located on chromatin. These data suggest a functional role for nuclear benzodiazepine binding and a possible modulatory effect of benzodiazepines on T3 binding with its nuclear receptors.  相似文献   

5.
I. Binding of [3H]apomorphine to dopaminergic receptors in rat striatum was most reproducible and clearly detectable when incubations were run at 25°C in Tris-HCl buffer, pH 7.5, containing 1 mM-EDTA and 0.01% ascorbic acid, using a washed total-membrane fraction. The receptor binding was stereospecifically inhibited by (+)-butaclamol, and dopamine agonists and antagonists showed high binding affinity for these sites. Unlabelled apomorphine inhibited an additional nonstereospecific binding site, which was unrelated to dopamine receptors. EDTA in the incubation mixture considerably lowered nonstereospecific [3H]apomorphine binding, apparently by preventing the complexation of the catechol moiety with metal ions which were demonstrated in membrane preparations. Stereospecific [3H]apomorphine binding was not detectable in the frontal cortex, whereas in the absence of EDTA much saturable nonstereospecific binding occurred. II. Kinetic patterns of stereospecific [3H]spiperone and [3H] apomorphine binding to rat striatal membranes and the inhibition patterns of a dopamine antagonist and an agonist were evaluated at different temperatures in high-ionic-strength Tris buffer with salts added and low-ionic-strength Tris buffer with EDTA. Apparent KD, values of spiperone decreased with decreasing tissue concentrations. KD, values of both spiperone and apomorphine were little influenced by temperature changes. Scatchard plots of the stereospecific binding changed from linear to curved; the amount of nonstereospecific binding of the 3H ligands varied considerably, but in opposite directions for spiperone and apomorphine in the different buffers. In various assay conditions, interactions between agonists, and between antagonists, appeared fully competitive, but agonist-antagonist interactions were of mixed type. The anomalous binding patterns are interpreted in terms of surface phenomena occurring upon reactions of a ligand with complex physicochemical properties and nonsolubilized sites on membranes suspended in a buffered aqueous solution. It is concluded that anomalous binding patterns are not necessarily an indication of binding to multiple sites or involvement of distinct receptors for high-affinity agonist and antagonist binding.  相似文献   

6.
Abstract Using ligand binding techniques, we studied α-adrenergic receptors in brains obtained at autopsy from seven histologically normal controls and seven patients with histopathologically verified Alzheimer-type dementia (ATD). Binding of the α-adrenergic antagonists [3H]prazosin and [3H]yohimbine to membranes of human brains exhibited characteristics compatible with α1- and α2-adrenergic receptors, respectively. Binding of both ligands was saturable and reversible, with dissociation constants of 0.15 nM for [3H]prazosin and 5.5 nM for [3H]yohimbine. [3H]Prazosin binding was highest in the hippocampus and frontal cortex and lowest in the caudate and putamen in the control brains. [3H]Yohimbine binding was highest in the nucleus basalis of Meynert (NbM) and frontal cortex and lowest in the caudate and cerebellar hemisphere in the control brains. Compared with values for the controls, [3H]prazosin binding sites were significantly reduced in number in the hippocampus and cerebellar hemisphere, and [3H]yohimbine binding sites were significantly reduced in number in the NbM in the ATD brains. These results suggest that α1 and α2-adrenergic receptors are present in the human brain and that there are significant changes in numbers of both receptors in selected regions in patients with ATD.  相似文献   

7.
(?) [3H]Dihydroalprenolol, a potent competitive β-adrenergic antagonist can be used to directly study β-adrenergic receptors by ligand binding techniques in an intact cell system, the frog erythrocyte. At 37°, binding reached equilibrium within 1 minute. Upon addition of excess unlabeled propranolol, complete dissociation of receptor bound ligand occurred within 1 minute. The characteristics of (?) [3Hdihydroalprenolol binding to β-adrenergic receptors in intact cells were quite similar to those previously demonstrated with isolated membrane fractions. The equilibrium dissociation constant for (?) [3H]dihydroalprenolol was 1.5 nM. Order of potency of agonists and antagonists in competing for the binding sites was appropriate for the β-adrenergic receptor as was the stereospecificity of binding ((?) isomers more potent than (+) isomers). Saturation studies with these intact cells indicated 1700 binding sites/cell in excellent agreement with the number previously estimated from membrane studies. Preincubation of cells with 10?5M isoproterenol produced a 36% fall in number of β-adrenergic receptors. It is concluded that (?) [3H]dihydroalprenolol can be used to directly study the properties and regulation of β-adrenergic receptors in intact cell as well as broken cell preparations.  相似文献   

8.
Previous studies suggest that alterations of brain glutamate synthesis and release occur in experimental thiamine deficiency. In order to assess the integrity of post-synaptic glutamatergic receptors in thiamine deficiency, binding sites for [3H]glutamate (displaced by NMDA), [3H]-kainate, and [3H]quisqualate (AMPA sites) were evaluated using Quantitative Receptor Autoradiography in rat brain following 14 days of treatment with the central thiamine antagonist pyrithiamine. Compared to pair-fed controls, brains of symptomatic thiamine-deficient animals contained significantly fewer NMDA-displaceable binding sites in cerebral cortex, medial septum and hippocampus. It has been suggested that NMDA-receptor mediated glutamate excitotoxicity plays a role in the pathogenesis of neuronal loss in thiamine deficiency. If such is the case, the selective loss of NMDA binding sites in cerebral cortex and hippocampus offers a possible explanation for the relative nonvulnerability of these brain regions to pyrithiamine-induced thiamine deficiency. [3H]quisqualate (AMPA) binding sites were unchanged in all brain regions of pyrithiamine-treated rats whereas [3H]kainate sites were significantly reduced in density in medial and lateral thalamus. The decline in these binding sites may be due to neuronal loss in pyrithiamine-induced thiamine deficiency. Alterations of glutamatergic synaptic function involving both NMDA and kainate receptor subclasses could contribute to the pathogenesis of neurological dysfunction in Wernicke's Encephalopathy in humans.  相似文献   

9.
Abstract: Recently, it was proposed that β-carbolines interact with a subset of benzodiazepine (BZD) binding sites in mouse brain. This postulate was based upon evidence showing changes in binding properties of the BZD receptor following photoaffinity labeling of membranes with flunitrazepam (FLU). Under conditions in which 80% of specific [3H]diazepam binding was lost in photolabeled membranes, specific [3H]propyl β-carboline-3-carboxylate ([3H]PCC) binding was spared. In this study, the binding of the BZD antagonists [3H]PCC, [3H]Ro15 1788 and [3H]CGS 8216 was examined in rat brain membranes following photoaffinity labeling with FLU. No significant changes in the apparent KD and small reductions in the Bmax of 3H antagonist binding were observed. However, in the same membranes, up to 89% of specific [3H]FLU binding was lost. When [3H]PCC (0.05 nM) was used to label the receptors in control and photolabeled membranes, the ability of BZD receptor agonists to inhibit [3H]PCC binding was greatly diminished in the photolabeled membranes. In contrast, the potency of BZD antagonists remained the same in both control and treated membranes. Based upon PCC/[3H]Ro15 1788 competition experiments, the ability of PCC to discriminate between BZD receptor subtypes was unaffected by photoaffinity labeling of cortical membranes. Overall, these findings suggest that β-carbolines do not interact with a subset of BZD binding sites per se, but may be a consequence of the differential interaction of BZD agonists and antagonists with BZD binding sites that have been photoaffinity labeled with FLU. A possible mechanism underlying this phenomenon is discussed. The ability of photolabeled membranes to differentiate between BZD agonists and antagonists provides a potential screen for agonist and antagonist activity in compounds that interact with the BZD receptor.  相似文献   

10.
The cholinergic system has been implicated in several experimental epilepsy models. In a previous study bicuculline (BIC), known to antagonize GABA-A postsynaptic receptor subtype, was administered to rats at subconvulsant (1 mg/kg) and convulsant (7.5 mg/kg) doses and quinuclidinyl benzilate ([3H]-QNB) binding to CNS membranes was determined. It was observed that ligand binding to cerebellum increases while it decreases in the case of hippocampus. Saturation binding curves showed that changes were due to the modification of receptor affinity for the ligand without alteration of binding site number. The purpose of this study was to assay muscarinic receptors employing other BIC dose (5 mg/kg), which induces seizures and allows the analysis of a postseizure stage as well. To study further muscarinic receptor involvement in BIC induced seizures, KET was also employed since it is a well known anticonvulsant in some experimental models. The administration of BIC at 5 mg/kg to rats produced a similar pattern of changes in [3H]-QNB binding to those recorded with 1.0 and 7.5 mg/kg doses. Here again, changes were observed in receptor binding affinity without alteration in binding site number for cerebellum or hippocampus membranes. Pretreatment with KET (40 mg/kg) prevented BIC seizures and reverted [3H]-QNB binding changes induced by BIC administration. The single administration of KET invariably resulted in [3H]-QNB binding decrease to either cerebellar or hippocampal membranes. KET added in vitro decreased ligand binding likewise. Results of combined treatment with KET plus BIC are hardly attributable to the single reversion of BIC effect since KET alone invariably decreased ligand binding. It is suggested that besides alteration of cholinergic muscarinic receptor other(s) neurotransmitter system(s) may well also be involved.  相似文献   

11.
Abstract: Ethyl β-carboline-β-carboxylate (β-CCE) is a mixed-type inhibitor of [3H]flunitrazepam ([3H]FNM) binding to benzodiazepine receptors in noncerebellar regions of rat brain. These findings may represent the presence of either receptor multiplicity or negative cooperativity among benzodiazepine receptors. [3H]Propyl β-carboline-3-carboxylate ([3H]PrCC) has previously been shown to bind specifically to benzodiazepine receptors of rat cerebellum. In the present study we found no indication of the presence of true negative cooperativity among benzodiazepine receptors when [3H]PrCC was used as radioligand. However, we observed that [3H]PrCC labelled only 57% of [3H]FNM binding sites in rat hippocampus (Bmax values) and 71% in rat cerebral cortex, whereas the number of receptors labelled by both ligands was equal in the cerebellum. Hofstee analyses of the shallow inhibition curves seen in hippocampus and cerebral cortex when [3H]FNM binding was inhibited by β-CCE indicate that β-CCE and some other β-carboline-3-carboxylate derivatives interact preferentially with a subclass of receptors, and that the percentage of this subclass is equivalent to the number of receptors labelled by [3H]PrCC. We conclude that [3H]PrCC at low concentration (0.3–0.4 × 10-9 M) labels a subclass of benzodiazepine receptors, BZ1, while another class, BZ2 receptors, are not labelled by [3H]PrCC when filtration assays are used. By parallel determinations of the proportion between [3H]FNM and [3H]PrCC binding we calculated the percentage of BZ1 receptors in several regions of rat, guinea pig and calf brain and in mouse forebrain. The values ranged from approximately 50% in hippocampus to 90% in the guinea pig pons.  相似文献   

12.
Alpha adrenergic receptor subtypes in rat hippocampal membranes were studied, using [3H]clonidine as the radioactive ligand. On the basis of competitive binding studies, using the selective antagonist-prazosin, WB-4101, and yohimbine, [3H] clonidine appeared to bind to a population of presynaptic sites that are pharmacologically similar to receptors previously classified as alpha2. A computerized model that linearized and produced the best possible fit to the experimental data points indicated that [3H]clonidine binds to a single population of receptors possessing equal affinity for the ligand. Binding data also indicated that rat hippocampus contains significantly fewer [3H]clonidine binding sites than rat cortex.  相似文献   

13.
The binding sites of 8-[3H]hydroxy-2-(di-n-propylamino)tetralin ([3H]DPAT) were characterized in the retina of goldfish in order to evaluate the selectivity of the ligand for serotonin1A (5HT1A) receptors. Specificity of the binding was performed in the presence of serotonergic and dopaminergic agonists and antagonists. Buspirone, spriroxatrine and 5-methoxy-N,N-dimethyltryptamine were potent inhibitors, followed by propranolol, citalopram, imipramine and desipramine. Serotonin was not a potent inhibitor, and its interaction with the binding sites of [3H]DPAT was complex. Nomifensine displayed an important inhibition, however, other dopamine uptake blockers, such as bupropion and GBR-12909, were less potent. Haloperidol was also a good inhibitor, but the D1 receptor agonist, SKF-38393, the D2 receptor antagonist, sulpiride, and dopamine did not inhibit the binding. GppNHp inhibited the binding in the micromolar range. The analysis of saturation experiments by isotopic dilution, using buspirone to determine nonspecific binding, revealed two sites. The number of binding sites defined by buspirone were higher than the ones defined by nomifesine. The specific binding, using buspirone for definition, was reduced by the intraocular injection of 6-hydroxydopamine. This investigation demonstrates that [3H]DPAT labels 5HT1A receptors in goldfish retina, but also interacts with a non-5HT receptor site. These receptors seem to be localized in dopaminergic neurons.  相似文献   

14.
Summary 1. Adenoregulin is an amphilic peptide isolated from skin mucus of the tree frog,Phyllomedusa bicolor. Synthetic adenoregulin enhanced the binding of agonists to several G-protein-coupled receptors in rat brain membranes.2. The maximal enhancement of agonist binding, and in parentheses, the concentration of adenoregulin affording maximal enhancement were as follows: 60% (20 µM) for A1-adenosine receptors, 30% (100 µM) for A2a-adenosine receptors, 20% (2 µM) for 2-adrenergic receptors, and 30% (100 µM) for 5HT1A receptors. High affinity agonist binding for A1-, 2-, and 5HT1A-receptors was virtually abolished by GTPS in the presence of adenoregulin, but was only partially abolished in its absence. Magnesium ions increased the binding of agonists to receptors and reduced the enhancement elicited by adenoregulin.3. The effect of adenoregulin on binding of N6-cyclohexyladenosine ([3H]CHA) to A1-receptors was relatively slow and was irreversible. Adenoregulin increased the Bmax value for [3H]CHA binding sites, and the proportion of high affinity states, and slowed the rate of [3H]CHA dissociation. Binding of the A1-selective antagonist, [3H]DPCPX, was maximally enhanced by only 13% at 2 µM adenoregulin. Basal and A1-adenosine receptor-stimulated binding of [35S]GTPS were maximally enhanced 45% and 23%, respectively, by 50 µM adenoregulin. In CHAPS-solubilized membranes from rat cortex, the binding of both [3H]CHA and [3H]DPCPX were enhanced by adenoregulin. Binding of [3H]CHA to membranes from DDT1 MF-2 cells was maximally enhanced 17% at 20 µM adenoregulin. In intact DDT1 MF-2 cells, 20 µM adenoregulin did not potentiate the inhibition of cyclic AMP accumulation mediatedvia the adenosine A1 receptor.4. It is proposed that adenoregulin enhances agonist binding through a mechanism involving enhancement of guanyl nucleotide exchange at G-proteins, resulting in a conversion of receptors into a high affinity state complexed with guanyl nucleotide-free G-protein.  相似文献   

15.
The hippocampal formation has been extensively research in terms of its putative neurotransmitters, anatomical connections, and behavioral relevance. An aspect of importance is the assessment of apparent neurotransmitter receptors by using receptor binding assays. In the present study, such assays were done in vitro to investigate alpha 1-adrenergic, alpha 2-adrenergic, beta-adrenergic, muscarinic cholinergic, benzodiazepine, and opiate receptors in the rat hippocampal formation. The corresponding radioligands for these receptors were [3H]prazosin, [3H]p-aminoclonidine, [3H]dihydroalprenolol, [3H]quinuclidinyl benzilate, [3H]flunitrazepam, and [3H]naloxone. An analysis of the binding parameters for the ligands indicated saturable binding of a high affinity and the following rank order of maximal binding capacities: [3H]flunitrazepam greater than [3H]quinuclidinyl benzilate greater than [3H]naloxone greater than [3H]p-aminoclonidine greater than [3H]prazosin greater than [3H]dihydroalprenolol. Competition experiments with pharmacologic agonists and antagonists confirmed the specificity of each ligand. The results are integrated with information on other types of receptors and with neurotransmitter concentrations, and discussed in terms of hippocampal function.  相似文献   

16.
Brains from human alcoholics and non-alcoholics were obtained shortly after death. The hippocampus was dissected, homogenized, and processed for the isolation of a synaptic membraneenriched fraction and the study ofl-[3H]glutamic acid and 3-((±)-2-carboxypiperazin-4-yl)-[1,23H]propyl-l-phosphonic acid ([3H]CPP) binding sites. The pharmacological characteristics ofl-[3H]glutamic acid binding to synaptic membranes isolated from hippocampus corresponded to the labeling of a mixture of N-methyl-d-aspartate (NMDA), kainate and quisqualic acid receptor sites. Synaptic membranes prepared from the hippocampus of individuals classified as alcoholics had significantly higher density of glutamate binding sites than identically prepared membranes from non-alcoholic individuals. In addition, there was a clear definition of a population ofl-glutamate binding sites (approx. 10% of total) in the membranes from alcoholics that had a higher affinity for the ligand than the major set of sites labeled in membranes from both alcoholics and non-alcoholics. Neither the age of the individuals at the time of death nor the time that elapsed between death and processing of brain tissue were significant factors in determining either recovery of purified synaptic membranes from brain homogenates orl-[3H]glutamate binding to synaptic membranes. In order to determine whether some of the changes inl-[3H]glutamic acid binding were due to alterations in binding at the NMDA receptor subtype, we also measured binding of [3H]CPP to extensively washed crude synaptosomal membranes. Membranes from brains of alcoholics had higher affinity (3-fold) for [3H]CPP but lower binding capacity (3-fold) when compared with those of non-alcoholics. These observations suggest selective changes among different glutamate receptor subtypes in human brain under conditions of chronic alcohol intake.  相似文献   

17.
The neuromodulator adenosine is acting through specific receptors coupled to adenylate cyclase via G-proteins. The expression of both adenosine receptors A1 and A2 as well as forkolin binding sites was investigated by radioligand binding techniques in 8-day-old neurons isolated from fetal rat forebrain and cultured in chemically-defined medium. Adenosine A1 receptors were specifically labeled with [3H]chloro-N6-cyclopentyladenosine (CCPA), whereas [3H]CGS 21680 was used for the analysis of A2 receptors. Cultured neurons exhibited high affinity binding sites for CCPA (Bmax=160 fmol/mg protein; Kd=2.9 nM), and for CGS 21680 (Bmax=14 fmol/mg protein; Kd=1.7 nM). These data correlate well with those obtained in crude membranes isolated from the newborn rat forebrain. The incubation of culture membranes in the additional presence of guanylyl-5-imidodiphosphate (Gpp(NH)p, a GTP analogue) led to significantly increased Kd-values, suggesting the association of adenosine receptors with G-proteins. Finally, cultured neurons also bound specifically [3H]forskolin with characteristics close to those found in the newborn brain, indicating that cultured neurons appear as an appropriate model for studying the neuromodulatory properties of adenosine.  相似文献   

18.
《Life sciences》1987,40(15):1537-1543
The pineal gland and particularly its major hormone, melatonin, may participate in several physiological functions, including sleep promotion, anticonvulsant activity and the modulation of biological rhythms and affective disorders. These effects may be related to an interaction with benzodiazepine receptors, which have been demonstrated to be present in the pineal gland of several species including man. The present study examined the characteristics of benzodiazepine binding site subtypes in the human pineal gland, using [3H] flunitrazepam and [3H] PK 11195 as specific ligands for central and peripheral type benzodiazepine binding sites respectively. Scatchard analysis of [3H] flunitrazepam binding to pineal membrane preparations was linear, indicating the presence of a single population of sites. Clonazepam and RO 15-1788, which have a high affinity for central benzodiazepine binding sites, were potent competitors for [3H] flunitrazepam binding in the human pineal, whereas RO 5-4864 had a low affinity for these sites. Analyses of [3H] PK 11195 binding to pineal membranes also revealed the presence of a single population of sites. RO 5-4864, a specific ligand for peripheral benzodiazepine binding sites was the most potent of the drugs tested in displacing [3H] PK 11195, whereas clonazepam and RO 15-1788 were weak inhibitors of [3H] PK 11195 binding to pineal membranes. Overall, these results demonstrate, for the first time, the coexistence of peripheral and central benzodiazepine binding sites in the human pineal gland.  相似文献   

19.
Abstract: RS-42358–197{(S)-N-(1-azabicyclo[2.2.2]oct-3-yl)-2,4,5,6-tetrahydro-1H-benzo[de]isoquinolin-1-one hydrochloride} displaced the prototypic 5-hydroxytryptamine3 (5-HT3) receptor ligand [3H]quipazine in rat cerebral cortical membranes with an affinity (pKi) of 9.8 ± 0.1, while having weak affinity (pKi < 6.0) in 23 other receptor binding assays. [3H]RS-42358–197 was then utilized to label 5-HT3 receptors in a variety of tissues. [3H]RS-42358–197 labelled high-affinity and saturable binding sites in membranes from rat cortex, NG108–15 cells, and rabbit ileal myenteric plexus with affinities (KD) of 0.12 ± 0.01, 0.20 ± 0.01, and 0.10 ± 0.01 nM and densities (Bmax) of 16.0 ± 2.0, 660 ± 74, and 88 ± 12 fmol/mg of protein, respectively. The density of sites labelled in each of these tissues with [3H]RS-42358–197 was similar to that labelled with [3H]GR 65630, but was significantly less than that found with [3H]-quipazine. The binding of [3H]RS-42358–197 had a pharmacological profile similar to that of [3H]quipazine, as indicated by the rank order of displacement potencies: RS-42358–197 > (S)-zacopride > tropisetron > (R)-zacopride > ondansetron > MDL72222 > 5-HT. However, differences in 5-HT3 receptors of different tissues and species were detected on the basis of statistically significant differences in the affinities of phenylbiguanide, and 1-(m-chlorophenyl)biguanide when displacing [3H]RS-42358-197 binding. [3H]RS-42358–197 also labelled a population (Bmax= 91 ± 17 fmol/mg of protein) of binding sites in guinea pig myenteric plexus membranes, with lower affinity (KD= 1.6 ± 0.3 nM) than those in the other preparations. Moreover, the rank order of displacement potencies of 15 5-HT3 receptor ligands in guinea pig ileum was found not to be identical to that in other tissues. Binding studies carried out with [3H]RS-42358–197 have detected differences in 5-HT3 receptor binding sites in tissues of different species and further underscore the unique nature of the guinea pig 5-HT3 receptor.  相似文献   

20.
Four nerve agents and one therapeutic organophosphate (OP) anticholinesterase (anti-ChE) bind to acetylcholine (ACh) receptors, inhibit or modulate binding of radioactive ligands to these receptors, and modify events regulated by them. The affinity of nicotinic (n) ACh receptors of Torpedo electric organs and most muscarinic (m) ACh receptors of rat brain and N1E-115 neuroblastoma cultures for the OP compounds was usually two to three orders of magnitude lower than concentrations required to inhibit 50% (IC-50) of ACh-esterase activity. However, a small population of m-ACh receptors had an affinity as high as that of ACh-esterase for the OP compound. This population is identified by its high-affinity [3H]-cis-methyldioxolane ([3H]-CD) binding. Although sarin, soman, and tabun had no effect, (O-ethyl S[2-(diisopropylamino)ethyl)] methyl phosphonothionate (VX) and echothiophate inhibited competitivel the binding of receptors. However, VX was more potent than echothiophate in inhibiting this binding and 50-fold more potent in inhibiting carbamylcholine (carb)-stimulated [3H]-cGMP synthesis in N1E-115 neuroblastoma cells—both acting as m receptor antagonist. All five OPs inhibited [3H]-CD binding, with IC-50s of 3, 10, 40, 100, and 800 nM for VX, soman, sarin, echothiophate, and tabun, respectively. The OP anticholinesterases also bound to allosteric sites on the n-ACh receptor (identified by inhibition of [3H]-phencyclidine binding), but some bound as well to the receptor's recognition site (identified by inhibition of [125I]-α-bungarotoxin binding). Soman and echothiophate in micromolar concentrations acted as partial agonists of the n-ACh receptor and induced receptor desensitization. On the other hand, VX acted as an open channel blocker of the activated receptor and also enhanced receptor desensitization. It is suggested that the toxicity of OP anticholinesterases may include their action on n-ACh as well as m-ACh receptors if their concentrations in circulation rise above micromolar levels. At nanomolar concentrations their toxicity is due mainly to their inhibition of ACh-esterase. However, at these low concentrations, many OP anticholinesterases (eg, VX and soman) may affect a small population of m-ACh receptors, which have a high affinity for CD. Such effects on m-ACh receptors may play an important role in the toxicity of certain OP compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号