首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The human splicing factor 2, also called human alternative splicing factor (hASF), is the prototype of the highly conserved SR protein family involved in constitutive and regulated splicing of metazoan mRNA precursors. Here we report that the Drosophila homologue of hASF (dASF) lacks eight repeating arginine-serine dipeptides at its carboxyl-terminal region (RS domain), previously shown to be important for both localization and splicing activity of hASF. While this difference has no effect on dASF localization, it impedes its capacity to shuttle between the nucleus and cytoplasm and abolishes its phosphorylation by SR protein kinase 1 (SRPK1). dASF also has an altered splicing activity. While being competent for the regulation of 5' alternative splice site choice and activation of specific splicing enhancers, dASF fails to complement S100-cytoplasmic splicing-deficient extracts. Moreover, targeted overexpression of dASF in transgenic flies leads to higher deleterious developmental defects than hASF overexpression, supporting the notion that the distinctive structural features at the RS domain between the two proteins are likely to be functionally relevant in vivo.  相似文献   

2.
3.
4.
5.
Fic W  Juge F  Soret J  Tazi J 《PloS one》2007,2(2):e253
The genetic programs specifying eye development are highly conserved during evolution and involve the vertebrate Pax-6 gene and its Drosophila melanogaster homolog eyeless (ey). Here we report that the SR protein B52/SRp55 controls a novel developmentally regulated splicing event of eyeless that is crucial for eye growth and specification in Drosophila. B52/SRp55 generates two isoforms of eyeless differing by an alternative exon encoding a 60-amino-acid insert at the beginning of the paired domain. The long isoform has impaired ability to trigger formation of ectopic eyes and to bind efficiently Eyeless target DNA sequences in vitro. When over-produced in the eye imaginal disc, this isoform induces a small eye phenotype, whereas the isoform lacking the alternative exon triggers eye over-growth and strong disorganization. Our results suggest that B52/SRp55 splicing activity is used during normal eye development to control eye organogenesis and size through regulation of eyeless alternative splicing.  相似文献   

6.
7.
8.
9.
Serine/arginine-rich (SR) proteins are essential splicing factors with one or two RNA-recognition motifs (RRMs) and a C-terminal arginine- and serine-rich (RS) domain. SR proteins bind to exonic splicing enhancers via their RRM(s), and from this position are thought to promote splicing by antagonizing splicing silencers, recruiting other components of the splicing machinery through RS-RS domain interactions, and/or promoting RNA base-pairing through their RS domains. An RS domain tethered at an exonic splicing enhancer can function as a splicing activator, and RS domains play prominent roles in current models of SR protein functions. However, we previously reported that the RS domain of the SR protein SF2/ASF is dispensable for in vitro splicing of some pre-mRNAs. We have now extended these findings via the identification of a short inhibitory domain at the SF2/ASF N-terminus; deletion of this segment permits splicing in the absence of this SR protein's RS domain of an IgM pre-mRNA substrate previously classified as RS-domain-dependent. Deletion of the N-terminal inhibitory domain increases the splicing activity of SF2/ASF lacking its RS domain, and enhances its ability to bind pre-mRNA. Splicing of the IgM pre-mRNA in S100 complementation with SF2/ASF lacking its RS domain still requires an exonic splicing enhancer, suggesting that an SR protein RS domain is not always required for ESE-dependent splicing activation. Our data provide additional evidence that the SF2/ASF RS domain is not strictly required for constitutive splicing in vitro, contrary to prevailing models for how the domains of SR proteins function to promote splicing.  相似文献   

10.
11.
SR proteins are essential splicing factors involved in the use of both constitutive and alternative exons. We previously showed that the SR proteins SRp20 and ASF/SF2 have antagonistic activities on SRp20 pre-mRNA splicing. SRp20 activates exon 4 recognition in its pre-mRNA, whereas ASF/SF2 inhibits this recognition. In experiments aimed at testing the specificity of SRp20 and ASF/SF2 for exon 4 splicing regulation, we show here that this specificity lies in the RNA binding domains of SRp20 and ASF/SF2 and not in the RS domains. Surprisingly, a deletion of 14 amino acids at the end of ASF/SF2-RBD2 converts ASF/SF2 from an inhibitor to an activator of exon 4 splicing. We found that ASF3 also inhibits exon 4 recognition, thus acting similarly to ASF/SF2, while SC35 activates a cryptic 5' splice site downstream of exon 3 and, in doing so, represses exon 4 use. In contrast, Tra2 and the SR proteins 9G8 and SRp40 do not appear to affect exon 4 splicing.  相似文献   

12.
ASF/SF2 is a well-studied SR protein that plays important roles in pre-mRNA splicing and other aspects of RNA metabolism. Genetic inactivation experiments have revealed the fundamental roles of ASF/SF2 and other SR proteins in cell viability and animal development. However, the nature of the events triggered by in vivo depletion of ASF/SF2 remained largely elusive. Recently, we have demonstrated a significant function of ASF/SF2 in the maintenance of genome stability by preventing the formation of R loops, which provided new insights into the essential roles of ASF/SF2 in cellular physiology.  相似文献   

13.
The SR proteins constitute a family of nuclear phosphoproteins, which are required for constitutive splicing and also influence alternative splicing regulation. Initially, it was suggested that SR proteins were functionally redundant in constitutive splicing. However, differences have been observed in alternative splicing regulation, suggesting unique functions for individual SR proteins. Homology searches of the Caenorhabditis elegans genome identified seven genes encoding putative orthologues of the human factors SF2/ASF, SRp20, SC35, SRp40, SRp75 and p54, and also several SR-related genes. To address the issue of functional redundancy, we used dsRNA interference (RNAi) to inhibit specific SR protein function during C.elegans development. RNAi with CeSF2/ASF caused late embryonic lethality, suggesting that this gene has an essential function during C.elegans development. RNAi with other SR genes resulted in no obvious phenotype, which is indicative of gene redundancy. Simultaneous interference of two or more SR proteins in certain combinations caused lethality or other developmental defects. RNAi with CeSRPK, an SR protein kinase, resulted in early embryonic lethality, suggesting an essential role for SR protein phosphorylation during development.  相似文献   

14.
15.
Li X  Manley JL 《Cell》2005,122(3):365-378
  相似文献   

16.
The cellular protein p32 was isolated originally as a protein tightly associated with the essential splicing factor ASF/SF2 during its purification from HeLa cells. ASF/SF2 is a member of the SR family of splicing factors, which stimulate constitutive splicing and regulate alternative RNA splicing in a positive or negative fashion, depending on where on the pre-mRNA they bind. Here we present evidence that p32 interacts with ASF/SF2 and SRp30c, another member of the SR protein family. We further show that p32 inhibits ASF/SF2 function as both a splicing enhancer and splicing repressor protein by preventing stable ASF/SF2 interaction with RNA, but p32 does not block SRp30c function. ASF/SF2 is highly phosphorylated in vivo, a modification required for stable RNA binding and protein-protein interaction during spliceosome formation, and this phosphorylation, either through HeLa nuclear extracts or through specific SR protein kinases, is inhibited by p32. Our results suggest that p32 functions as an ASF/SF2 inhibitory factor, regulating ASF/SF2 RNA binding and phosphorylation. These findings place p32 into a new group of proteins that control RNA splicing by sequestering an essential RNA splicing factor into an inhibitory complex.  相似文献   

17.
SR proteins function in coupling RNAP II transcription to pre-mRNA splicing   总被引:2,自引:0,他引:2  
Das R  Yu J  Zhang Z  Gygi MP  Krainer AR  Gygi SP  Reed R 《Molecular cell》2007,26(6):867-881
  相似文献   

18.
PSKH1, a novel splice factor compartment-associated serine kinase   总被引:1,自引:0,他引:1       下载免费PDF全文
Small nuclear ribonucleoprotein particles (snRNPs) and non-snRNP splicing factors containing a serine/arginine-rich domain (SR proteins) concentrate in splicing factor compartments (SFCs) within the nucleus of interphase cells. Nuclear SFCs are considered mainly as storage sites for splicing factors, supplying splicing factors to active genes. The mechanisms controlling the interaction of the various spliceosome constituents, and the dynamic nature of the SFCs, are still poorly understood. We show here that endogenous PSKH1, a previously cloned kinase, is located in SFCs. Migration of PSKH1-FLAG into SFCs is enhanced during co-expression of T7-tagged ASF/SF2 as well as other members of the SR protein family, but not by two other non-SR nuclear proteins serving as controls. Similar to the SR protein kinase family, overexpression of PSKH1 led to reorganization of co-expressed T7-SC35 and T7-ASF/SF2 into a more diffuse nuclear pattern. This redistribution was not dependent on PSKH1 kinase activity. Different from the SR protein kinases, the SFC-associating features of PSKH1 were located within its catalytic kinase domain and within its C-terminus. Although no direct interaction was observed between PSKH1 and any of the SR proteins tested in pull-down or yeast two-hybrid assays, forced expression of PSKH1-FLAG was shown to stimulate distal splicing of an E1A minigene in HeLa cells. Moreover, a GST-ASF/SF2 fusion was not phosphorylated by PSKH1, suggesting an indirect mechanism of action on SR proteins. Our data suggest a mutual relationship between PSKH1 and SR proteins, as they are able to target PSKH1 into SFCs, while forced PSKH1 expression modulates nuclear dynamics and the function of co-expressed splicing factors.  相似文献   

19.
SRp20 is a splicing factor belonging to the highly conserved family of SR proteins [1] [2] [3] [4], which have multiple roles in the regulation of constitutive and alternative splicing in vivo. It has been suggested that SR proteins are involved in bringing together the splice sites during spliceosome assembly [5]. SR proteins show partial redundancy, as each single SR protein can restore splicing activity to a splicing-deficient cytoplasmic extract (termed S-100 extract). Nevertheless, several studies demonstrate that individual SR proteins have different effects on the selection of specific alternative splice sites, and they recognize distinct RNA sequences [6] [7] [8] [9] [10] [11] [12]. Also, inactivation of two SR proteins, B52/SRp55 in Drosophila [13] or ASF/SF2 in the chicken cell line DT40 [14], is lethal, indicating the existence of nonredundant functions. Here, using Cre-loxP-mediated recombination in mice to inactivate the SRp20 gene, we found that it is essential for mouse development. Mutant preimplantation embryos failed to form blastocysts and died at the morula stage. Immunofluorescent staining showed that SRp20 is present in oocytes and early stages of embryonic development. This is the first report of mice deficient for a member of the SR protein family. Our experiments confirm that, although similar in structure, the SR proteins are not functionally redundant.  相似文献   

20.
S H Xiao  J L Manley 《The EMBO journal》1998,17(21):6359-6367
SR proteins are a conserved family of splicing factors that function in both constitutive and activated splicing. We reported previously that phosphorylation of the SR protein ASF/SF2 enhances its interaction with the U1 snRNP-specific 70K protein and is required for the protein to function in splicing, while other studies have provided evidence that subsequent dephosphorylation can also be required for SR protein function, at least in constitutive splicing. We now show that the phosphorylation status of ASF/SF2 can differentially affect several properties of the protein. In keeping with a dynamic cycle of phosphorylation-dephosphorylation during splicing, ASF/SF2 phosphorylation was found to affect interaction with several putative protein targets in different ways: positively, negatively or not at all. Extending these results, we also show that, in contrast to constitutive splicing, dephosphorylation is not required for ASF/SF2 to function as a splicing activator. We discuss these results with respect to the differential protein-protein interactions that must occur during constitutive and activated splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号