首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the impact of viruses, nutrient loading, and microzooplankon grazing on phytoplankton communities in two New York estuaries that hosted blooms of the brown tide alga Aureococcus anophagefferens during 2000 and 2002. The absence of a bloom at one location during 2002 allowed for the fortuitous comparison of a bloom and non-bloom year at the same location as well as a comparison of two sites experiencing bloom and non-bloom conditions during the same year. During the study, blooms were found at locations with high levels of dissolved organic nitrogen and lower nitrate concentrations compared to a non-bloom location. Experimental additions of inorganic nitrogen and phosphorus yielded growth rates within the total phytoplankton community which significantly exceeded control treatments in 83% of experiments, while A. anophagefferens experienced significantly increased growth during only 20% of experimental inorganic nutrient additions. Consistent with prior research, these results suggest brown tides are not caused by eutrophication, but instead are more likely to occur when sources of labile DOM are readily available. Microzooplankton grazing rates on the total phytoplankton community during a bloom were lower than grazing rates at a non-bloom site, and grazing rates on A. anophagefferens were lower than grazing rates on the total community on some dates, suggesting that reduced grazing mortality may also promote brown tides. Mean densities of viruses during blooms (3 × 108 ml−1) were elevated compared to most estuarine environments and were twice the levels found at a non-bloom site. Experimental enrichment of the natural viral densities yielded a significant increase in A. anophagefferens growth rates relative to control treatments when background levels of viruses were low (<1.7 × 108 ml−1), suggesting that viruses may promote bloom occurrence by regenerating DOM or altering the composition of microbial communities.  相似文献   

2.
The rate of growth of juvenile hard clams, Mercenaria mercenaria, was studied in the Coastal Bays of Maryland during an outbreak of the brown tide, Aureococcus anophagefferens. Brown tide dominated the plankton community during the month of June 2002, with cell densities at several sites reaching category 3 (>200,000 cells ml−1) levels. Temperatures during the bloom were 18.6–27.5 °C. Nutrient conditions preceding and during the bloom were conducive for the proliferation of A. anophagefferens: while inorganic nitrogen and phosphorus were <1 μg at N or P l−1, urea was elevated during bloom development. Organic nitrogen, phosphorus and carbon were in the range of levels observed in previous brown tide blooms and increased following the collapse of the bloom. Growth rates of juvenile clams were significantly lower during the period of the brown tide bloom than following its collapse. Growth rates of M. mercenaria were found to be negatively impacted at brown tide densities as low as 20,000 cells ml−1, or category 1 levels. The low growth rates of M. mercenaria could not be explained by temperature, as the lowest growth rates were found when water temperatures were at levels previously found to be optimal for growth.  相似文献   

3.
The entire microbial plankton community was quantified on a weekly basis April through June of 2000 in Quantuck Bay as part of an ongoing study to identify factors contributing to the initiation of blooms of Aureococcus anophagefferens (brown tide) in Long Island, NY bays. We used flow cytometry, imaging cytometry, fluorescent antibody cell counts, and traditional visual cell counting to quantify the picophytoplankton, heterotrophic bacteria, nanophytoplankton, heterotrophic protists, and microplankton prior to, and during the initiation of a brown tide bloom. Cells passing through a 5 μm mesh dominated the total chlorophyll concentration (>80%) for most of the spring study period. The A. anophagefferens bloom occurred in the context of a larger pico/nanophytoplankton bloom where A. anophagefferens accounted for only 30% of the total cell count when it was at its maximum concentration of 4.8 × 105 mL−1. Levels of dissolved organic nitrogen were enriched during the bloom peak relative to pre-bloom levels and heterotrophic bacteria also bloomed, reaching abundances over 107 mL−1. A trophic cascade within the heterotrophic protist community may have occurred, coinciding with the A. anophagefferens bloom. Before the onset of the bloom, larger grazers increased in abundance, while the next smaller trophic level of grazers were diminished. These smaller grazers were the likely water column predators of A. anophagefferens, and the brown tide bloom initiated when they were depleted. These results suggest that this bloom initiated due to interactions with other pico/nano algae and release from grazing pressure through a trophic cascade.  相似文献   

4.
Marine invertebrates often have complex life histories that include a swimming planktivorous larval stage, at which time they are vulnerable to a variety of stressors, including those associated with nutritional stress and harmful algal blooms. Lipid stores have been shown to be especially important for post-metamorphic survivorship and growth in a variety of marine invertebrates. We investigated the effects of the harmful brown tide alga Aureococcus anophagefferens on the lipid stores and growth of larvae of the hard clam (northern quahog, Mercenaria mercenaria), a dominant bivalve in many western Atlantic bays and estuaries. M. mercenaria was the dominant bivalve in Great South Bay, Long Island, until the mid-1970s, but very few larvae are presently found in these waters. Recent brown tide blooms have been hypothesized to pose a barrier to recovery of M. mercenaria populations and hinder recent restoration efforts by negatively affecting clam larvae. To test whether a diet of the brown tide alga affects the accumulation of beneficial lipid stores, we fed larvae one of three diets representing equal biovolumes of Isochrysis galbana, a nutritious control alga; A. anophagefferens, the brown tide alga for which nutritional quality is not presently known; or a mixture of the two. Larvae fed only brown tide had significantly less lipid stores than those in the other dietary treatments. In addition, brown tide negatively affected larval size. We also tested for evidence of tradeoffs between larval growth and lipid stores, predicting that when the diet was less nutritious as in the brown tide treatments, larval size and lipids would be negatively correlated. In contrast, we found that larvae fed a mixed algal diet or only A. anophagefferens showed a significant positive correlation between lipid stores and size, suggesting that some larvae were simply better at obtaining food and associated nutrients. Larval success likely depends on a complex interplay between genetic and environmental factors. Our study suggests that poor nutrition associated with a harmful alga can have negative effects on larval size and lipids stores, which in turn are mediated by the inter-individual variability in the ability to grow and accumulate necessary lipid stores. Phytoplankton quality is likely to be important for the sustainability of bivalve populations even when it primarily impacts the larval phase; and a diet of brown tide algae may have lasting legacies for juveniles and adults.  相似文献   

5.
DCMU–enhanced fluorescence and extracted chlorophyll a were simultaneously measured in Narragansett Bay, Rhode Island and the MERL (Marine Ecosystems Research Laboratory) mesocosms during the 1985 brown tide bloom. Marked differences in the relationship between these variables were observed as the phytoplankton community shifted from dominance by picoalgae to diatoms. The fluorescence to chlorophyll a ratio was significantly (P< 0.05) higher in the mesocosms and the bay when the brown tide species (Aureococcus anophagefferens Hargraves et Sieburth) dominated the phytoplankton community compared with other taxa. Although several factors could have affected the relationship we believe the high ratios are related to the pigment composition and/or small size of the brown tide organism.  相似文献   

6.
Brown tide algal blooms, caused by the excessive growth of Aureococcus anophagefferens, recur in several northeastern US coastal bays. Direct bloom control could alleviate the ecological and economic damage associated with bloom outbreak. This paper explored the effectiveness and safety of natural chemical biocide hydrogen peroxide (H2O2) for brown tide bloom control. Culture studies showed that H2O2 at 1.6 mg L−1 effectively eradicated high density A. anophagefferens within 24-hr, but caused no significant growth inhibition in the diatoms, prymnesiophytes, green algae and dinoflagellates of >2–3 μm cell sizes among 12 phytoplankton species tested over 1-week observation. When applied to brown tide bloom prone natural seawater in a microcosm study, this treatment effectively removed the developing brown tide bloom, while the rest of phytoplankton assemblage (quantified via HPLC based marker pigment analyses), particularly the diatoms and green algae, experienced only transient suppression then recovered with total chlorophyll a exceeding that in the controls within 72-hr; cyanobacteria was not eradicated but was still reduced about 50% at 72-hr, as compared to the controls. The action of H2O2 against phytoplankton as a function of cell size and cell wall structure, and a realistic scenario of H2O2 application were discussed.  相似文献   

7.
Large-scale blooms formed by pico-sized phytoplankton, which strongly inhibited feeding activity and growth of cultured scallops, have been recorded along the coast of Qinhuangdao in the Bohai Sea since 2009. Based on pigment profiles and clone library analysis of phytoplankton samples during the blooms, the major bloom-forming species was primarily identified as pelagophyte Aureococcus anophagefferens Hargraves et Sieburth, the causative species of intensive brown tides in the United States and South Africa. Due to the indistinct morphological features of the bloom-forming microalgae and limited knowledge on the composition of phytoplankton communities, there were still disputes concerning the causative species of the blooms. In this study, the method of high-throughput sequencing targeted 18S rDNA V4 region was used to study the composition of pico- and nano-sized phytoplankton communities in 2013 and 2014. A total of 18 groups of eukaryotic microalgae at the class level and more than 2000 operational taxonomic units (OTUs) were identified in phytoplankton samples collected from the brown-tide zone in the Qinhuangdao coastal waters. For both years, A. anophagefferens was the most dominant species during the bloom period and its maximum relative abundance exceeded 60 percent. Along with other evidence, the results further confirm that A. anophagefferens is the major causative species of the pico-sized phytoplankton blooms in the Bohai Sea. The outbreak of brown tide exhibited a strong inter-annual variation between 2013 and 2014, and an increasing dominance of dinoflagellates could be observed in the Qinhuangdao coastal waters.  相似文献   

8.
Since 1985, the coastal embayments of Long Island, New York, have been plagued with recurrent blooms, aptly called brown tides, of the pelagophyte Aureococcus anophagefferens. The distinct ocean color observed during these blooms suggests that optical methods can be used as a tool to study, detect, and track brown tides. Thus, the goal of our project was to compare the optical properties and pigment composition during bloom and non-bloom conditions and assess temporal variations in the phytoplankton and other constituents in the seawater associated with bloom development. From 17 May to 8 June 2000, we measured a time series of particle size distributions and concentrations as well as size-fractioned algal pigments and optical properties in two Long Island embayments where brown tides are known to occur. During our study, A. anophagefferens represented an insignificant contribution to the algal community in West Neck Bay (WNB), whereas a bloom developed in Quantuck Bay (QB). Initially, temperature and salinity were similar at the two locations; however, bulk optical properties, chlorophyll, and particle concentrations were nearly a factor of 2 greater at QB. Bulk optical properties remained constant at WNB, yet increased exponentially at QB as the bloom developed. The composition of particulates, including phytoplankton, varied little at QB, and the optical properties suggested the dominance of A. anophagefferens (confirmed by microscopy). The largest temporal variations were observed in the colored dissolved organic material (CDOM); the colloidal (0.2–0.7 μm) fraction, exhibiting a strong protein-like signal, increased dramatically at the height of the bloom. At WNB particle sizes and algal composition varied despite the invariant bulk optical properties; CDOM variations were minimal. Overall, the optical properties in the two bays demonstrated that at QB temporal variations were dominated by biomass and colloidal protein changes, whereas shifts in the algal community occurred at WNB. This study demonstrates the utility of in situ optical observations to resolve temporal changes in the ecological conditions associated with algal bloom development.  相似文献   

9.
Blooms of the brown tide pelagophyte, Aureococcus anophagefferens, have been reported in coastal bays along the east coast of the USA for nearly two decades. Blooms appear to be constrained to shallow bays that have low flushing rates, little riverine input and high salinities (e.g., >28). Nutrient enrichment and coastal eutrophication has been most frequently implicated as the cause of A. anophagefferens and other blooms in coastal bays. We compare N and C dynamics during two brown tide blooms, one in Quantuck Bay, on Long Island, NY in 2000, and the other in Chincoteague Bay, at Public Landing, MD in 2002, with a physically similar site in Chincoteague Bay that did not experience a bloom. We found that the primary forms of nitrogen (N) taken up during the bloom in Quantuck Bay were ammonium and dissolved free amino acids (DFAA) while the primary form of N fueling production at both sites in Chincoteague Bay was urea. At both Chincoteague sites, amino acid carbon (C) was taken up while urea C was not. Even though A. anophagefferens has the ability to take up organic C, during the bloom at Chincoteague Bay, photosynthetic uptake of bicarbonate was the dominant pathway of C acquisition by the >1.2 μm size fraction during the day. C uptake by cells <5.0 μm was insufficient to meet cellular C demand based on the measured N uptake rates and the C:N ratio of particulate material. While cells >1.2 μm did not take up much organic C during the day, smaller cells (>0.2 μm) did. Peptide hydrolysis appeared to play an important role in mobilizing organic matter in Quantuck Bay, where amino acids contributed substantially to N and C uptake, but not in Chincoteague Bay. Dissolved organic N (DON), dissolved organic C (DOC) concentrations and the DOC/DON ratio were higher and total dissolved inorganic N (DIN) concentrations were lower at the bloom site in Chincoteague Bay than at the nonbloom site in the same bay. We conclude that A. anophagefferens is capable of using a wide variety of N and C compounds, and that nutrient inputs, biotic interactions and the dominant recycling pathways determine which compounds are available and which metabolic pathways are active at a particular site.  相似文献   

10.
11.
The seasonal changes in phytoplankton biomass and species diversity in a shallow, eutrophic Danish lake are described and related to different disturbance events acting on the phytoplankton community.Both the spring diatom maximum and the summer bloom of the filamentous blue-green alga, Aphanizomenon flos-aquae (L.) Ralfs, coincided with low values of phytoplankton species diversity and equitability. Diatom collapse was mainly due to internal modifications as nutrient depletion (Si, P) caused by rapid growth of phytoplankton, and increased grazing activity from zooplankton. A large population of Daphnia longispina O.F. Müller in June effectively removed smaller algal competitors, thus favouring the development of a huge summer bloom (140 mm3 l–1) of Aphanizomenon flos-aquae. Heavy rainfall and storms in late July increased the loss of Apahnizomenon by out-flow and disturbed the stratification of the lake. These events caused a marked decline in phytoplankton biomass but had no effect on species diversity. A second storm period in late August circulated the lake completely and was followed by a rapid increase in phytoplankton diversity, and a change in the phytoplankton community structure from dominance of large, slow-growing K-selected species (Aphanizomenon) to small, fast-growing r-selected species (cryptomonads).  相似文献   

12.
Large-scale blooms suspected to be “brown tides” occurred in early summer for three consecutive years from 2009 to 2011 in the coastal waters of Qinhuangdao, China, and had significant negative impacts on the shellfish mariculture industry. To identify the causative species of the blooms, phytoplankton samples were collected from regions with and without bloom in the coastal waters of Qinhuangdao in 2011, and clone libraries were built using eukaryote-specific 18S ribosomal RNA gene (18S rDNA). Altogether 50 clones, including 17 clones from bloom area and 33 clones from nearby regions without bloom were amplified. Blasted in GenBank, 17 clones amplified from the bloom area were assigned to Pelagophyceae (8 clones), Mediophyceae (2 clones), Cryptophyta (2 clones), Dinophyceae (2 clones) and unidentified eukaryotic species (3 clones). Those from the non-bloom site were assigned to Cryptophyta, Eustigmatophyceae, Prasinophyceae, Coscinodiscophyceae, Mediophyceae, Raphidophyceae and Dinophyceae, but not Pelagophyceae. All 8 pelagophyte clones from the bloom area were 99.7–100% similar to a single species, Aureococcus anophagefferens Hargraves et Sieburth, the causative species of brown tides on the east coast of USA. For nearly the entire length of the 18S rDNA, there were 0–6 base pair differences between the 8 amplicons and those of A. anophagefferens from USA. Furthermore, all of the 8 clones were clustered into the same well-supported clade with A. anophagefferens (posterior probability = 0.99) in a phylogenetic tree established for pelagophytes and other related microalgae. In our previous studies, the causative species of the bloom was tentatively identified as a pelagophyte, haptophyte or silicoflagellate, based on the pigment profile of the size-fractioned phytoplankton samples. Based on this study, we conclude that blooms in the coastal waters of Qinhuangdao of the Bohai Sea were brown tides caused by A. anophagefferens. As far as we know, this is the first report of brown tide events caused by A. anophagefferens in China, which is the third country in the world reporting A. anophagefferens blooms in addition to USA and South Africa.  相似文献   

13.
《Harmful algae》2009,8(1):152-157
Population dynamics of harmful algal bloom species are regulated both from the “bottom-up” by factors that affect their growth rate and from the “top-down” by factors that affect their loss rates. While it might seem apparent that eutrophication would have the greatest impact on factors affecting growth rates of phytoplankton (nutrient supply, light availability) the roles of top-down controls, including grazers and pathogens, cannot be ignored in studies of harmful bloom dynamics. Lags between the growth of phytoplankton and zooplankton populations, or disruption of zooplankton populations by adverse environmental conditions may be important factors in the initiation of plankton blooms under eutrophic conditions. Grazers that avoid feeding on harmful species and actively graze on competing species may also play important roles in bloom initiation. Grazers that are not affected by phytoplankton toxins and have growth rates comparable to phytoplankton (e.g. protozoan grazers) may have the potential to control the initiation of blooms. If the inhibition of grazers varies with cell density for blooms of toxic phytoplankton, eutrophication may increase the chances of blooms reaching threshold densities for grazer inhibition. In addition, secondary effects of eutrophication, including hypoxia and change in pH may adversely affect grazer populations, and further release HAB species from top-down control. The Texas brown tide (Aureoumbra lagunensis) blooms provide evidence for the role of grazer disruption in bloom initiation and the importance of high densities of brown tide cells in continued suppression of grazers.  相似文献   

14.
A brown tide bloom of the alga Aureoumbra lagunensis was presentwithout interruption in the Laguna Madre of Texas from January1990 through October 1997. This is the longest continual phytoplanktonbloom of which we are aware. Although the factors leading tothe initiation of this bloom have been well documented, thefactors contributing to its persistence are still being investigated.Two physical characteristics of the Laguna Madre may play animportant role: the long turnover time for waters in this coastallagoon (–1 year) and the hypersaline conditions that usuallyexist (40–60 PSU) due to evaporation exceeding precipitation.In this study, we examined the effects of salinity on the growthrates of the brown tide alga and on the growth of one of itsprotozoan grazers. Historical data from before the onset ofthe brown tide provide evidence for the suppression of microzooplanktonpopulations and mesozooplankton growth caused by hypersalinity.The brown tide alga will grow in a remarkably wide range ofsalinities ranging from 10 to 90 PSU. Maximum growth rates areachieved at salinities ranging from 20 to 60 PSU. One commongrazer on the brown tide alga, the heterotrophic dinoftagellateOxyrrhis marina, was found to grow more slowly under hypersalineconditions. The normally hypersaline conditions of the LagunaMadre may, therefore, favor the brown tide alga over other phytoplanktonspecies that do not grow well under hypersaline conditions,and also suppress the growth and feeding rates of potentialgrazers.  相似文献   

15.
Confined to Texas, USA, for more than 20 years, brown tides caused by Aureoumbra lagunensis emerged in the Indian River Lagoon and Mosquito Lagoon, Florida, USA, during 2012 and 2013, affording the opportunity to assess whether hypotheses developed regarding the occurrence of these blooms are ecosystem-specific. To examine the extent to which top-down (e.g. grazing) and bottom-up (e.g. nutrients) processes controlled the development of Aureoumbra blooms in Florida, nitrogen (N) uptake, nutrient amendment, and seawater-dilution, zooplankton grazing experiments were performed and the responses of Aureoumbra and competing phytoplankton were evaluated. During the study, Aureoumbra comprised up to 98% of total phytoplankton biomass, achieved cell densities exceeding 2 × 106 cells mL−1, and contained isotopically lighter N compared to non-bloom plankton populations, potentially reflecting the use of recycled N. Consistent with this hypothesis, N-isotope experiments revealed that urea and ammonium accounted for >90% of N uptake within bloom populations whereas nitrate was a primary N source for non-bloom populations. Low levels (10 μM) of experimental ammonium enrichment during blooms frequently enhanced the growth of Aureoumbra and resulted in the growth rates of Aureoumbra exceeding those of phycoerythrin-containing, but not phycocyanin-containing, cyanobacteria. A near absence of grazing pressure on Aureoumbra further enabled this species to out-grow other phytoplankton populations. Given this alga is generally known to resist zooplankton grazing under hypersaline conditions, these findings collectively suggest that moderate loading rates of reduced forms of nitrogenous nutrients (e.g ammonium, urea) into other subtropical, hypersaline lagoons could make them susceptible to future brown tides caused by Aureoumbra.  相似文献   

16.
The influence of nutrient additions and sediment exchange on Aureococcus anophagefferens growth was studied using 200 l mesocosms deployed in situ at the Southampton College Marine Science Center in Long Island, New York. A. anophagefferens cell density increased in mesocosms with separate additions of the following materials: urea + glucose and desiccation-stressed Enteromorpha tissue. A decrease in A. anophagefferens cell density was observed in mesocosms with either no additions (control) or with added nitrate. A treatment containing a sediment layer exhibited an increase in average cell densities, but the increase was not statistically significant (P = 0.15). In the 9 day experiment, net growth of A. anophagefferens was only observed during the last 3 days, which corresponded to a period of high solar irradiation. Total chlorophyll concentration declined in all treatments during the first 6 days, which corresponded to relatively low daily irradiance, suggesting low-light stress on the phytoplankton assemblage during the initial phase of the experiment. During the ensuing sunny period, a 4–5-fold increase in chlorophyll concentration was observed in the nitrate and urea treatments with lesser increases in the other treatments. A. anophagefferens density increased relative to total phytoplankton biomass (Chl basis) in the urea + glucose and Enteromorpha treatments. Results are consistent with a prevailing hypothesis that organic nitrogen nutrients favor the growth of A. anophagefferens. Specifically, our evidence indicates that A. anophagefferens exhibited net population growth under organic N, but not inorganic N nutrient (specifically NO3) loading.  相似文献   

17.
The brown tides occurring in the coastal scallop cultivation area of Qinhuangdao, China, in recent years are caused by Aureococcus anophagefferens and significantly impact the scallop industry and the marine ecosystem in this region. Long-term investigations of phytoplankton and hydrological variables in the Qinhuangdao sea area were conducted in this study to understand the spatial-temporal variations of A. anophagefferens in relation to environmental factors. Samples were collected during twelve cruises from July 2011 to December 2013 and were analyzed for the temperature, salinity, dissolved oxygen (DO), nutrients and phytoplankton pigments. All diagnostic pigments of A. anophagefferens, such as chlorophyll c3 (Chl c3), Chl c2, 19′-butanoyloxyfucoxanthin (But-fuco), fucoxanthin (Fuco), and diadinoxanthin (Diad), were detected in the surface water by using high-performance liquid chromatography (HPLC). The highest concentrations of But-fuco (5.64 μg L−1), Fuco (37.94 μg L−1) and chlorophyll a (Chl a, 17.25 μg L−1) occurred in different seasons and sampling sites. The A. anophagefferens bloom (as indicated by But-fuco) usually expanded from the south to the north of the Qinhuangdao sea area, close to scallop-culturing regions. The bloom unusually starts in May, reaches its peak in June and almost disappears in August, with the temperature ranging from ca. 19 °C to 23 °C. The redundancy analysis (RDA) indicated that relatively high salinity (>29) and low inorganic nutrients were suitable for the development of the A. anophagefferens bloom. The ratios of diagnostic pigments to Chl a were not constant during different cruises and generally obeyed two different linear relationships, thus indicating the co-occurrence of the blooms of A. anophagefferens and other species, such as Minutocellus polymorphus. In summary, our work reports the long-term variation of A. anophagefferens blooms based on diagnostic pigments and environmental controls, which may provide more insights into the formation mechanisms of the brown tide in this region.  相似文献   

18.
The smallest known eukaryote, Ostreococcus tauri Courties et Chrétiennot-Dinet, was first reported as the dominant picoplankter in a French lagoon known for its diverse phytoplankton community and high oyster productivity. Long-term seasonal blooms of this picoeukaryote were observed in association with stable plankton communities. On 5 June 2001, a distinctive monotypic picoplankton bloom was detected by flow cytometry as part of an ongoing study of "brown tide" ( Aureococcus anophagefferens ) bloom initiation in Long Island bays. The bloom reached a concentration of 5 × 105 cells·mL−1 in West Neck Bay and lasted less than 2 weeks. Epifluorescence microscopy and TEM indicated that the bloom organism was an Ostreococcus -like picoalga, the first ever observed in a Long Island bay. Many cells of this alga contained numerous virus-like particles. The Ostreococcus -like picoalga, which resembles O. tauri , was rare in samples collected the following week. Instead, a substantial increase in the Synechococcus population was observed. Such rapid population changes have not previously been reported for Ostreococcus . Viral lysis and grazing by heterotrophic nanoflagellates may have contributed to the rapid decline of the Ostreococcus -like cells in West Neck Bay.  相似文献   

19.
For an algal bloom to develop, the growth rate of the bloom-forming species must exceed the sum of all loss processes. Among these loss processes, grazing is generally believed to be one of the more important factors. Based on numerous field studies, it is now recognized that microzooplankton are dominant consumers of phytoplankton in both open ocean and coastal waters. Heterotrophic protists, a major component of microzooplankton communities, constitute a vast complex of diverse feeding strategies and behavior which allow them access to even the larger phytoplankton species. A number of laboratory studies have shown the capability of different protistan species to feed and grow on bloom-forming algal species. Because of short generation times, their ability for fast reaction to short-term variation in food conditions enables phagotrophic protists to fulfill the function of a heterotrophic buffer, which might balance the flow of matter in case of phytoplankton blooms. The importance of grazing as a control of microalgae becomes most apparent by its failure; if community grazing controls initial stages of bloom development, there simply is no bloom. However, if a certain algal species is difficult to graze, e.g. due to specific defense mechanisms, reduced grazing pressure will certainly favor bloom development. The present contribution will provide a general overview on the interactions between planktonic microalgae and protozoan grazers with special emphasis on species-specific interactions and algal defense strategies against protozoan grazers.  相似文献   

20.
We have been working to characterize viruses that infect the HAB‐forming pelagophyte Aureococcus anophagefferens Hargraves et Sieburth. Field samples were collected during brown‐tide events in 2002 and tested for the presence of lytic agents. Here, we describe a recently isolated, lytic virus‐like particle (VLP) that is morphologically similar to particles observed in thin sections of infected A. anophagefferens cells from natural samples. TEM and SEM have revealed VLPs consistent with the morphological characteristics of previously described Phycodnaviridae. Large icosahedral particles (~140 nm) of similar shape and morphology dominate cell lysates and are accompanied by smaller phage‐like particles and heterotrophic prokaryotes that appear to be incurable from our cultures. To determine which of these particles interacts with the Aureococcus cells, we preserved cultures during the early stage of infection so that SEM could be used to visualize those particles that attach to the surface of naïve cultures. SEM revealed that 63% of the large icosahedral‐shaped particles attached to A. anophagefferens cells after only 30 min of exposure, while no significant frequency of attachment to the alga was observed for the phage‐like particles. The results of these observations are in contrast to previous studies, where phage‐like particles were reported to infect cells. When considered in conjunction with field observations, the results suggest that this newly isolated virus represents the dominant virus‐morphotype associated with bloom collapse and termination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号