首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The majority of mitochondrial proteins are synthesized with amino-terminal signal sequences. The presequence translocase of the inner membrane (TIM23 complex) mediates the import of these preproteins. The essential TIM23 core complex closely cooperates with partner protein complexes like the presequence translocase-associated import motor and the respiratory chain. The inner mitochondrial membrane also contains a large number of metabolite carriers, but their association with preprotein translocases has been controversial. We performed a comprehensive analysis of the TIM23 interactome based on stable isotope labeling with amino acids in cell culture. Subsequent biochemical studies on identified partner proteins showed that the mitochondrial ADP/ATP carrier associates with the membrane-embedded core of the TIM23 complex in a stoichiometric manner, revealing an unexpected connection of mitochondrial protein biogenesis to metabolite transport. Our data indicate that direct TIM23-AAC coupling may support preprotein import into mitochondria when respiratory activity is low.  相似文献   

2.
Translocation of the presequence is an early event in import of preproteins across the mitochondrial inner membrane by the TIM23 complex. Import of signal peptides, whose sequences mimic mitochondrial import presequences, was measured using a novel, qualitative, fluorescence assay in about 1h. This peptide assay was used in conjunction with classical protein import analyses and electrophysiological approaches to examine the mechanisms underlying the functional effects of depleting two TIM23 complex components. Tim23p forms, at least in part, the pore of this complex while Tim44p forms part of the translocation motor. Depletion of Tim23p eliminates TIM23 channel activity, which interferes with both peptide and preprotein translocation. In contrast, depletion of Tim44p disrupts preprotein but not peptide translocation, which has no effect on TIM23 channel activity. Two conclusions were made. First, this fluorescence peptide assay was validated as two different mutants were accurately identified. Hence, this assay could provide a rapid means of screening mutants to identify those that fail an initial step in import, i.e., translocation of the presequence. Second, translocation of signal peptides required normal channel activity and disruption of the presequence translocase-associated motor complex did not modify TIM23 channel activity nor prevent presequence translocation.  相似文献   

3.
Tim14 and Tim16 are essential components of the import motor of the mitochondrial TIM23 preprotein translocase. Tim14 contains a J domain in the matrix space that is anchored in the inner membrane by a transmembrane segment. Tim16 is a J-related protein with a moderately hydrophobic segment at its N terminus. The J and J-like domains function in the regulation of the ATPase activity of the Hsp70 chaperone of the import motor. We report here on the role of the hydrophobic segments of Tim16 and Tim14 in the TIM23 translocase. Yeast cells lacking the hydrophobic N-terminal segment in either Tim16 or Tim14 are viable but show growth defects and decreased import rates of matrix-targeted preproteins into mitochondria. The interaction of the Tim14.Tim16 complex with the core complex of the TIM23 translocase is destabilized in these cells. In particular, the N-terminal domain of Tim16 is crucial for the interaction of the Tim14.Tim16 complex with the TIM23 preprotein translocase. Deletion of hydrophobic segments in both, Tim16 and Tim14, is lethal. We conclude that import into the matrix space of mitochondria requires association of the co-chaperones Tim16 and Tim14 with the TIM23 preprotein translocase.  相似文献   

4.
Mitochondria import the vast majority of their proteins from the cytosol. The mitochondrial import motor of the TIM23 translocase drives the translocation of precursor proteins across the outer and inner membrane in an ATP-dependent reaction. Tim44 at the inner face of the translocation pore recruits the chaperone mtHsp70, which binds the incoming precursor protein. This reaction is assisted by the cochaperones Tim14 and Mge1. We have identified a novel essential cochaperone, Tim16. It is related to J-domain proteins and forms a stable subcomplex with the J protein Tim14. Depletion of Tim16 has a marked effect on protein import into the mitochondrial matrix, impairs the interaction of Tim14 with the TIM23 complex and leads to severe structural changes of the import motor. In conclusion, Tim16 is a constituent of the TIM23 preprotein translocase, where it exerts crucial functions in the import motor.  相似文献   

5.
The import motor of the mitochondrial translocase of the inner membrane (TIM23) mediates the ATP-dependent translocation of preproteins into the mitochondrial matrix by cycles of binding to and release from mtHsp70. An essential step of this process is the stimulation of the ATPase activity of mtHsp70 performed by the J cochaperone Tim14. Tim14 forms a complex with the J-like protein Tim16. The crystal structure of this complex shows that the conserved domains of the two proteins have virtually identical folds but completely different surfaces enabling them to perform different functions. The Tim14-Tim16 dimer reveals a previously undescribed arrangement of J and J-like domains. Mutations that destroy the complex between Tim14 and Tim16 are lethal demonstrating that complex formation is an essential requirement for the viability of cells. We further demonstrate tight regulation of the cochaperone activity of Tim14 by Tim16. The first crystal structure of a J domain in complex with a regulatory protein provides new insights into the function of the mitochondrial TIM23 translocase and the Hsp70 chaperone system in general.  相似文献   

6.
Many mitochondrial proteins are synthesized with N-terminal presequences in the cytosol. The presequence translocase of the inner mitochondrial membrane (TIM23) translocates preproteins into and across the membrane and associates with the matrix-localized import motor. The TIM23 complex consists of three core components and Tim21, which interacts with the translocase of the outer membrane (TOM) and the respiratory chain. We have identified a new subunit of the TIM23 complex, the inner membrane protein Mgr2. Mitochondria lacking Mgr2 were deficient in the Tim21-containing sorting form of the TIM23 complex. Mgr2 was required for binding of Tim21 to TIM23(CORE), revealing a binding chain of TIM23(CORE)-Mgr2/Tim21-respiratory chain. Mgr2-deficient yeast cells were defective in growth at elevated temperature, and the mitochondria were impaired in TOM-TIM23 coupling and the import of presequence-carrying preproteins. We conclude that Mgr2 is a coupling factor of the presequence translocase crucial for cell growth at elevated temperature and for efficient protein import.  相似文献   

7.
The mitochondrial inner membrane is the central energy-converting membrane of eukaryotic cells. The electrochemical proton gradient generated by the respiratory chain drives the ATP synthase. To maintain this proton-motive force, the inner membrane forms a tight barrier and strictly controls the translocation of ions. However, the major preprotein transport machinery of the inner membrane, termed the presequence translocase, translocates polypeptide chains into or across the membrane. Different views exist of the molecular mechanism of the translocase, in particular of the coupling with the import motor of the matrix. We have reconstituted preprotein transport into the mitochondrial inner membrane by incorporating the purified presequence translocase into cardiolipin-containing liposomes. We show that the motor-free form of the presequence translocase integrates preproteins into the membrane. The reconstituted presequence translocase responds to targeting peptides and mediates voltage-driven preprotein translocation, lateral release and insertion into the lipid phase. Thus, the minimal system for preprotein integration into the mitochondrial inner membrane is the presequence translocase, a cardiolipin-rich membrane and a membrane potential.  相似文献   

8.
Modular structure of the TIM23 preprotein translocase of mitochondria   总被引:1,自引:0,他引:1  
The TIM23 complex mediates import into mitochondria of nuclear encoded preproteins with a matrix-targeting signal. It is composed of the integral membrane proteins Tim17 and Tim23 and the peripheral membrane protein Tim44, which recruits mitochondrial Hsp70 to the sites of protein import. We have analyzed the functions of these constituents using a combined genetic and biochemical approach. Depletion of either Tim17 or Tim23 led to loss of import competence of mitochondria and to a reduction in the number of preprotein-conducting channels. Upon depletion of Tim44, mitochondria also lost their ability to import proteins but maintained normal numbers of import channels. In the absence of Tim44 precursor protein was specifically recognized. The presequence was translocated in a Delta psi-dependent manner across the inner membrane and cleaved by matrix-processing peptidase. However, the preprotein did not move further into the matrix but rather underwent retrograde sliding out of the TIM23 complex. Thus, the TIM23 complex is composed of functionally independent modules. Tim17 and Tim23 are necessary for initiating translocation, whereas Tim44 and mitochondrial Hsp70 are indispensable for complete transport of preproteins and for unfolding of folded domains of preproteins.  相似文献   

9.
The TIM23 complex of the mitochondrial inner membrane mediates the import of preproteins that contain positively charged targeting signals. This translocase consists of the two phylogenetically related membrane-embedded subunits Tim17 and Tim23 to which four largely hydrophilic subunits, Tim50, Tim44, Tim16, and Tim14, are attached. Whereas in vitro reconstitution experiments have suggested a pore-forming capacity of recombinant Tim23, virtually nothing is known about the properties and function of Tim17. We employed a combined genetic and biochemical approach to address the function of Tim17 in preprotein translocation. Tim17 exposes an N-terminal hydrophilic stretch into the intermembrane space. Truncation of the first 11 amino acid residues of this stretch did not affect the stability or integrity of TIM23 subunits but strongly impaired the import of preproteins. Moreover, expression of the truncated Tim17 variant led to a dominant negative effect on the mitochondrial membrane potential. By an alanine-scanning approach we identified two conserved negative charges in the N terminus of Tim17 as critical for Tim17 function. The replacement of these positions by positively charged residues results in a strong growth defect, which can be cured by reverting two conserved positive charges into aspartate residues between transmembrane domains two and three of Tim17. On the basis of these observations we propose that charged residues in Tim17 are critical for the preprotein-induced gating of the TIM23 translocase.  相似文献   

10.
11.
The presequence translocase of the mitochondrial inner membrane (TIM23 complex) mediates the import of preproteins with amino-terminal presequences. To drive matrix translocation the TIM23 complex recruits the presequence translocase-associated motor (PAM) with the matrix heat shock protein 70 (mtHsp70) as central subunit. Activity and localization of mtHsp70 are regulated by four membrane-associated cochaperones: the adaptor protein Tim44, the stimulatory J-complex Pam18/Pam16, and Pam17. It has been proposed that Tim44 serves as molecular platform to localize mtHsp70 and the J-complex at the TIM23 complex, but it is unknown how Pam17 interacts with the translocase. We generated conditional tim44 yeast mutants and selected a mutant allele, which differentially affects the association of PAM modules with TIM23. In tim44-804 mitochondria, the interaction of the J-complex with the TIM23 complex is impaired, whereas unexpectedly the binding of Pam17 is increased. Pam17 interacts with the channel protein Tim23, revealing a new interaction site between TIM23 and PAM. Thus, the motor PAM is composed of functional modules that bind to different sites of the translocase. We suggest that Tim44 is not simply a scaffold for binding of motor subunits but plays a differential role in the recruitment of PAM modules to the inner membrane translocase.  相似文献   

12.
The presequence translocase of the inner mitochondrial membrane (TIM23 complex) operates at a central junction of protein import. It accepts preproteins from the outer membrane TOM complex and directs them to inner membrane insertion or, in cooperation with the presequence translocase-associated motor (PAM), to the matrix. Little is known of how the TIM23 complex coordinates these tasks. We have identified Tim21 (YGR033c) that interacts with the TOM complex. Tim21 is specific for a TIM23 form that cooperates with TOM and promotes inner membrane insertion. Protein translocation into the matrix requires a switch to a Tim21-free, PAM bound presequence translocase. Tim17 is crucial for the switch by performing two separable functions: promotion of inner membrane insertion and binding of Pam18 to form the functional TIM-PAM complex. Thus, the presequence translocase is not a static complex but switches between TOM tethering and PAM binding in a reaction cycle involving Tim21 and Tim17.  相似文献   

13.
The mitochondrial inner membrane contains numerous multispanning integral proteins. The precursors of these hydrophobic proteins are synthesized in the cytosol and therefore have to cross the mitochondrial outer membrane and intermembrane space to reach the inner membrane. While the import pathways of noncleavable multispanning proteins, such as the metabolite carriers, have been characterized in detail by the generation of translocation intermediates, little is known about the mechanism by which cleavable preproteins of multispanning proteins, such as Oxa1, are transferred from the outer membrane to the inner membrane. We have identified a translocation intermediate of the Oxa1 preprotein in the translocase of the outer membrane (TOM) and found that there are differences from the import mechanisms of carrier proteins. The intermembrane space domain of the receptor Tom22 supports the stabilization of the Oxa1 intermediate. Transfer of the Oxa1 preprotein to the inner membrane is not affected by inactivation of the soluble TIM complexes. Both the inner membrane potential and matrix heat shock protein 70 are essential to release the preprotein from the TOM complex, suggesting a close functional cooperation of the TOM complex and the presequence translocase of the inner membrane. We conclude that mitochondria employ different mechanisms for translocation of multispanning proteins across the aqueous intermembrane space.  相似文献   

14.
The import motor of the mitochondrial (mt)TIM23 complex drives translocation of presequence-containing preproteins across the mitochondrial inner membrane in an ATP-dependent manner. Tim44 is the central component of the motor. It recruits mtHsp70, which binds the incoming preproteins. The J protein Tim14 stimulates the ATPase activity of mtHsp70 and thereby enables efficient binding of mtHsp70 to preproteins. Tim16 is a J-like protein that forms a stable subcomplex with Tim14 and recruits it to the translocase. All subunits of the TIM23 translocase but one are essential for yeast cell viability. Yeast cells contain a close homologue of Tim14, Mdj2. In contrast to Tim14, its deletion leads to no obvious growth defect. In the present study we analyzed Mdj2 and compared it with Tim14. Mdj2 forms a complex with Tim16 and is recruited to the TIM23 translocase. It stimulates the ATPase activity of mtHsp70 to the same extent that Tim14 does. Mdj2 is expressed at a lower level compared with Tim14, and its complex with Tim16 is less stable. However, overexpressed Mdj2 fully restores the growth of cells lacking Tim14. We conclude that Mdj2 is a functional J protein and a component of the mitochondrial import motor.  相似文献   

15.
The preprotein translocase of the inner membrane of mitochondria (TIM23 complex) is the main entry gate for proteins of the matrix and the inner membrane. We isolated the TIM23 complex of Neurospora crassa. Besides Tim23 and Tim17, it contained a novel component, referred to as Tim50. Tim50 spans the inner membrane with a single transmembrane segment and exposes a large hydrophilic domain in the intermembrane space. Tim50 is essential for viability of yeast. Mitochondria from cells depleted of Tim50 displayed strongly reduced import kinetics of preproteins using the TIM23 complex. Tim50 could be cross-linked to preproteins that were halted at the level of the translocase of the outer membrane (TOM complex) or spanning both TOM and TIM23 complexes. We suggest that Tim50 plays a crucial role in the transfer of preproteins from the TOM complex to the TIM23 complex through the intermembrane space.  相似文献   

16.
Most mitochondrial proteins are transported from the cytosol into the or-ganelle. Due to the division of mitochondria into an outer and inner membrane, an inter-membrane space and a matrix, an elaborated system for recognition and transport of preproteins has evolved. The translocase of the outer mitochondrial membrane (TOM) and the translocases of the inner mitochondrial membrane (TIM) mediate these processes. Receptor proteins on the cytosolic face of mitochondria recognize the cargo proteins and transfer them to the general import pore (GIP) of the outer membrane. Following the passage of preproteins through the outer membrane they are transported with the aid of the TIM23 complex into either the matrix, inner membrane, or intermembrane space. Some preprotein families utilize the TIM22 complex for their insertion into the inner membrane. The identification of protein components, which are involved in these transport processes, as well as significant insights into the molecular function of some of them, has been achieved in recent years. Moreover, we are now approaching a new era in which elaborated techniques have already allowed and will enable us to gather information about the TOM and TIM complexes on an ultrastructural level.  相似文献   

17.
Most mitochondrial proteins have to be imported from the cytosol through both mitochondrial membranes to their final localization. A dedicated translocation machinery is responsible for the specific recognition and the membrane transport of mitochondrial precursor proteins. Protein translocase complexes integrated into both mitochondrial membranes cooperate closely with receptor proteins at the surface and provide aqueous transport channels through the membranes. Energy for the membrane insertion is provided by the electric potential across the mitochondrial inner membrane. However, full translocation of the polypeptide chain requires ATP hydrolysis in the matrix. The responsible ATPase enzyme is a member of an ubiquitous family of molecular chaperones, the mitochondrial heat shock protein of 70 kDa (mtHsp70). A physical and functional interaction with a set of cofactors is indispensable for the translocation function of mtHsp70. By a specific and nucleotide-dependent binding to the inner membrane translocase component Tim44, the soluble chaperone mtHsp70 is anchored directly at the site of preprotein membrane insertion. The nucleotide exchange factor Mge1 enhances the ATPase activity of mtHsp70 and is required for the preprotein import reaction. Two novel proteins, Pam18 and Pam16, members of the inner membrane translocation channel, are required to couple the ATPase activity of mtHsp70 to the preprotein import reaction. We have collected experimental evidence indicating that mtHsp70 generates an inward directed translocation force on the polypeptide chain in transit by an ATP-regulated direct interaction with the precursor protein. The force generation results in the movement and active unfolding of the preprotein domains during the translocation process. Taken together, the chaperone mtHsp70 with its accessory proteine forms an import motor complex for mitochondrial preproteins that is driven by the hydrolysis of ATP.  相似文献   

18.
Mitochondrial import of cleavable preproteins occurs at translocation contact sites, where the translocase of the outer membrane (TOM) associates with the presequence translocase of the inner membrane (TIM23) in a supercomplex. Different views exist on the mechanism of how TIM23 mediates preprotein sorting to either the matrix or inner membrane. On the one hand, two TIM23 forms were proposed, a matrix transport form containing the presequence translocase-associated motor (PAM; TIM23-PAM) and a sorting form containing Tim21 (TIM23SORT). On the other hand, it was reported that TIM23 and PAM are permanently associated in a single-entity translocase. We have accumulated distinct transport intermediates of preproteins to analyze the translocases in their active, preprotein-carrying state. We identified two different forms of active TOM-TIM23 supercomplexes, TOM-TIM23SORT and TOM-TIM23-PAM. These two supercomplexes do not represent separate pathways but are in dynamic exchange during preprotein translocation and sorting. Depending on the signals of the preproteins, switches between the different forms of supercomplex and TIM23 are required for the completion of preprotein import.The majority of mitochondrial proteins are nuclear encoded and posttranslationally transported into the organelle. A major class of mitochondrial proteins possess cleavable targeting signals at their amino termini, so-called presequences (5, 9, 12, 19, 30, 32). These α-helical segments are positively charged and direct the proteins across the outer and inner mitochondrial membranes toward the matrix space, where the presequences are proteolytically removed. However, a number of proteins of the inner mitochondrial membrane, among them subunits of the respiratory chain complexes, also utilize presequences as targeting signals. In addition to the presequence, they contain a hydrophobic sorting signal, which arrests precursor translocation across the inner membrane and mediates the lateral release of the polypeptide into the lipid phase (16, 30). In some cases, the membrane-inserted precursors undergo a second processing event by the inner membrane protease that cleaves behind the sorting signal and therefore leads to the release of the protein into the intermembrane space (25, 30, 31). Thus, a large variety of proteins destined for three different intramitochondrial compartments use presequences as the primary signal for transport.Cleavable preproteins initially enter mitochondria via the TOM complex and are translocated into or across the inner membrane by the TIM23 complex. The TIM23 complex consists of four integral membrane proteins, Tim23, Tim17, Tim50, and Tim21. Tim23 forms the protein-conducting channel of the translocase and is tightly associated with Tim17 (8, 26, 43). Tim50 acts as a regulator for the Tim23 channel and is involved in early steps of precursor transfer from the outer to the inner membranes (23, 29, 41). Tim21 transiently interacts with the TOM complex via binding to the intermembrane space domain of Tom22. This interaction promotes the release of presequences from Tom22 for their further transfer to the Tim23 channel (4). For full matrix translocation of preproteins, the TIM23 complex cooperates with PAM. The central subunit of PAM is mtHsp70, which undergoes ATP-dependent cycles of preprotein binding and release to promote polypeptide movement toward the matrix. The activity of mtHsp70 in the translocation process is regulated by four membrane-bound cochaperones, Tim44, the J complex Pam18/Pam16 (Tim14/Tim16), and Pam17. Tim44 provides a binding site for preproteins and mtHsp70 close to the Tim23 channel (1, 17, 22, 36). The J protein Pam18 stimulates the ATPase activity of mtHsp70 (10, 44), whereas the J-related protein Pam16 controls the activity of Pam18 (11, 13, 20). Pam17 plays an organizing role in the TIM23-PAM cooperation (33, 45).The following two different views on the organization of the presequence transport machinery are currently discussed. (i) The TIM23 complex and PAM were proposed to exist in different modular states, termed TIM23SORT and TIM23-PAM. The TIM23CORE complex, consisting of Tim23, Tim17 and Tim50, associates with either Tim21 or the subunits of PAM (4, 47, 51). The Tim21-containing form is termed TIM23SORT since this motor-free form was isolated and shown to mediate membrane insertion of sorted preproteins upon reconstitution (46). The TIM23-PAM form (lacking Tim21) is crucial for mtHsp70-driven preprotein translocation into the matrix (4). (ii) On the other hand, it was proposed that presequence translocase and import motor form a single structural and functional entity. Thus, membrane-integrated TIM23 and import motor would always remain in one complex. This model implies that a motor-free form of the TIM23 complex should not exist (27, 33, 42).To decide between the different views, it is necessary to analyze translocase and motor in their active form, i.e., during their engagement with preproteins. Moreover, the model of modular forms of TIM23 and PAM raises the question whether two strictly separate TIM23 pathways for inner membrane sorting and matrix translocation exist or whether an exchange between the different forms of the presequence translocase occurs. To date, the majority of experimental studies have been performed with the translocases in an inactive, i.e., preprotein-free, state. Studies using preproteins in transit provided only limited information so far and thus did not resolve the controversy, as follows. (i) Mokranjac and Neupert (27) questioned if the in vitro preprotein insertion by purified TIM23SORT in a proteoliposome assay (46) reflected the in organello situation in intact mitochondria. (ii) Popov-Celeketic et al. (33) accumulated a matrix-targeted preprotein in mitochondrial import sites in vivo and performed pulldown experiments. They copurified TIM23, PAM, and Tim21 and thus concluded that the TIM23 and motor subunits formed a single entity. They did not address the possibility that the accumulated preprotein was associated with different pools of translocase complexes. (iii) Wiedemann et al. (51) made use of the observation that TIM23SORT associates with the respiratory chain (47). They reported a copurification of inner membrane-sorted preproteins and matrix-targeted preproteins with respiratory chain complexes. This observation raised the possibility that the pathways for inner membrane sorting and matrix translocation are connected at least at the level of respiratory chain interaction; however, the composition of the TIM23 complexes was not analyzed.For this study, we used preproteins with variations in the intramitochondrial sorting signal to monitor the active, preprotein-carrying translocases at distinct stages of mitochondrial import. We observed different forms of active translocases on the presequence pathway. The sorting signals of the preproteins are critical for the selection of specific translocase forms. The motor and sorting forms of the TIM23 complex can be isolated as separate entities in support of the modular model. However, the different TIM23 forms are not permanently separated during preprotein import, but a dynamic exchange between the forms takes place for both matrix-targeted preproteins and inner membrane-sorted preproteins.  相似文献   

19.
Import of nuclear-encoded mitochondrial preproteins is mediated by a general translocase in the outer membrane, the TOM complex, and by two distinct translocases in the mitochondrial inner membrane, the TIM23 complex and the TIM22 complex. Both TIM complexes cooperate with the TOM complex but facilitate import of different classes of precursor proteins. Precursors with an N-terminal presequence are imported via the TIM23 complex, whereas mitochondrial carrier proteins require the TIM22 complex for insertion into the inner membrane. This review discusses recent advances in understanding the structure and function of the translocases of the inner membrane and the possible role of Tim proteins in the development of the Mohr-Tranebjaerg syndrome, a mitochondrial disorder leading to neurodegeneration.  相似文献   

20.
Most mitochondrial proteins are transported from the cytosol into the organelle. Due to the division of mitochondria into an outer and inner membrane, an intermembrane space and a matrix, an elaborated system for recognition and transport of preproteins has evolved. The translocase of the outer mitochondrial membrane (TOM) and the translocases of the inner mitochondrial membrane (TIM) mediate these processes. Receptor proteins on the cytosolic face of mitochondria recognize the cargo proteins and transfer them to the general import pore (GIP) of the outer membrane. Following the passage of preproteins through the outer membrane they are transported with the aid of the TIM23 complex into either the matrix, inner membrane, or intermembrane space. Some preprotein families utilize the TIM22 complex for their insertion into the inner membrane. The identification of protein components, which are involved in these transport processes, as well as significant insights into the molecular function of some of them, has been achieved in recent years. Moreover, we are now approaching a new era in which elaborated techniques have already allowed and will enable us to gather information about the TOM and TIM complexes on an ultrastructural level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号