首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[目的]为不产氧光合细菌光合色素研究提供可行的较系统规范的研究方法和数据,揭示固氮红细菌(Rhodobacter azotoformans 134K20)光合色素光氧适应性机制.[方法]采用光谱法和色谱法对光和氧调控下的类胡萝卜素和细菌叶绿素合成代谢进行了研究.[结果]134K20菌株光照好氧时细胞得率最高.光照厌氧时主要合成3黄、1红、1紫、2绿、2蓝9种色素,黄色素大量表达.有氧时红色素大量表达,且启动2种新的红色素和1种新的紫色素表达,而黄色和蓝绿色素则受氧抑制.黑暗好氧主要合成2黄、3红、2紫、1绿、1蓝9种色素,但不同于光照厌氧.光照好氧时黄色素减少到1种,紫色素含量增加,其余同黑暗好氧.[结论]固氮红细菌(Rhodobacter azotoformans 134K20)是通过PpsR调节途径来调节光合基因表达的.黄色和红色素属于类胡萝卜素.黄色素1属于球形烯系列,其余两种黄色素是新的类胡萝卜素组分.红色素为新的球形烯酮组分,3种红色素极性、峰形和峰位差别显著,正己烷能显示其精细结构.紫色为极性较大的细菌脱镁叶绿素,绿色和蓝色为4种极性不同的细菌叶绿素a中间产物.乙醚甲醇法适合类胡萝卜素的提取,丙酮甲醇冰冻研磨法能快速有效完全提取光合色素.溶剂效应可有效鉴别细菌叶绿素a中间产物.  相似文献   

2.

Monascus pigments are secondary metabolites of Monascus species and are mainly composed of yellow pigments, orange pigments and red pigments. In this study, a larger proportion of Monascus yellow pigments could be obtained through the selection of the carbon source. Hydrophilic yellow pigments can be largely produced extracellularly by Monascus ruber CGMCC 10910 under conditions of high glucose fermentation with low oxidoreduction potential (ORP). However, keeping high glucose levels later in the culture causes translation or a reduction of yellow pigment. We presume that the mechanism behind this phenomenon may be attributed to the redox level of the culture broth and the high glucose stress reaction of M. ruber CGMCC 10910 during high glucose fermentation. These yellow pigments were produced via high glucose bio-fermentation without citrinin. Therefore, these pigments can act as natural pigments for applications as food additives.

  相似文献   

3.
In addition to canthaxanthin, seven pigment fractions were isolated from Micrococcus roseus. They were purified by solvent partitioning and by column and thin-layer chromatography. Visible absorption spectra, chromatographic behavior, and partition coefficients of the pigments and derivatives prepared from the pigments were used in characterizing them. Both alpha- and beta-carotene derivatives were present. The structure of one pigment was suggested as phoenicoxanthin (3-hydroxy-4,4'-diketo-beta-carotene). Four other pigments were tentatively characterized as a dihydroxy-3,4-dehydro-alpha-carotene, a dihydroxy-alpha-carotene, a diketo-alpha-carotene, and a polyhydroxy-beta-carotene. Two pigments were isolated in trace amounts and could not be characterized. All the pigments studied were isolated as mixtures of cis-trans isomers and all except the diketo-alpha-carotene were isolated as esters from M. roseus. Quantitation of the pigments showed that canthaxanthin (4,4'-diketo-beta-carotene) represented 85% of the pigment recovered from extracts. Three of the other pigments contributed a significant proportion of the remaining pigments, whereas the other four were present in only small amounts. beta-Carotene derivatives comprised 96% and alpha-carotene derivatives 4% of the pigments recovered from extracts.  相似文献   

4.
The shortwave-sensitive SWS1 class of vertebrate visual pigments range in lambda(max) from the violet (385-445 nm) to the ultraviolet (UV) (365-355 nm), with UV-sensitivity almost certainly ancestral. In birds, however, the UV-sensitive pigments present in a number of species have evolved secondarily from an avian violet-sensitive (VS) pigment. All avian VS pigments expressed in vitro to date encode Ser86 whereas Phe86 is present in all non-avian ultraviolet sensitive (UVS) pigments. In this paper, we show by site directed mutagenesis of avian VS pigments that Ser86 is required in an avian VS pigment to maintain violet-sensitivity and therefore underlies the evolution of avian VS pigments. The major mechanism for the evolution of avian UVS pigments from an ancestral avian VS pigment is undoubtedly a Ser90Cys substitution. However, Phe86, as found in the Blue-crowned trogon, will also short-wave shift the pigeon VS pigment into the UV whereas Ala86 and Cys86 which are also found in natural avian pigments do not generate short-wave shifts when substituted into the pigeon pigment. From available data on avian SWS1 pigments, it would appear that UVS pigments have evolved on at least 5 separate occasions and utilize 2 different mechanisms for the short-wave shift.  相似文献   

5.
Summary New water-soluble red pigments were produced byMonascus sp. in a chemically defined fermentation medium containing glutamate as nitrogen source. They were isolated and characterized as glutamate derivatives of the well-known orangeMonascus pigments (monascorubrin and rubropunctatin). The new pigments have several advantages over the known redMonascus pigments (rubropunctamine and monascorubramine) including very high water-solubility, higher absorption coefficient, and greater resistance to decoloration by light. Adding glutamate, glycine or leucine to a resting-cell system led to the formation of specific water-soluble red pigments corresponding to the exogenous amino acid. The water-soluble red pigments produced by resting-cells have retention times identical to those of the corresponding red derivatives made chemically from the orange pigments in methanol-phosphate buffer at pH 7. The hydrophobicities of the amino acid sources correspond to the HPLC retention times of the red pigments derived from them.  相似文献   

6.
于雪  张威  吴玉洁  陈拓  刘光琇 《微生物学报》2022,62(4):1231-1246
近年来,随着人工合成色素的大量使用引起一系列环境和健康问题,增加了人们对安全、无毒天然色素的需求.天然色素主要来源于植物和微生物,由于植物生长周期较长使植物源色素在大规模应用中受限.与植物源天然色素相比,微生物源色素易于大规模快速培养,具有更广阔的应用前景.本文系统总结了不同微生物源色素产生机制,及其在抗菌、抗氧化及抗...  相似文献   

7.
S Yokoyama  F B Radlwimmer 《Genetics》2001,158(4):1697-1710
To better understand the evolution of red-green color vision in vertebrates, we inferred the amino acid sequences of the ancestral pigments of 11 selected visual pigments: the LWS pigments of cave fish (Astyanax fasciatus), frog (Xenopus laevis), chicken (Gallus gallus), chameleon (Anolis carolinensis), goat (Capra hircus), and human (Homo sapiens);and the MWS pigments of cave fish, gecko (Gekko gekko), mouse (Mus musculus), squirrel (Sciurus carolinensis), and human. We constructed these ancestral pigments by introducing the necessary mutations into contemporary pigments and evaluated their absorption spectra using an in vitro assay. The results show that the common ancestor of vertebrates and most other ancestors had LWS pigments. Multiple regression analyses of ancestral and contemporary MWS and LWS pigments show that single mutations S180A, H197Y, Y277F, T285A, A308S, and double mutations S180A/H197Y shift the lambda(max) of the pigments by -7, -28, -8, -15, -27, and 11 nm, respectively. It is most likely that this "five-sites" rule is the molecular basis of spectral tuning in the MWS and LWS pigments during vertebrate evolution.  相似文献   

8.
Natural pigments sourced from ores, insects, plants and animals were the colorants used since prehistoric period. Synthetic dyes which took the place of natural pigments in the middle of 19th century still rule the field to the maximum extent in spite of its hazardous effect to humans, animals and environment. As an alternative to synthetic pigments, bacterial pigments due to their better biodegradability and higher compatibility with the environment, offer promising avenues for various applications. The industry is now able to produce some bacterial pigments for applications in food, pharmaceuticals, cosmetics and textiles. Extraction of bacterial pigments in relatively pure and concentrated forms is the main technological challenge. Optimization of fermentation process and the medium components are reported as key strategies for economic recovery of pigments. Research work needs to be carried out to formulate the fermentation media for each bacterial pigment on large scale by using economical and easily available sources for commercial process. Recent advances in synthetic biology, metabolic engineering efforts of bacteria will greatly expand the pigments that could be produced economically in sufficient amounts for industrial application. This review summarizes the current technology status and challenges, economics, novel strategies for production of bacterial pigments and metabolic engineering of bacteria with a focus on applications of bacterial pigments in food industry, pharmaceutical industry, dyeing as well as on other applications.  相似文献   

9.
SYNOPSIS. It is evident from the results obtained by UV spectroscopy and chemical analyses that the pigments of the foraminiferan Allogromia laticollaris are carotene waxes of the xanthophyll type. Since none of the pigments was found in the food organisms, one can exclude the possibility that these pigments are derived from food. The origin of the pigments is discussed.  相似文献   

10.
对来源于微生物的天然黄色素的研究进行了详细概述, 尤其对红曲黄色素的生产、安全性以及黄色素的合成代谢机理研究进行了详细论述, 最后对红曲黄色素的应用前景及其未来研究重点进行了展望, 并对研究中存在的问题进行了分析。  相似文献   

11.
分析了红色红曲霉(Monascus ruber)和烟色红曲霉(Monascus fuliginosus)发酵米粉所产橙色素的喷雾质谱图,发现烟色红曲霉所产橙色素与文献报道的相同;而红色红曲霉所产色素与文献报道不同,其主要组分是分子量分别为340.3和312.3的2种物质。  相似文献   

12.
In Antarctica microorganisms are exposed to several conditions that trigger the generation of reactive oxygen species, such as high UV radiation. Under these conditions they must have an important antioxidant defense system in order to prevent oxidative damage. One of these defenses are pigments which are part of the non-enzymatic antioxidant mechanisms. In this work we focused on the antioxidant capacity of pigments from an Antarctic microorganism belonging to Pedobacter genus. This microorganism produces different types of pigments which belong to the carotenoids group. The antioxidant capacity of a mix of pigments was analyzed by three different methods: 1,1-diphenyl-2-picrylhydrazyl, ROS detection and oxygen electrode. The results obtained from these approaches indicate that the mix of pigments has a strong antioxidant capacity. The oxidative damage induced by UVB exposure to liposomes was also analyzed. Intercalated pigments within the liposomes improved its resistance to lipid peroxidation. Based on the analysis carried out along this research we conclude that the antioxidant properties of the mix of pigments protect this bacterium against oxidative damage. These properties make this mix of pigments a powerful antioxidant mixture with potential biotechnological applications.  相似文献   

13.
The highly radioresistant Rubrobacter radiotolerans, contains red pigments. Since the pigments could not be extracted by usual methods, a new method was developed in which the pigments were extracted with organic solvents after addition of 10 N KOH to the intact cells, followed by neutralization. These pigments were also extracted after treatment with achromopeptidase, but not with lysozyme. The extracted pigments separated into two main spots by TLC (48.6% and 22.6%), and were confirmed to be carotenoids by chemical tests. The two major pigments had 13 conjugated double bonds as determined from the main maximum wavelength of the light absorption spectra. Their molecular weights were determined to be 740 and 722 by mass spectrometry. The mass spectra of their TMS-derivatives revealed that they contained four and three tertiary OH groups, respectively. Confirming their identical light and IR spectra, these pigments were determined to be bacterioruberin and monoanhydrobacterioruberin, respectively, the characteristic carotenoids of halophilic bacteria. The existence of these pigments in bacteria other than halobacteria provides interesting new evidence on the distribution of these compounds.  相似文献   

14.
J M Arias  R Carmona  E Montoya 《Microbios》1983,38(151):27-32
A strain of Myxococcus coralloides produces pigments with antibiotic activity. The pigments are non-diffusible and become detectable at the beginning of the autolytic phase. Red pigments produced by vegetatively growing cells were extracted by acetone treatment. The crude extract when chromatographed yielded several fractions, two of which were active against certain Gram-positive bacteria. Both fractions were partial purified in thin layer chromatography and can be differentiated according to colour, polarity and absorption spectrum. Production of active pigments is increased by nicotine and inhibited by diphenylamine. The pigments are also compared with the antibiotic produced by this bacterium.  相似文献   

15.
我国植物食用色素资源开发利用评价   总被引:2,自引:0,他引:2  
古代人们使用的着色剂都是天然产品,除少数矿物颜料外,主要是植物源色素。我国古代就有以红曲米作为着色剂利用的习惯;在高等植物方面,生产蓝色、黄色、绿色的颜料的高等植物种类不少,大多沿用至今。自19世纪中叶以后,人工合成色素以着色牢固、鲜艳、成本低廉等特点,迅速占领了印染、食品等许多行业,但20世纪60年代以后,许多研究表明,一般合成色素都有程度不等的毒性,特别是化学结构含偶氮型的色素有可能在人体内成为致癌物。同时,在色素合成的过程中,还有可能污染有重金属及其他有害物质。因此,合成色素越来越使人们感到不安全。从20世纪50年代的100多种人工合成色素用于食品着色,到20世纪末,已有60~70余种被禁用了,而植物食用色素在食品行业中成为主要着色剂。近年来又涌现出多种有价值的高等植物源色素,我们选择其主要一些植物种类做些介绍,供有关方面参考。  相似文献   

16.
Cone visual pigments   总被引:1,自引:0,他引:1  
Cone visual pigments are visual opsins that are present in vertebrate cone photoreceptor cells and act as photoreceptor molecules responsible for photopic vision. Like the rod visual pigment rhodopsin, which is responsible for scotopic vision, cone visual pigments contain the chromophore 11-cis-retinal, which undergoes cis–trans isomerization resulting in the induction of conformational changes of the protein moiety to form a G protein-activating state. There are multiple types of cone visual pigments with different absorption maxima, which are the molecular basis of color discrimination in animals. Cone visual pigments form a phylogenetic sister group with non-visual opsin groups such as pinopsin, VA opsin, parapinopsin and parietopsin groups. Cone visual pigments diverged into four groups with different absorption maxima, and the rhodopsin group diverged from one of the four groups of cone visual pigments. The photochemical behavior of cone visual pigments is similar to that of pinopsin but considerably different from those of other non-visual opsins. G protein activation efficiency of cone visual pigments is also comparable to that of pinopsin but higher than that of the other non-visual opsins. Recent measurements with sufficient time-resolution demonstrated that G protein activation efficiency of cone visual pigments is lower than that of rhodopsin, which is one of the molecular bases for the lower amplification of cones compared to rods. In this review, the uniqueness of cone visual pigments is shown by comparison of their molecular properties with those of non-visual opsins and rhodopsin. This article is part of a Special Issue entitled: Retinal Proteins — You can teach an old dog new tricks.  相似文献   

17.
The violet- and ultraviolet-sensitive visual pigments of birds belong to the same class of pigments as the violet-sensitive (so-called blue) pigments of mammals. However, unlike the pigments from mammals and other vertebrate taxa which, depending on species, have lambda(max) values of either around 430 nm or around 370 nm, avian pigments are found with lambda(max) values spread across this range. In this paper, we present the sequences of two pigments isolated from Humbolt penguin and pigeon with intermediate lambda(max) values of 403 and 409 nm, respectively. By comparing the amino acid sequences of these pigments with the true UV pigments of budgerigar and canary and with chicken violet with a lambda(max) value of 420 nm, we have been able to identify five amino acid sites that show a pattern of substitution between species that is consistent with differences in lambda(max). Each of these substitutions has been introduced into budgerigar cDNA and expressed in vitro in COS-7 cells. Only three resulted in spectral shifts in the regenerated pigment; two had relatively small effects and may account for the spectral shifts between penguin, pigeon, and chicken whereas one, the replacement of Ser by Cys at site 90 in the UV pigments, produced a 35 nm shortwave shift that could account for the spectral shift from 403 nm in penguin to around 370 nm in budgerigar and canary.  相似文献   

18.
Whole-body gamma irradiation of rats induced the formation of lipofuscin-like pigments in erythrocytes. Erythrocytes that were damaged by oxidation were scavenged in the spleen, and lipofuscin-like pigments were transferred from erythrocytes to the spleen during this process. The time course of lipofuscin-like pigments in erythrocytes and spleen indicates that the pigments were not induced by the action of free radicals produced by ionizing radiation but rather were a sequela of postirradiation metabolic changes.  相似文献   

19.
The effects of light on the accumulation of bacteriochlorophylland carotenoids were investigated in an aerobic photosyntheticbacterium, Roseobacter denitrificans during anaerobic respiration.Accumulation of pigments occurred in darkness but not in whitelight, with the growth rate being similar under both dark andlight conditions. Once pigments had accumulated during growthin darkness, subsequent irradiation with white light did notresult in degradation of the accumulated pigments, an indicationthat the pigments were stabilized in the membranes. The presentresults, therefore, exclude the possibility of inhibition ofthe accumulation of the photosynthetic pigments by the photochemicaldegradation of the pigments in the presence of molecular oxygenand light (blue light). The action spectrum for the inhibitionof the accumulation of the pigments showed that light at 470nm was the most effective and light at wavelengths longer than500 nm had little inhibitory effect. Together with previousresults [Shimada et al. (1992) Plant Cell Physiol. 33: 471],the present data suggest that a signal-transduction system associatedwith an unidentified blue pigment(s) is involved in the inhibitionof the accumulation of the photosynthetic pigments in R. denitrificans. (Received May 6, 1992; Accepted September 21, 1992)  相似文献   

20.
The retinylpeptides of visual pigments of two species of squid were identified in invertebrate visual pigments. Their primary structures were identical: H-Phe-Ala-Lys-Ala-Ser-Ala-Ile-His-Asn-pro-Hse(Met)-OH. The sequence was homologous to those of the corresponding region of other visual pigments, but the eighth amino acid, His, was found in squid visual pigments. In this experiment the retinylpeptides of eleven amino acid residues were isolated by monitoring the absorbance spectrum of the reduced retinal Schiff base without using radio-active [3H]retinal. This method is valid for the isolation and identification of retinylpeptides of other invertebrate visual pigments in which the chromophore is not exchangeable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号