首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cathodically galvanotropic orientation of nemerteans, Lineus, and the anodic orientation of the gephyrean Echiurus, are reversed by the action of strychnine under conditions such that the typical "reversal of inhibition" induced by this substance is apparent. Nicotine does not give this result. Since it is necessary to assume that the strychnine effect is due to action upon the central ganglia, and since the galvanotropic effect depends upon action of the current on nerve cell bodies of the central ganglia, it must be assumed that the locus of reversal by strychnine is not perikaryal, but presumably synaptic.  相似文献   

2.
The patterns and rates of organelle redistribution in columella (i.e., putative statocyte) cells of agravitropic agt mutants of Zea mays are not significantly different from those of columella cells in graviresponsive roots. Graviresponsive roots of Z. mays are characterized by a strongly polar movement of 45Ca2+ across the root tip from the upper to the lower side. Horizontally-oriented roots of agt mutants exhibit only a minimal polar transport of 45Ca2+. Exogenously-induced asymmetries of Ca result in curvature of agt roots toward the Ca source. A similar curvature can be induced by a Ca asymmetry in normally nongraviresponsive (i.e., lateral) roots of Phaseolus vulgaris. Similarly, root curvature can be induced by placing the roots perpendicular to an electric field. This electrotropism increased with 1) currents between 8-35 mA, and 2) time between 1-9 hr when the current is constant. Electrotropism is reduced significantly by treating roots with triiodobenzoic acid (TIBA), an inhibitor of auxin transport. These results suggest that 1) if graviperception occurs via the sedimentation of amyloplasts in columella cells, then nongraviresponsive roots apparently sense gravity as do graviresponsive roots, 2) exogenously-induced asymmetries of a gravitropic effector (i.e., Ca) can induce curvature of normally nongraviresponsive roots, 3) the gravity-induced downward movement of exogenously-applied 45Ca2+ across tips of graviresponsive roots does not occur in nongraviresponsive roots, 4) placing roots in an electrical field (i.e., one favoring the movement of ions such as Ca2+) induces root curvature, and 5) electrically-induced curvature is apparently dependent on auxin transport. These results are discussed relative to a model to account for the lack of graviresponsiveness by these roots.  相似文献   

3.
Directional growth in response to electric fields (galvanotropism) is known for eukaryotic cells as diverse as fibroblasts, neurons, algae, and fungal hyphae. The mechanism is not understood, but all proposals invoke actin either directly or indirectly. We applied electric fields to bacteria (which are inherently free of actin) to determine whether actin was essential for galvanotropism. Field-treated (but not control) Enterobacter cloacae and Escherichia coli cells curved rapidly toward the anode. The response was both field strength and pH dependent. The direction of curvature was reversed upon reversal of field polarity. The directional growth was not due to passive bending of the cells or to field-induced gradients of tropic substances in the medium. Field-treated Bacillus subtilis cells also curved, but the threshold was much higher than for E. cloacae or E. coli. Since the curved morphology must reflect spatial differences in the rates of cell wall synthesis and degradation, we looked for regions of active wall growth. Experiments in which the cells were decorated with latex beads revealed that the anode-facing ends of cells grew faster than the cathode-facing ends of the same cells. Inhibitors of cell wall synthesis caused spheroplasts to form on the convex regions of field-treated cells, suggesting that the initial curvature resulted from enhanced growth of cathode-facing regions. Our results indicate that an electric field modulates wall growth spatially and that the mechanism may involve differential stimulation of wall growth in both anode- and cathode-facing regions. Electric fields may therefore serve as valuable tools for studies of bacterial wall growth. Use of specific E. coli mutants may allow dissection of the galvanotropic mechanism at the molecular level.  相似文献   

4.
Pelvetia eggs were exposed to steady electric fields from 5 hr after fertilization until their rhizoids began to grow out some 6 to 10 hr later. Eleven batches of eggs responded by initiating rhizoids towards the positive electrode; two batches responded by growing towards the negative electrode; and three grew towards the negative one in small fields and towards the positive one in higher fields. Polarization, defined as the average cosine of the outgrowth directions, was proportional to field strength up to polarization values of 50% for the positive responses and 75% for the negative ones. A voltage drop of 6 mV/cell induced 10% polarization in the positively galvanotropic batches, while 3 mV/cell did this in the negative ones. We reason that both responses are mediated by faster calcium entry at the future growth point. It is supposed to be faster there in positively galvanotropic eggs because the membrane potential, hence the driving force, is highest; in negatively galvanotropic eggs because depolarization induces an overbalancing increase in calcium permeability there.  相似文献   

5.
Seedlings of Norway spruce (Picea abies L.) have been found to synthesize anthocyanins in the root tips as well as in the hypocotyls upon irradiation with white light when kept at 4°C for 6–8 days. In addition, it has also been found that the elongation and the geotropic curvature of spruce roots are dependent on the light conditions. The course of the geotropic curvature in spruce roots containing anthocyanins has been followed during a period of 5 h, in which the seedlings were geotropically stimulated continuously in the horizontal position. When the stimulation was performed in white light and in darkness at 21°C, significantly larger curvatures were observed in the roots pretreated at 4°C in darkness than in the roots containing anthocyanins. The specific curvature (curvature in degrees per mm elongation), however, was approximately the same in both types of roots stimulated in white light. This was due to a retarded elongation of the roots pretreated with light at 4°C and containing anthocyanins. A smaller difference in elongation rate between roots with and without anthocyanins was observed in the dark than in the light, but even in the dark the anthocyanin-containing roots grew more slowly than roots without anthocyanins. In order to find out if it is the anthocyanin content or the illumination which affects the elongation and geotropic curvature in the roots, a series of similar experiments was performed using cress seedlings grown at 4°C in light or darkness. Roots of cress seedlings cultivated under conditions which would induce anthocyanin formation in spruce roots exhibited the highest geotropic responses both in light and darkness as compared to cress seedlings grown at 4°C in darkness. As in the case of spruce roots an increase in elongation was observed in cress roots illuminated during the geotropic stimulation. These similarities in the behaviour made it relevant to compare the development of the geotropic curvature in cress and spruce roots.  相似文献   

6.
Primary roots of young maize seedlings showed peculiar growth behavior when challenged by placing them on a slope, or if whole seedlings were turned upside down. Importantly, this behavior was dependent on the light conditions. If roots were placed on slopes in the dark, they performed “crawling” behavior and advanced rapidly up the slope. However, as soon as these roots were illuminated, their crawling movements along their horizontal paths slowed down, and instead tried to grow downwards along the gravity vector. A similar light-induced switch in the root behavior was observed when roots were inverted, by placing them in thin glass capillaries. As long as they were kept in the darkness, they showed rapid growth against the gravity vector. If illuminated, these inverted roots rapidly accomplished U-turns and grew down along the gravity vector, eventually escaping from the capillaries upon reaching their open ends. De-capped roots, although growing vigorously, did not display these light-induced photophobic growth responses. We can conclude that intact root cap is essential for the photophobic root behavior in maize.  相似文献   

7.
Long-distance signalling from roots to shoots assessed: the flooding story.   总被引:16,自引:0,他引:16  
Several kinds of signal may be generated when roots are exposed to an environmental stress. Some, but not all, are conveyed to shoots in the transpiration stream. Principles are summarized that may help establish experimentally the presence or intensity of root signals transported by transpiration. In many dryland species, flooding of the soil induces developmental responses in the shoot such as epinastic leaf curvature, stomatal closure and slowing of leaf expansion. These reactions compensate for diminished input of resources from the roots. They lend themselves to the study of root-to-shoot signalling by commencing after a time lag of only a few hours, by persisting for several days and by being highly reproducible. Evidence implicating chemical and hydraulic signals in promoting stomatal closure and epinastic curvature in flooded plants is reviewed. Further progress will depend upon examining a wider range of putative signals, accounting for any interactions between them and improving methods for the evaluation of signal durability in transit, and effectiveness at target sites.  相似文献   

8.
玉米初生根向水性诱导优化试验研究   总被引:2,自引:0,他引:2  
为了研究湿度梯度对根系向水性反应的影响,采用Takahashi and Scott于1993年创建的方法,设置以下3个试验:1)向水性诱导物不同倾斜角试验;2)根系距向水性诱导物不同距离试验;3)根尖距底部饱和K2CO3溶液不同距离试验。同时,还研究了根长和根系延伸速率对根系向水性弯曲的影响。结果表明,用饱和K2CO3溶液控制湿度时根系的向水性弯曲度明显大于纯水。随着诱导物倾斜角的增大,向水性弯曲增强。与距诱导物3 mm和6 mm相比,根系直接接触诱导物时表现出最大的向水性反应。与根尖距底部盐溶液6 cm相比,相距4 cm时向水性弯曲度增大,这些与根尖周围的湿度梯度增大有关。当根长为1.0、1.5、2.0、2.5、3.0 cm时,短根比长根表现出更大的向水性反应,这可能与其较慢的延伸速率为根系对湿度梯度的反应提供了更充足的时间有关。为了验证这个假说,用相同长度的根系、通过控制不同温度进行试验,结果表明根系的向水性弯曲随温度升高而降低。可见,玉米初生根的向水性反应受环境和根系发育阶段两方面影响。当根系相距诱导物较近、根系周围的湿度梯度较大时,根系向水性反应更强。而且,具有较小延伸速率根系的向水性反应更大。考虑到干旱条件下根系伸长慢、且土壤中湿度梯度大,因而可以认为干旱条件下根系的向水性生长在玉米吸收水分中有重要作用。同时,对根系向水性诱导方法的优化有助于其生理机制的进一步研究。  相似文献   

9.
The geotropic orientation of seminal roots of wheat has been studied on seedlings grown in five different positions, stationary and on clinostats. The roots perceive a geoinduc-tion before they have emerged from the grain and perform curvatures inside the grain. These are very sharp and transient, the following root growth is straight in any direction unless the positions are shifted. The roots are insensitive to a static gravi-induction but react to a change in gravitation with a geotropic curvature in positive direction. The roots may not reach or reach, or even pass the plumb-line. The orientation of a root depends upon the direction of its initiation and the geotropic curvature attained before the reaction has ceased. There is no nastic component in the reactions. The ‘plagiotropic’ orientation is explained by the limited positive reaction followed by an ageotropic state. Main root and adventitious roots react in the same way. Reactions to later stimuli give likewise limited curvatures which are weaker but of longer duration. — The effect of temperatures from 10°C to 25°C has been studied and compared to the temperature effect on cell elongation. It is concluded that the whole reaction may be explained by the regular auxin effects on cell elongation. No other hormone should be required and no plagiotropic mechanism is necessary.  相似文献   

10.
Root negative phototropism is an important response in plants. Although blue light is known to mediate this response, the cellular and molecular mechanisms underlying root negative phototropism remain unclear. Here, we report that the auxin efflux carrier PIN‐FORMED (PIN) 3 is involved in asymmetric auxin distribution and root negative phototropism. Unilateral blue‐light illumination polarized PIN3 to the outer lateral membrane of columella cells at the illuminated root side, and increased auxin activity at the illuminated side of roots, where auxin promotes growth and causes roots bending away from the light source. Furthermore, root negative phototropic response and blue‐light‐induced PIN3 polarization were modulated by a brefeldin A‐sensitive, GNOM‐dependent, trafficking pathway and by phot1‐regulated PINOID (PID)/PROTEIN PHOSPHATASE 2A (PP2A) activity. Our results indicate that blue‐light‐induced PIN3 polarization is needed for asymmetric auxin distribution during root negative phototropic response.  相似文献   

11.
The extent to which cells can oxidize LDL may be underestimated because of the use of standard and arbitrary 24 hour in vitro incubations of cells with LDL. Such incubations have resulted in inconsistent results regarding the ability of cell-mediated LDL oxidation to generate relatively advanced oxidation products such as 7-ketocholesterol (7-KC). We studied prolonged oxidation of low density lipoprotein (LDL) by mouse peritoneal macrophages using HPLC measurement of cholesterol, cholesteryl esters and their oxidation products 7-KC and cholesteryl linoleate hydroperoxide (CL-OOH). Cell-mediated oxidation in Ham's F10 consistently followed the successive stages previously described during 24 hour-10 μM copper-mediated LDL oxidation, always generating 7-KC if allowed to proceed for sufficient time. The degree of inhibition of LDL oxidation achieved by metal chelators EDTA and DTPA at more advanced stages of cell-mediated LDL oxidation was not predictable from the published effects of such chelators upon early stages of metal-mediated and cell-mediated LDL oxidation. EDTA and DTPA only incompletely prevented the consumption of cholesteryl esters and the loss of preformed CL-OOH when added after cell-mediated LDL oxidation was established, while effectively concurrently inhibiting the generation of 7-KC. These data indicate that progressive cell-mediated peroxidation of LDL cholesteryl esters and decomposition of CL-OOH may be less dependent upon a continuing supply of redox active metals than is the generation of 7-KC. In addition, they confirm the plausibility of prolonged cell-mediated oxidation of LDL as a source of oxysterols found in human atherosclerotic plaque, and imply that active redox cycling of metals is particularly important for their generation in vivo.  相似文献   

12.
Plant regeneration of Prunus salicina (Japanese plum) using mature seeds was studied and evaluated. Shoots were effectively induced from hypocotyl slices of mature seeds on media containing cytokinins. Among three plant growth regulators evaluated, thidiazuron (TDZ) was the most effective for shoot induction overall. Shoots were also induced using 6-benzylaminopurine (BA), but the effectiveness was reduced at low concentrations. Low regeneration was induced using kinetin. Three plum varieties were evaluated and the regeneration appeared to be genotype dependent. Induced shoots elongated, roots formed, and plantlets developed upon transfer of the shoots to the rooting medium. Primary shoots, when sub-cultured on fresh induction medium, produced multiple shoots, and such multiplication could continue for more cycles. The plantlets were transferred to soil, and the full plants were readily recovered in a greenhouse. The regeneration process was relatively fast as plants could be recovered in 4 to 5 mo. after the culture initiation.  相似文献   

13.
Artemisinin, an antimalarial secondary metabolite produced in Artemisia species, also has been recognized as an allelochemical that inhibits the growth of several plant species. However, the phytotoxicity mechanism of artemisinin is not exhaustively deciphered up to now. In this research, the effects of artemisinin on Arabidopsis thaliana root gravitropic curvature and development were characterized. Exogenously applied artemisinin disturb the root gravitropic responses, inhibited the elongation of primary and lateral roots and root hairs in a concentration-dependent fashion, and prevented the formation of lateral roots and root hairs. Moreover, the number of starch grain and the distribution range of auxin in the root tip was reduced by artemisinin, and the redistribution of auxin was less sensitive to gravity stimulus when treated with artemisinin than that of control. The expression of auxin transporter PIN2 was partially suppressed by artemisinin. Together, the results demonstrated that the effects of artemisinin on root gravitropism and root system development were largely dependent on the reduction of starch grain and auxin levels, as well as the disordered lateral auxin redistribution.  相似文献   

14.
Cationic lipids form nanoscale complexes (lipoplexes) with polyanionic DNA and can be utilized to deliver DNA to cells for transfection. Here we report the correlation between delivery efficiency of these DNA carriers and the mesomorphic phases they form when interacting with anionic membrane lipids. Specifically, formulations that are particularly effective DNA carriers form phases of highest negative interfacial curvature when mixed with anionic lipids, whereas less effective formulations form phases of lower curvature. Structural evolution of the carrier lipid/DNA complexes upon interaction with cellular lipids is hence suggested as a controlling factor in lipid-mediated DNA delivery. A strategy for optimizing lipofection is deduced. The behavior of a highly effective lipoplex formulation, DOTAP/DOPE, is found to conform to this "efficiency formula".  相似文献   

15.
Some characteristics of the rice (Oryza sativa L.) root were found in the experiment of unilaterally irradiating the roots which were planted in water: (i) All the seminal roots, adventitious roots and their branched roots bent away from light, and their curvatures ranged from 25° to 60°. The curvature of adventitious root of the higher node was often larger than that of the lower node, and even larger than that of the seminal root, (ii) The negative phototropic bending of the rice root was mainly due to the larger growth increment of root-tip cells of the irradiated side compared with that of the shaded side, (iii) Root cap was the site of light perception. If root cap was shaded while the root was irradiated the root showed no negative phototropism, and the root lost the characteristic of negative phototropism when root cap was divested. Rice root could resume the characteristic of negative phototropism when the new root cap grew up, if the original cells of root cap were well protected while root cap was divested, (iv) The growth increment and curvature of rice root were both influenced by light intensity. Within the range of 0–100 μmol · m2 -s−1, the increasing of light intensity resulted in the decreasing of the growth increment and the increasing of the curvature of rice root, (v) The growth increment and the curvature reached the maximum at 30°C with the temperature treatment of 10–40°C. (vi) Blue-violet light could prominently induce the negative phototropism of rice root, while red light had no such effect. (vii) The auxin (IAA) in the solution, as a very prominent influencing factor, inhibited the growth, the negative phototropism and the gravitropism of rice root when the concentration of IAA increased. The response of negative phototropism of rice root disappeared when the concentration of IAA was above 10 mg · L−1  相似文献   

16.
Growth and early gravitropic responses of corn roots in solution have been studied using time-lapse photography. Aeration was required for both root growth and gravitropism. The optimum pH for gravitropism was in the range 5 to 6. The bending response seemed to be greater for roots in non-buffered solution than in buffered solution. Fastest growth and maximum curvature occurred with about 0.2 mol m−3 Ca2+. Under some conditions, the gravitropic response started with apparently negligible time delay after the start of the gravitropic stimulus. This may denote graviperception in or near the elongation zone itself. This mechanism for early but relatively weak gravitropism may help to explain a variety of gravitropic responses such as the ‘early wrong way’ curvature, and the behaviour of roots whose columella cells lack amyloplasts. More rapid bending appears to start at about 20 min, which is consistent with observations on roots in humid air and with the accepted statolith model of perception in the root cap.  相似文献   

17.
Negative phototropism of rice root and its influencing factors   总被引:8,自引:0,他引:8  
Some characteristics of the rice (Oryza sativa L.) root were found in the experiment of unilaterally irradiating the roots which were planted in water: (i) All the seminal roots, adventitious roots and their branched roots bent away from light, and their curvatures ranged from 25℃ to 60℃. The curvature of adventitious root of the higher node was often larger than that of the lower node, and even larger than that of the seminal root. (ii) The negative phototropic bending of the rice root was mainly due to the larger growth increment of root-tip cells of the irradiated side compared with that of the shaded side, (iii) Root cap was the site of light perception. If root cap was shaded while the root was irradiated the root showed no negative phototropism, and the root lost the characteristic of negative phototropism when root cap was divested. Rice root could resume the characteristic of negative phototropism when the new root cap grew up, if the original cells of root cap were well protected while root ca  相似文献   

18.
The crown roots in the coleoptilar node of maize emerge asymmetrically: emergence at the dorsal flank of the node (opposite to the caryopsis) precedes emergence at the ventral flank (facing the caryopsis). This asymmetry can be altered by phototropic stimulation: emergence of crown roots is delayed in the lighted flank and promoted in the shaded flank causing an inversion of the endogenous asymmetry. The curvature induced by the phototropic stimulation is transient, the effect on crown root emergence, in contrast, persists. This stable effect is not a consequence of curvature per se and becomes irreversibly fixed between one and two hours after stimulation. The emergence of crown roots depends on directional signalling from the coleoptile to the node. The data are discussed in terms of a stable blue light induced transverse polarity of the coleoptile that can imprint a stable asymmetry upon the coleoptilar node guiding the emergence of crown roots.  相似文献   

19.
Abstract: The regulation of the Ext 1.4 gene encoding a tobacco ( Nicotiana tabacum L.) extensin was studied in response to mechanical constraints. Transgenic plants carrying chimeric Ext 1.4 promoter/GUS (β-glucuronidase)/ nos terminator or Ext 1.4 3'-end constructs were obtained. Expression of gene fusions was found in tissues where mechanical stresses occur, e.g., during germination, as well as in root and stem tissues. Chimeric genes were successively and transiently expressed in different tissues during germination, i.e., at the tip of the root and then in the hypocotyl, during their growth through the seed coat. Moreover, they were expressed in cortical cells surrounding the emergence of adventitious and lateral roots and developmentally-regulated in nodes. The expression of Ext 1.4 could be induced by imposing mechanical constraints due to curving of either the stems or roots. Expression then occurred in cells where it does not normally occur, i.e., in cortical cells of internodes and in the distal piliferous zone of roots. Accumulation of RNAs occurs several days after the start of the constraint. Promoter regions involved in regulation of expression of Ext 1.4 in stems, roots, and in seedlings upon mechanical constraint could be localized. Moreover, the 3' non-coding region was shown to modulate expression in roots. These results suggest that the regulation of Ext 1.4 following mechanical stress is dependent on both tissue-specific and mechanical-responsive elements.  相似文献   

20.
During the process of compaction, mouse 8-cell blastomeres flatten upon each other and polarize along an axis perpendicular to cell contacts. If the process of flattening is prevented, polarization can still occur, but does so in a lower proportion of cells than for control populations, and without the normal contact-directed orientation. We compared contact-directed and noncontact-directed processes to see if they involve common mechanisms. In nonflattened cells, surface polarization was favored in cells with nuclei located close to the cell surface, and the positions of surface poles and of nuclei tended to coincide. We present evidence that microtubules are involved in the development of microvillous poles associated with nuclei. In contrast it is known that polarization of microvilli occurs in the absence of microtubules if blastomeres are allowed to flatten. We conclude that surface polarization of mouse blastomeres can be accomplished by at least two alternative routes. One requires flattening but is independent of microtubules, and another can occur without flattening but involves a microtubule-mediated interaction between the nucleus and the cell cortex. It seems that both these pathways operate in the undisturbed embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号