首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In nutritional epidemiology, dietary intake assessed with a food frequency questionnaire is prone to measurement error. Ignoring the measurement error in covariates causes estimates to be biased and leads to a loss of power. In this paper, we consider an additive error model according to the characteristics of the European Prospective Investigation into Cancer and Nutrition (EPIC)‐InterAct Study data, and derive an approximate maximum likelihood estimation (AMLE) for covariates with measurement error under logistic regression. This method can be regarded as an adjusted version of regression calibration and can provide an approximate consistent estimator. Asymptotic normality of this estimator is established under regularity conditions, and simulation studies are conducted to empirically examine the finite sample performance of the proposed method. We apply AMLE to deal with measurement errors in some interested nutrients of the EPIC‐InterAct Study under a sensitivity analysis framework.  相似文献   

2.
Calculation of the exact prediction error variance covariance matrix is often computationally too demanding, which limits its application in REML algorithms, the calculation of accuracies of estimated breeding values and the control of variance of response to selection. Alternatively Monte Carlo sampling can be used to calculate approximations of the prediction error variance, which converge to the true values if enough samples are used. However, in practical situations the number of samples, which are computationally feasible, is limited. The objective of this study was to compare the convergence rate of different formulations of the prediction error variance calculated using Monte Carlo sampling. Four of these formulations were published, four were corresponding alternative versions, and two were derived as part of this study. The different formulations had different convergence rates and these were shown to depend on the number of samples and on the level of prediction error variance. Four formulations were competitive and these made use of information on either the variance of the estimated breeding value and on the variance of the true breeding value minus the estimated breeding value or on the covariance between the true and estimated breeding values.  相似文献   

3.
4.
We explore the estimation of uncertainty in evolutionary parameters using a recently devised approach for resampling entire additive genetic variance–covariance matrices ( G ). Large‐sample theory shows that maximum‐likelihood estimates (including restricted maximum likelihood, REML) asymptotically have a multivariate normal distribution, with covariance matrix derived from the inverse of the information matrix, and mean equal to the estimated G . This suggests that sampling estimates of G from this distribution can be used to assess the variability of estimates of G , and of functions of G . We refer to this as the REML‐MVN method. This has been implemented in the mixed‐model program WOMBAT. Estimates of sampling variances from REML‐MVN were compared to those from the parametric bootstrap and from a Bayesian Markov chain Monte Carlo (MCMC) approach (implemented in the R package MCMCglmm). We apply each approach to evolvability statistics previously estimated for a large, 20‐dimensional data set for Drosophila wings. REML‐MVN and MCMC sampling variances are close to those estimated with the parametric bootstrap. Both slightly underestimate the error in the best‐estimated aspects of the G matrix. REML analysis supports the previous conclusion that the G matrix for this population is full rank. REML‐MVN is computationally very efficient, making it an attractive alternative to both data resampling and MCMC approaches to assessing confidence in parameters of evolutionary interest.  相似文献   

5.
6.
7.
8.
A Forcina 《Biometrics》1992,48(3):743-750
For linear models, assuming a within-experimental-units covariance structure that incorporates errors of measurement, serial correlation, and variation between units, results on explicit estimation of regression parameters are used to simplify maximum likelihood estimation of covariance parameters. The use of an analysis of variance table as a simpler alternative to likelihood inference is illustrated with two examples.  相似文献   

9.
Aitkin M 《Biometrics》1999,55(1):117-128
This paper describes an EM algorithm for nonparametric maximum likelihood (ML) estimation in generalized linear models with variance component structure. The algorithm provides an alternative analysis to approximate MQL and PQL analyses (McGilchrist and Aisbett, 1991, Biometrical Journal 33, 131-141; Breslow and Clayton, 1993; Journal of the American Statistical Association 88, 9-25; McGilchrist, 1994, Journal of the Royal Statistical Society, Series B 56, 61-69; Goldstein, 1995, Multilevel Statistical Models) and to GEE analyses (Liang and Zeger, 1986, Biometrika 73, 13-22). The algorithm, first given by Hinde and Wood (1987, in Longitudinal Data Analysis, 110-126), is a generalization of that for random effect models for overdispersion in generalized linear models, described in Aitkin (1996, Statistics and Computing 6, 251-262). The algorithm is initially derived as a form of Gaussian quadrature assuming a normal mixing distribution, but with only slight variation it can be used for a completely unknown mixing distribution, giving a straightforward method for the fully nonparametric ML estimation of this distribution. This is of value because the ML estimates of the GLM parameters can be sensitive to the specification of a parametric form for the mixing distribution. The nonparametric analysis can be extended straightforwardly to general random parameter models, with full NPML estimation of the joint distribution of the random parameters. This can produce substantial computational saving compared with full numerical integration over a specified parametric distribution for the random parameters. A simple method is described for obtaining correct standard errors for parameter estimates when using the EM algorithm. Several examples are discussed involving simple variance component and longitudinal models, and small-area estimation.  相似文献   

10.
Estimation of variance components in linear mixed models is important in clinical trial and longitudinal data analysis. It is also important in animal and plant breeding for accurately partitioning total phenotypic variance into genetic and environmental variances. Restricted maximum likelihood (REML) method is often preferred over the maximum likelihood (ML) method for variance component estimation because REML takes into account the lost degree of freedom resulting from estimating the fixed effects. The original restricted likelihood function involves a linear transformation of the original response variable (a collection of error contrasts). Harville's final form of the restricted likelihood function does not involve the transformation and thus is much easier to manipulate than the original restricted likelihood function. There are several different ways to show that the two forms of the restricted likelihood are equivalent. In this study, I present a much simpler way to derive Harville's restricted likelihood function. I first treat the fixed effects as random effects and call such a mixed model a pseudo random model (PDRM). I then construct a likelihood function for the PDRM. Finally, I let the variance of the pseudo random effects be infinity and show that the limit of the likelihood function of the PDRM is the restricted likelihood function.  相似文献   

11.
12.

Background  

Estimates of divergence dates between species improve our understanding of processes ranging from nucleotide substitution to speciation. Such estimates are frequently based on molecular genetic differences between species; therefore, they rely on accurate estimates of the number of such differences (i.e. substitutions per site, measured as branch length on phylogenies). We used simulations to determine the effects of dataset size, branch length heterogeneity, branch depth, and analytical framework on branch length estimation across a range of branch lengths. We then reanalyzed an empirical dataset for plethodontid salamanders to determine how inaccurate branch length estimation can affect estimates of divergence dates.  相似文献   

13.
14.
15.
The Cox proportional hazards model or its discrete time analogue, the logistic failure time model, posit highly restrictive parametric models and attempt to estimate parameters which are specific to the model proposed. These methods are typically implemented when assessing effect modification in survival analyses despite their flaws. The targeted maximum likelihood estimation (TMLE) methodology is more robust than the methods typically implemented and allows practitioners to estimate parameters that directly answer the question of interest. TMLE will be used in this paper to estimate two newly proposed parameters of interest that quantify effect modification in the time to event setting. These methods are then applied to the Tshepo study to assess if either gender or baseline CD4 level modify the effect of two cART therapies of interest, efavirenz (EFV) and nevirapine (NVP), on the progression of HIV. The results show that women tend to have more favorable outcomes using EFV while males tend to have more favorable outcomes with NVP. Furthermore, EFV tends to be favorable compared to NVP for individuals at high CD4 levels.  相似文献   

16.
Many authors have claimed to observe animal movement paths that appear to be Lévy walks, i.e. a random walk where the distribution of move lengths follows an inverse power law. A Lévy walk is known to be the optimal search strategy of a particular class of random walks in certain environments; hence, it is important to distinguish correctly between Lévy walks and other types of random walks in observed animal movement paths. Evidence of a power law distribution in the step length distribution of observed animal movement paths is often used to classify a particular movement path as a Lévy walk. However, there is some doubt about the accuracy of early studies that apparently found Lévy walk behaviour. A recently accepted method to determine whether a movement path truly exhibits Lévy walk behaviour is based on an analysis of move lengths with a maximum likelihood estimate using Akaike weights. Here, we show that simulated (non-Lévy) random walks representing different types of animal movement behaviour (a composite correlated random walk; pooled data from a set of random walks with different levels of correlation and three-dimensional correlated random walks projected into one dimension) can all show apparent power law behaviour typical of Lévy walks when using the maximum likelihood estimation method. The probability of the movement path being identified as having a power law step distribution is related to both the sampling rate used by the observer and the way that ‘turns’ or ‘reorientations’ in the movement path are designated. However, identification is also dependent on the nature and properties of the simulated path, and there is currently no standard method of observation and analysis that is robust for all cases. Our results indicate that even apparently robust maximum likelihood methods can lead to a mismatch between pattern and process, as paths arising from non-Lévy walks exhibit Lévy-like patterns.  相似文献   

17.
18.
The protracted speciation model presents a realistic and parsimonious explanation for the observed slowdown in lineage accumulation through time, by accounting for the fact that speciation takes time. A method to compute the likelihood for this model given a phylogeny is available and allows estimation of its parameters (rate of initiation of speciation, rate of completion of speciation and extinction rate) and statistical comparison of this model to other proposed models of diversification. However, this likelihood computation method makes an approximation of the protracted speciation model to be mathematically tractable: it sometimes counts fewer species than one would do from a biological perspective. This approximation may have large consequences for likelihood‐based inferences: it may render any conclusions based on this method completely irrelevant. Here, we study to what extent this approximation affects parameter estimations. We simulated phylogenies from which we reconstructed the tree of extant species according to the original, biologically meaningful protracted speciation model and according to the approximation. We then compared the resulting parameter estimates. We found that the differences were larger for high values of extinction rates and small values of speciation‐completion rates. Indeed, a long speciation‐completion time and a high extinction rate promote the appearance of cases to which the approximation applies. However, surprisingly, the deviation introduced is largely negligible over the parameter space explored, suggesting that this approximate likelihood can be applied reliably in practice to estimate biologically relevant parameters under the original protracted speciation model.  相似文献   

19.
The maximum likelihood estimator of the variance of a normal distribution when it is known for certain that the variance is greater than or equal to a known positive constant is given and its properties are studied.  相似文献   

20.
Using a four-taxon example under a simple model of evolution, we show that the methods of maximum likelihood and maximum posterior probability (which is a Bayesian method of inference) may not arrive at the same optimal tree topology. Some patterns that are separately uninformative under the maximum likelihood method are separately informative under the Bayesian method. We also show that this difference has impact on the bootstrap frequencies and the posterior probabilities of topologies, which therefore are not necessarily approximately equal. Efron et al. (Proc. Natl. Acad. Sci. USA 93:13429-13434, 1996) stated that bootstrap frequencies can, under certain circumstances, be interpreted as posterior probabilities. This is true only if one includes a non-informative prior distribution of the possible data patterns, and most often the prior distributions are instead specified in terms of topology and branch lengths. [Bayesian inference; maximum likelihood method; Phylogeny; support.].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号