首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A 2-year study was conducted in field microplots to determine the relative importance of soybean phenology and soil temperature on induction of dormancy in Heterodera glycines in Missouri. Four near-isogenic soybean lines differing for maturity date were planted in microplots infested with a race 5 isolate of H. glycines. Soil temperature was monitored at a depth of 15 cm. Eggs of H. glycines, extracted from cysts collected monthly from each microplot, were used in hatching tests and bioassays to determine dormancy. Egg hatching and second-stage juvenile (J2) infectivity rates decreased sharply from their highest levels in midsummer (July-August) to a low level by October of each year and remained low (< 10% hatching and < 0.2 J2/cm root) until May or June of the following year. The patterns of numbers of females and eggs in the bioassays were similar. The decreases were not related to soil temperature and did not differ consistently among soybean isolines. The monophasic changes in all nematode responses with peak midsummer rates suggest that H. glycines produces one primary generation per year in central Missouri. Changes in hatching rates and the timing of minimum and maximum rates suggested that H. glycines eggs exhibit more than one type of dormancy.  相似文献   

2.
Population changes of Heterodera glycines eggs on soybean in small field plots were influenced by the lepidopterous insect pest, Helicoverpa zea; however, few effects on eggs due to the presence of annual weeds were detected. Soybeans defoliated 15-35% by H. zea during August remained green and continued to produce new flowers and pods later into the season than soybeans without H. zea, resulting in higher numbers of H. glycines eggs at harvest on insect-defoliated soybeans. Final H. glycines populations also were influenced by soil population density (Pi) of the nematode at planting. Fecundity of H. glycines was generally greater at the undetected and low Pi than at high Pi levels. Soybean yields were suppressed 12, 22, and 30% by low, moderate, and high H. glycines Pi, respectively. When weed competition and H. zea feeding damage effects were added, yields were suppressed 34, 40, and 57% by the three respective nematode Pi levels. Effects among the three pests on soybean yield were primarily additive.  相似文献   

3.
Egg hatch and emergence of second-stage juveniles (J2) of Heterodera glycines races 3 and 4 from cysts exposed to soybean root leachate of cv. Fayette (resistant to H. glycines) and H. glycines-susceptible cultivars A2575, A3127, and Williams 82 were determined in three sets of experiments. In the first experiment, cysts of both race 3 and race 4 were exposed to leachate of 8-week-old plants for a 2-week period. In the second experiment, cysts from populations of races 3 and 4 were raised on cultivars A2575, A3127, and Williams 82. Cysts then were exposed to leachate from 8-week-old plants for a 2-week period in all possible race-per-cultivar combinations. In the third experiment, cysts of races 3 and 4 were exposed at 4-day intervals to leachate from plants as the plants developed 7 to 59 days after planting. In experiments 1 and 2, leachate from 8-week-old Williams 82 and A3127 stimulated more hatch and emergence of H. glycines than leachate from A2575, Fayette, or the control. In the first experiment, cumulative hatch and emergence were greater for race 3 than for race 4. In experiment 2, no apparent relationship developed between leachate from a cultivar and the population developed on that cultivar in terms of stimulation of hatch and emergence. In the third experiment, A2575 stimulated more hatch and emergence of both race 3 and race 4 than A3127, Fayette, and Williams 82. Leachate from Fayette stimulated less hatch and emergence of both race 3 and race 4. Hatch and emergence were greatest during the initial 12 days of the experiment.  相似文献   

4.
Soybean cyst nematode resistant ''Fayette'' and susceptible ''Williams 79'' soybeans (Glycine max) and resistant ''WIS (RRR) 36'' and susceptible ''Eagle'' snap beans (Phaseolus vulgaris) were used in determining the effects of host and temperature on the development, female production, sex ratios, and host response to Heterodera glycines. Temperatures were maintained constant at 16, 20, 24, 28, and 32 C using water-filled tanks. The most rapid development and greatest female production occurred between 20 and 28 C. The equation DS = 5(10⁻⁶)x²y² - 3(10⁻⁴)x²y - 2.8(10⁻³)x² - 1.94(10⁻²)y² + 0.4288x + 1.0220y - 12.7185, where DS = developmental stage, X = time, and Y = temperature, predicted the developmental stage of the nematode and accounted for 84% of the variation. Male : female ratios did not differ within this range and were generally less than one. At all temperatures the resistant soybean produced the greatest number of necrotic responses to H. glycines infection, followed by the resistant snap bean. The susceptible soybean and snap bean produced the fewest necrotic responses.  相似文献   

5.
The effects of temperature on rates of development of Heterodera glycines egg and juvenile stages were examined as a basis for predicting generation times of the nematode on soybean. The relationship of temperature to H. glycines embryonic development between 15 and 30 C was described by a linear model, The calculated basal temperature threshold was 5 C. Thermal optimum for embryogenesis and hatch with low mortality was 24 C. Development proceeded to first-stage juvenile at 10 C and to second-stage juvenile at 15-30 C. Hatch occurred at 20-30 C. At 36 C, development proceeded to the four-cell stage, then the eggs died. The range of diurnal soil temperature fluctuation and accumulated degree-days between 5 and 30 C (DD5/30) had an impact on rate of development of juveniles in soybean roots. From early June to early July, H. glycines required 534 + 24 DD5/30 (4 weeks) to complete a life cycle in the field. During the midseason (July and August), life cycles were completed in 3 weeks and 429 ± 24 DD5/30 were accumulated. Late in the season (September to November), declining soil temperatures were associated with generation times of 4 weeks and slower rates of development.  相似文献   

6.
Nematodes produced in monoxenic culture are used for many research purposes. To maximize the number of Heterodera glycines produced in culture, 24 soybean cultivars (maturity groups 0-8) were evaluated for host suitability. A strain of H. glycines race 3, maintained in monoxenic culture on excised soybean root tips of cv. Kent, was inoculated into 20 petri dishes of each cultivar. The highest numbers of first-generation females per petri dish were produced on cultivars Bass, Williams 82, Kent, Proto, and Chapman, and the lowest on cultivars Lambert and Chesapeake. A diapause-like period with decreased nematode production was recorded on some cultivars but not others. Six generations of cultivation on CX 366 did not affect the number of females produced. The results indicated that soybean maturity group could not be used as a parameter for selecting the optimum cultivars for nematode production, and that only J2 petri dishes needed to be counted to determine a 60-female difference per petri dish among cultivars. This study demonstrated that H. glycines populations in monoxenic culture can be more than quadrupled by selection of an appropriate soybean cultivar.  相似文献   

7.
A soybean cyst nematode sex pheromone (vanillic acid), chemical analogs of the pheromone, and the fungus Verticillium lecanii were applied in alginate prills (340 kg/ha) to microplots and small-scale field plots as potential management agents for Heterodera glycines on soybean. In 1991 microplot tests, treatment with V. lecanii, vanillic acid, syringic acid plus V. lecanii, or vanillic acid plus V. lecanii lowered midseason cyst numbers compared with the untreated susceptible cultivar control, autoclaved V. lecanii treatment, or aldicarb treatment, At-harvest cyst numbers were lowest with V. lecanii and with vanillic acid treatments. Aldicarb treatment reduced midseason cyst numbers in 1992. There were no differences among seed yields either year. In the field trials, numbers of cysts were reduced one or both years with aldicarb, ferulic acid, syringic acid, vanillic acid, or 4-hydroxy-3-methoxybenzonitfile treatments, or with a resistant cultivar, compared to an untreated susceptible cultivar. Highest yields were recorded after treatment with 4-hydroxy-3-methoxybenzonitrile (1991), methyl vanillate (1992), and aldicarb (1992). These studies indicate that some chemical analogs of vanillic acid have potential for use in soybean cyst nematode management schemes.  相似文献   

8.
Several abiotic and biotic stresses can affect soybean in a growing season. Heterodera glycines, soybean cyst nematode, reduces yield of soybean more than any other pathogen in the United States. Field and greenhouse studies were conducted to determine whether preemergence and postemergence herbicides modified the reproduction of H. glycines, and to determine the effects of possible interactive stresses caused by herbicides and H. glycines on soybean growth and yield. Heterodera glycines reproduction factor (Rf) generally was less on resistant than susceptible cultivars, resulting in a yield advantage for resistant cultivars. The yield advantage of resistant cultivars was due to more pods per plant on resistant than susceptible cultivars. Pendimethalin reduced H. glycines Rf on the susceptible cultivars in 1998 at Champaign, Illinois, and in greenhouse studies reduced dry root weight of H. glycines-resistant and susceptible cultivars, therefore reducing Rf on the susceptible cultivars. The interactive stresses from acifluorfen or imazethapyr and H. glycines reduced the dry shoot weight of the resistant cultivar Jack in a greenhouse study. Herbicides did not affect resistant cultivars'' ability to suppress H. glycines Rf; therefore, growers planting resistant cultivars should make herbicide decisions based on weeds present and cultivar tolerance to the herbicide.  相似文献   

9.
The influence of soil texture on Soybean yield in the presence of Heterodera glycines was investigated by comparing yields of susceptible cultivars with a resistant cultivar for 2 years. Soybean yield was negatively correlated with increasing sand content (P = 0.05). Yields of susceptible cultivars were suppressed with increasing sand content. Final nematode population densities were lowest in plots with greatest sand content. Soybean infection by SCN, as determined by the number of cysts 30 days after planting, was not consistently related to soil texture over 2 years. Initial nematode population density was positively related to soybean yield the first year and negatively related to soybean yield the second, probably a result of greater yield suppression by H. glycines in plots with greater sand content.  相似文献   

10.
Greenhouse and field experiments were conducted to determine the effects of phenamiphos and/or alachlor on early growth of soybean, root morphology, and infection and resurgence of Heterodera glycines (race 1). All tests were planted to ''Ransom'' soybeans. In greenhouse experiments without nematodes, root growth was inhibited at 5 days by alachlor treatments and at 10 days by phenamiphos treatments; with nematodes, phenamiphos treatments enhanced root growth. Phenamiphos also suppressed early penetration of soybean roots by H. glycines in the greenhouse. Early soybean growth parameters among treatments were generally similar in the field. Nematode penetration was limited with treatments containing phenamiphos at one location. Plants treated with only alachlor had less nematode infection than did the control; however, plants treated with herbicide/nematicide combinations had more nematode penetration than did plants treated with phenamiphos alone. Alterations of root growth and interference with the efficacy of phenamiphos are two processes by which alachlor may enhance soybean susceptibility or suitability to H. glycines.  相似文献   

11.
Seven soybeans were selected from 200 entries evaluated for tolerance to soybean cyst nematode (SCN), Heterodera glycines. Tolerance to SCN was measured by comparing the seed yield from aldicarb-treated vs. nontreated plots. A yield response index (YRI) was calculated for each entry: YRI = (seed yield from nontreated plot/seed yield from treated plot) × 100. The soybean entries Coker 156, PI 97100, and S79-8059 exhibited high tolerance (YRI) to SCN when compared to Essex even though they became heavily infected with SCN. Tolerance in soybeans to SCN may be useful in pest management programs designed to stabilize soybean yield.  相似文献   

12.
In-vitro methods were developed to test fungi for production of metabolites affecting nematode egg hatch and mobility of second-stage juveniles. Separate assays were developed for two nematodes: root-knot nematode (Meloidogyne incognita) and soybean cyst nematode (Heterodera glycines). For egg hatch to be successfully assayed, eggs must first be surface-disinfested to avoid the confounding effects of incidental microbial growth facilitated by the fungal culture medium. Sodium hypochlorite was more effective than chlorhexidine diacetate or formaldehyde solutions at surface-disinfesting soybean cyst nematode eggs from greenhouse cultures. Subsequent rinsing with sodium thiosulfate to remove residual chlorine from disinfested eggs did not improve either soybean cyst nematode hatch or juvenile mobility. Soybean cyst nematode hatch in all culture media was lower than in water. Sodium hypochlorite was also used to surface-disinfest root-knot nematode eggs. In contrast to soybean cyst nematode hatch, root-knot nematode hatch was higher in potato dextrose broth medium than in water. Broth of the fungus Fusarium equiseti inhibited root-knot nematode egg hatch and was investigated in more detail. Broth extract and its chemical fractions not only inhibited egg hatch but also immobilized second-stage juveniles that did hatch, confirming that the fungus secretes nematode-antagonistic metabolites.  相似文献   

13.
The occurrence ofchlamydospores of Glomus fasciculatum (Gf) within cysts of the soybean cyst nematode, Heterodera glycines, and the effects of vesicular-arbuscular mycorrhizae on nematode population dynamics and soybean (Glycine max) plant growth were investigated. Chlamydospores occupied 1-24% of cysts recovered from field soil samples. Hyphae of Missouri isolate Gfl penetrated the female nematode cuticle shortly after she ruptured the root epidermis. Convoluted hyphae filled infected eggs, and sporogenesis occurred within infected eggs. G. microcarpum, G. mosseae, and two isolates of Gf were inoculated with H. glycines on plants of ''Essex'' soybeans. Each of the two Gf isolates infected about 1% of the nematode eggs in experimental pot cuhures. The Gfl isolate decreased the number of first-generation adult females 26%, compared with the nonmycorrhizal control. The total numbers of first-generation plus second-generation adult females were similar for both Gf isolates and 29-41% greater than the nonmycorrhizal control. Soybean plants with Gf and H. glycines produced more biomass than did nonmycorrhizal plants with nematodes, but only Gfl delayed leaf senescence.  相似文献   

14.
Alternate planting dates and periodic destruction of the previous year''s soybean crop as well as 1-year bare fallow were used to establish a range of population densities ofHeterodera glycines for the subsequent year. Soybean cultivar Coker 156 (susceptible, moderately tolerant) was compared to cultivars Essex (susceptible, intolerant) and Bedford (resistant) to evaluate tolerance at different H. glycines population densities established through the previous year''s treatments. Yield of Coker 156 was consistently intermediate between yields of Bedford and Essex in 1986 and 1987. Yield of Essex was negatively correlated (P = 0.05) with preplant egg numbers of H. glycines in 1987, whereas yield of Bedford and Coker 156 were not related to nematode density. Reproduction of H. glycines was greater (P = 0.05) on the moderately tolerant Coker 156 than on either of the other cultivars.  相似文献   

15.
Experiments were conducted to determine the relationship between time of infection by Heterodera glycines and soybean growth in the greenhouse and yield of plants grown in the field. Soybean cultivar Essex seedlings growing in the greenhouse were inoculated with H. glycines at 2, 4, or 6 weeks after planting. Seedling growth was inhibited by H. glycines infection at 2 or 4 weeks after planting but not at 6 weeks. Infection of Essex by H. glycines in the field was delayed 2-6 weeks by nematicides. Yields were significantly increased when H. glycines infection was delayed 2 weeks by nematicide treatment. Essex yields were highest when infection was delayed 6 weeks, equalling the yield of the H. glycines-resistant cultivar Asgrow 5474. The effect of H. glycines on soybean growth in the greenhouse and yields in the field declined when infection was delayed 6 weeks. Thus, soybean sensitivity to H. glycines seemed to diminish with age of the soybean plants.  相似文献   

16.
The influence of selected plant species on egg hatch and subsequent development of Heterodera glycines race 3 was investigated. Plants tested included four soybean cultivars, red clover, alfalfa, hairy vetch, field corn, sweet corn, cabbage, tobacco, cotton, and wheat. Soybean stimulated egg hatching more than any of the other plant species, with H. glycines-resistant cultivars being more stimulating than susceptible ones. Hairy vetch also increased hatch. Roots of cabbage, red clover, alfalfa, and hairy vetch were readily penetrated by juveniles of H. glycines. Maturation to adult occurred only on soybean and hairy vetch.  相似文献   

17.
Heterodera glycines was identified in North Carolina in 1954, although symptoms of the disease were noted in the state at least 8 years earlier. Crop rotation experiments designed to develop management systems were initiated in 1956. Two or more years in production of a nonhost crop resulted in decreases of the nematode to low or undetectable levels with acceptable subsequent yields of soybean (Glycine max). Because of almost complete dependence on resistant cultivars and (or) nematicides for nematode control, crop rotation experiments were not conducted from 1962 to 1980. Research on control of H. glycines, beginning in 1981, emphasized biological and ecological aspects of the nematode in order to determine cropping systems that restrict the nematode to nondamaging levels. Mortality during embryogenesis was high at temperatures above 30 C. Hatching of eggs occurs readily in May and June. Postinfection development takes 2-3 weeks at weekly mean temperatures of 22-29 C and is slow above and below those temperatures. Egg production is high during the late growing season. Some cultural practices such as planting early maturing cultivars in mid-to-late June and rotation with a nonhost effectively keeps populations at low levels.  相似文献   

18.
Short-term greenhouse studies with soybean (Glycine max cv. Bragg) were used to examine interactions between the soybean cyst nematode (Heterodera glycines) and two other common pests of soybean, the stem canker fungus (Diaporthe phaseolorum var. caulivora) and the soybean looper (Pseudoplusia includens), a lepidopterous defoliator. Numbers of cyst nematode juveniles in roots and numbers of cysts in soil and roots were reduced on plants with stem cankers. Defoliation by soybean looper larvae had the opposite effect; defoliation levels of 22 and 64% caused stepwise increases in numbers of juveniles and cysts in both roots and soil, whereas numbers of females in roots decreased. In two experiments, stem canker length was reduced 40 and 45% when root systems were colonized by the soybean cyst nematode. The absence of significant interactions among these pests indicates that the effects of soybean cyst nematode, stem canker, and soybean looper on plant growth and each other primarily were additive.  相似文献   

19.
The nematode community structures of various soybean-wheat regimes and of a single-cropped, conventionally tilled soybean regime were studied at two sites in Tennessee. Each of the 100 nematode species identified in the study was placed in one of five trophic groups, the most diverse being plant parasites (31 species), followed by Dorylaimida (26 species), bacterivores (23 species), fungivores (15 species), and predators (5 species). No significant differences in overall diversity and dominance among treatments and trophic groups were found. Densities of Heterodera glycines Ichinohe infective juveniles were significantly higher in single-cropped, conventionally tilled soybeans in July. When data were subjected to ordination analysis, it was shown that plant-parasitic nematode communities produced an aggregation of conventionally tilled, single-cropped soybean plots when compared to all double-cropped treatments. Ordination of overall nematode communities yielded similar results.  相似文献   

20.
Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a major pest of soybean, Glycine max L. Merr. Soybean cultivars resistant to SCN are commonly grown in nematode-infested fields. The objective of this study was to examine the stability of SCN resistance in soybean genotypes at different soil temperatures and pH levels. Reactions of five SCN-resistant genotypes, Peking, Plant Introduction (PI) 88788, Custer, Bedford, and Forrest, to SCN races 3, 5, and 14 were studied at 20, 26, and 32 C, and at soil pH''s 5.5, 6.5, and 7.5. Soybean cultivar Essex was included as a susceptible check. Temperature, SCN race, soybean genotype, and their interactions significantly affected SCN reproduction. The effect of temperature on reproduction was quadratic with the three races producing significantly greater numbers of cysts at 26 C; however, reproduction on resistant genotypes remained at a low level. Higher numbers of females matured at the soil pH levels of 6.5 and 7.5 than at pH 5.5. Across the ranges of temperature and soil pH studied, resistance to SCN in the soybean genotypes remained stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号