首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microplot experiments were conducted to evaluate the effects of inoculum level and time of application of Paecilomyces lilacinus on the protection of tomato against MeIoidogyne incognita. The best protection against M. incognita was attained with 10 and 20 g of fungus-infested wheat kernels per microplot which resulted in a threefold and fourfold increase in tomato yield, respectively, compared with tomato plants treated with this nematode alone. Greatest protection against this pathogen was attained when P. lilacinus was delivered into soil 10 days before planting and again at planting. Yield was increased twofold compared with yield in nematode-alone plots and plots with M. incognita plus the fungus. Percentages of P. lilacinus-infected egg masses were greatest in plots treated at midseason or at midseason plus an early application, compared with plots treated with the fungus 10 days before planting and (or) at planting time.  相似文献   

2.
Excised tomato roots were examined histologically for interactions of the fungus Paecilomyces lilacinus and Meloidogyne incognita race 1. Root galling and giant-cell formation were absent in tomato roots inoculated with nematode eggs infected with P. lilacinus. Few to no galls and no giant-cell formation were found in roots dipped in a spore suspension of P. lilacinus and inoculated with M. incognita. Numerous large galls and giant cells were present in roots inoculated only with M. incognita. P. lilacinus colonized the surface of epidermal cells as well as the internal cells of epidermis and cortex. The possibility of biological protection of plant surfaces with P. lilacinus against root-knot nematodes is discussed.  相似文献   

3.
Meloidogyne incognita-infected tomato seedlings were transplanted into sterilized soil or unsterilized soil collected from 20 California tomato fields to measure suppression caused by Paecilomyces lilacinus, Verticillium chlamydosporium, and other naturally occurring antagonists. Unsterilized soils Q, A, and H contained 35, 39, and 55% fewer M. incognita second-stage juveniles (J2) than did sterilized soil 1 month after infected tomato seedlings were transplanted to these soils and placed in a greenhouse. Three months after infected seedlings were transplanted to unsterilized or sterilized soil, unsterilized soils K, L, and Q had 97, 62, and 86% fewer J2 than the corresponding sterilized soils. Unsterilized soils of M. incognita-infected seedlings that were maintained 1 month in a greenhouse followed by 1 or 2 months of post-harvest incubation contained J2 numbers equal to, or greater than, numbers in the corresponding sterilized soil. The most suppressive of the unsterilized soils, K and Q, were not infested with V. chlamydosporium. Paecilomyces lilacinus and V. chlamydosporium increased in colony forming units in unsterilized soil of all bioassays, but they were not associated with lower numbers of J2.  相似文献   

4.
Population densities of Meloidogyne incognita and the nematophagous fungi, Paecilomyces lilacinus and Verticillium chlamydosporium, were determined in 20 northern California tomato fields over two growing seasons. Paecilomyces lilacinus was isolated from three fields, V. chlamydosporium was isolated from one field, and both fungi were isolated from 12 fields. Verticillium chlamydosporium numbers were positively correlated with numbers of M. incognita and P. lilacinus. Paecilomyces lilacinus numbers were positively correlated with V. chlamydosporium numbers, but they did not correlate with M. incognita numbers. The correlation coefficients were low (R < 0.5) but significant (P < 0.05). All P. lilacinus and V. chlamydosporium field isolates parasitized M. incognita eggs in vitro. In a greenhouse study, numbers of V. chlamydosporium and P. lilacinus increased more in soils with M. incognita-infected tomato plants than in soil with uninfected tomato plants. After 10 weeks, the Pf/ Pi of second-stage juveniles in soils infested with P. lilacinus, V. chlamydosporium, and M. incognita was 47.1 to 295.6. The results suggest V. chlamydosporium and P. lilacinus are not effectively suppressing populations of M. incognita in California tomato fields.  相似文献   

5.
In greenhouse experiments, massive application of the fungivorous nematode, Aphelenchus avenae, in summer at 26-33 C (1 x l0⁵ nematodes/500 cm³ autoclaved soil) or in autumn at 18-23 C (5 x 10⁴ nematodes/500 cm³ autoclaved soil) suppressed pre-emergence damping-off of cucumber seedlings due to Rhizoctonia solani AG-4 by 67% or 87%, respectively. Application of 2 x l0⁵ A. avenae to sterilized soil infested with R. solani caused leafminer-like symptom on the cotyledons, which did not occur in mixed inoculations with the entomopathogenic nematode, Steinernema carpocapsae. When 1 x 10⁶ A. avenae were applied 3 days before inoculation with 100 Meloidogyne incognita juveniles, gall numbers on tomato roots were reduced to 50% of controls. Gall numbers also were suppressed by S. carpocapsae (str. All). Reduction in gall numbers was no greater with mixed application of A. avenae and S. carpocapsae than with application of single species, even though twice the number of nematodes were added in the former case. These nematodes were positively attracted to tomato root tips. Aphelenchus avenae suppressed infection of the turnip moth, Agrotis segetum, but not the common cutworm, Spodoptera litura, by S. carpocapsae.  相似文献   

6.
Greenhouse experiments with two susceptible hosts of Meloidogyne incognita, a dwarf tomato and wheat, led to the identification of a soil in which the root-knot nematode population was reduced 5- to 16-fold compared to identical but pasteurized soil two months after infestation with 280 M. incognita J2/100 cm3 soil. This suppressive soil was subjected to various temperature, fumigation and dilution treatments, planted with tomato, and infested with 1,000 eggs of M. incognita/100 cm3 soil. Eight weeks after nematode infestation, distinct differences in nematode population densities were observed among the soil treatments, suggesting the suppressiveness had a biological nature. A fungal rRNA gene analysis (OFRG) performed on M. incognita egg masses collected at the end of the greenhouse experiments identified 11 fungal phylotypes, several of which exhibited associations with one or more of the nematode population density measurements (egg masses, eggs or J2). The phylotype containing rRNA genes with high sequence identity to Pochonia chlamydosporia exhibited the strongest negative associations. The negative correlation between the densities of the P. chlamydosporia genes and the nematodes was corroborated by an analysis using a P. chlamydosporia-selective qPCR assay.  相似文献   

7.
Pre-plant soil fumigation with methyl bromide and host resistance were compared for managing the southern root-knot nematode (Meloidogyne incognita) in pepper. Three pepper cultivars (Carolina Cayenne, Keystone Resistant Giant, and California Wonder) that differed in resistance to M. incognita were grown in field plots that had been fumigated with methyl bromide (98% CH₃Br : 2% CCl₃NO₂ [w/w]) before planting or left untreated. Carolina Cayenne is a well-adapted cayenne-type pepper that is highly resistant to M. incognita. The bell-type peppers Keystone Resistant Giant and California Wonder are intermediate to susceptible and susceptible, respectively. None of the cultivars exhibited root galling in the methyl bromide fumigated plots and nematode reproduction was minimal (<250 eggs/g fresh root), indicating that the fumigation treatment was highly effective in controlling M. incognita. Root galling of Carolina Cayenne and nematode reproduction were minimal, and fruit yields were not reduced in the untreated plots. The root-galling reaction for Keystone Resistant Giant was intermediate (gall index = 2.9, on a scale of 1 to 5), and nematode reproduction was moderately high. However, yields of Keystone Resistant Giant were not reduced in untreated plots. Root galling was severe (gall index = 4.3) on susceptible California Wonder, nematode reproduction was high, and fruit yields were reduced (P ≤ 0.05) in untreated plots. The resistance exhibited by Carolina Cayenne and Keystone Resistant Giant provides an alternative to methyl bromide for reducing yield losses by southern root-knot nematodes in pepper. The high level of resistance of Carolina Cayenne also suppresses population densities of M. incognita.  相似文献   

8.
The potential of 13 Paecilomyces lilacinus isolates from various geographic regions as biocontrol agents against Meloidogyne incognita, the effects of temperature on their growth, and the characterization of the impact of soil temperature on their efficacy for controlling this nematode were investigated. Maximum fungal growth, as determined by dry weight of the mycelium, occurred from 24 to 30 C; least growth was at 12 and 36 C. The best control of M. incognita was provided by an isolate from Peru or a mixture of isolates of P. lilacinus. As soil temperatures increased from 16 to 28 C, both root-knot damage caused by M. incognita and percentage of egg masses infected by P. lilacinus increased. The greatest residual P. lilacinus activity on M. incognita was attained with a mixture of fungal isolates. These isolates effected lower root-galling and necrosis, egg development, and enhanced shoot growth compared with plants inoculated with M. incognita alone.  相似文献   

9.
The effects of soil management systems on root-knot nematode (Meloidogyne incognita) eggs and gall incidence on tomato (Lycopersicon esculentum) and cucumber (Cucumis sativus) following tomato were evaluated. Soil was collected from a replicated field experiment in which six management systems were being assessed for vegetable production. Soil management systems were conventional production, organic production, bahiagrass (Paspalum notatum) pasture, bahiagrass: Stylosanthes (Stylosanthes guianensis) pasture, bare ground fallow, and weed fallow. Soil was collected from field plots and used in greenhouse experiments. Identification of egg-parasitic fungi and the incidence of root-knot nematode galling were assessed both on tomato and cucumber planted in the same pots following the removal of tomato plants. Organic, bare ground fallow and conventional production treatments reduced galling both on tomato and on cucumber following tomato. Although no treatment consistently enhanced egg-parasitic fungi, management system did affect egg viability and the types of fungi isolated from parasitized eggs.  相似文献   

10.
Tomato seedlings in a growth chamber were inoculated with 150 Meloidogyne incognita eggs and 25 infective juveniles (IJ)/cm² of Steinernema feltiae, S. riobrave, or Heterorhabditis bacteriophora. With the exception of seedling roots treated with H. bacteriophora, all seedlings treated with entomopathogenic nematodes had fewer M. incognita juveniles inside roots and produced fewer eggs than the control seedlings. Tomato plants in the greenhouse were infested with 4,000 M. incognita eggs and treated 2 weeks before, 1 week before, at the same time, 1 week after, or 2 weeks after with 25 or 125 IJ/cm² of S. feltiae, S. riobrave, or H. bacteriophora. Plants with pre- and post-infestation applications of S. feltiae or S. riobrave suppressed M. incognita. Plants treated with H. bacteriophora 1 week before and at the time of infestation suppressed M. incognita. Increasing the rate of H. bacteriophora and S. feltiae from 25 to 125 IJ/cm² improved M. incognita suppression.  相似文献   

11.
The efficacy of the nematode parasite Paecilomyces lilacinus, alone and in combination with phenamiphos and ethoprop, for controlling the root-knot nematode Meloidogyne javanica on tobacco and the ability of this fungus to colonize in soil under field conditions were evaluated for 2 years in microplots. Combinations and individual treatments of the fungus grown on autoclaved wheat seed, M. javanica eggs (76,000 per plot), and nematicides were applied to specified microplots at the time of transplanting tobacco the first year. Vetch was planted as a winter cover crop, and the fungus and nematicides were applied again the second year to specified plots at transplanting time. The fungus did not control the nematode in either year of these experiments. The average root-gall index (0 = no visible galls and 5 = > 100 galls per root system) ranged from 2.7 to 3.9 the first year and from 4.3 to 5.0 the second in nematode-infested plots treated with nematicides. Plants with M. javanica alone or in combination with P. lilacinus had galling indices of 5.0 both years; the latter produced lower yields than all other treatments during both years of the study. Nevertheless, the average soil population densities of P. lilacinus remained high, ranging from 1.2 to 1.3 × 106 propagules/g soil 1 week after the initial inoculation and from 1.6 to 2.3 × 104 propagules/g soil at harvest the second year. At harvest the second year the density of fungal propagules was greatest at the depth of inoculation, 15 cm, and rapidly decreased below this level.  相似文献   

12.
Advance inoculation of the tomato cv. Celebrity or the pyrethrum clone 223 with host-incompatible Meloidogyne incognita or M. javanica elicited induced resistance to host-compatible M. hapla in pot and field experiments. Induced resistance increased with the length of the time between inoculations and with the population density of the induction inoculum. Optimum interval before challenge inoculation, or population density of inoculum for inducing resistance, was 10 days, or 5,000 infective nematodes per 500-cm³ pot. The induced resistance suppressed population increase of M. hapla by 84% on potted tomato, 72% on potted pyrethrum, and 55% on field-grown pyrethrum seedlings, relative to unprotected treatments. Pyrethrum seedlings inoculated with M. javanica 10 days before infection with M. hapla were not stunted, whereas those that did not receive the advance inoculum were stunted 33% in pots and 36% in field plots. The results indicated that advance infection of plants with incompatible or mildly virulent nematode species induced resistance to normally compatible nematodes and that the induced resistance response may have potential as a biological control method for plant nematodes.  相似文献   

13.
Wheat cultivars Anza and Produra grown in winter in California were planted in Meloidogyne incognita infested and noninfested sandy loam plots in October (soil temperature 21 C) and November (soil temperature 16 C) of 1979. Meloidogyne incognita penetrated roots of mid-October planted Ataza (427 juveniles/g root), developed into adult females by January, and produced 75 eggs/g root by harvest in April. Penetration and development did not occur in late plantings. Anza seedlings grown in infested soil in pots buried in field soil in early spring were not invaded until soil temperature exceeded 18 C. Meloidogyne incognita juveniles can migrate through soil and penetrate roots at temperatures above 18 C (activity threshold), however development can occur at lower temperatures. Grain yields were not significantly different between nematode infested (3,390 kg/ha) and noninfested (2,988 kg/ha) plots. Winter decline of eggs and juveniles in two late plantings anti in fallow soil were 69, 72, and 77%, respectively, but egg and juvenile decline was only 40% in the early Anza plots that supported nematode reproduction in the spring. Delay of planting date until soil temperature is below 18 C is suggested to maximize the use of wheat in rotation as a nematode pest management cultural tactic for suppressing root-knot nematodes.  相似文献   

14.
The objective of this experiment was to determine the effects of fenamiphos 15G and short-cycle potato (PO)-sweet potato (SP) grown continuously and in rotation with peanut (PE)-grain sorghum (GS) on yield, crop quality, and mixed nematode population densities of Meloidogyne arenaria, M. hapla, M. incognita, and Mesocriconema ornatum. Greater root-gall indices and damage by M. hapla and M. incognita occurred on potato than other crops. Most crop yields were higher and root-gall indices lower from fenamiphos-treated plots than untreated plots. The total yield of potato in the PO-SP and PO-SP-PE-GS sequences increased from 1983 to 1985 in plots infested with M. hapla or M. arenaria and M. incognita in combination and decreased in 1986 to 1987 when root-knot nematode populations shifted to M. incognita. The total yields of sweet potato in the PO-SP-PE-GS sequence were similar in 1983 and 1985, and declined each year in the PO-SP sequence as a consequence of M. incognita population density increase in the soil. Yield of peanut from soil infested with M. hapla increased 82% in fenamiphos-treated plots compared to untreated plots. Fenamiphos treatment increased yield of grain sorghum from 5% to 45% over untreated controls. The declining yields of potato and sweet potato observed with both the PO-SP and PO-SP-PE-GS sequences indicate that these crop systems should not be used longer than 3 years in soil infested with M. incognita, M. arenaria, or M. hapla. Under these conditions, these two cropping systems promote a population shift in favor of M. incognita, which is more damaging to potato and sweet potato than M. arenaria and M. hapla.  相似文献   

15.
Studies were conducted to determine the potential of two avermectin compounds, abamectin and emamectin benzoate, for controlling plant-parasitic nematodes when applied by three methods: foliar spray, root dip, and pseudostem injection. Experiments were conducted against Meloidogyne incognita on tomato, M. javanica on banana, and Radopholus similis on banana. Foliar applications of both avermectins to banana and tomato were not effective for controlling any of the nematodes evaluated. Root dips of banana and tomato were moderately effective for controlling M. incognita on tomato and R. similis on banana. Injections (1 ml) of avermectins into banana pseudostems were effective for controlling M. javanica and R similis, and were comparable to control achieved with a conventional chemical nematicide, fenamiphos. Injections of 125 to 2,000 μg/plant effectively controlled one or both nematodes on banana; abamectin was more effective than emamectin benzoate for controlling nematodes.  相似文献   

16.
Terminated small grain cover crops are valuable in light textured soils to reduce wind and rain erosion and for protection of young cotton seedlings. A three-year study was conducted to determine the impact of terminated small grain winter cover crops, which are hosts for Meloidogyne incognita, on cotton yield, root galling and nematode midseason population density. The small plot test consisted of the cover treatment as the main plots (winter fallow, oats, rye and wheat) and rate of aldicarb applied in-furrow at-plant (0, 0.59 and 0.84 kg a.i./ha) as subplots in a split-plot design with eight replications, arranged in a randomized complete block design. Roots of 10 cotton plants per plot were examined at approximately 35 days after planting. Root galling was affected by aldicarb rate (9.1, 3.8 and 3.4 galls/root system for 0, 0.59 and 0.84 kg aldicarb/ha), but not by cover crop. Soil samples were collected in mid-July and assayed for nematodes. The winter fallow plots had a lower density of M. incognita second-stage juveniles (J2) (transformed to Log10 (J2 + 1)/500 cm3 soil) than any of the cover crops (0.88, 1.58, 1.67 and 1.75 Log10(J2 + 1)/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). There were also fewer M. incognita eggs at midseason in the winter fallow (3,512, 7,953, 8,262 and 11,392 eggs/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). Yield (kg lint per ha) was increased by application of aldicarb (1,544, 1,710 and 1,697 for 0, 0.59 and 0.84 kg aldicarb/ha), but not by any cover crop treatments. These results were consistent over three years. The soil temperature at 15 cm depth, from when soils reached 18°C to termination of the grass cover crop, averaged 9,588, 7,274 and 1,639 centigrade hours (with a minimum threshold of 10°C), in 2005, 2006 and 2007, respectively. Under these conditions, potential reproduction of M. incognita on the cover crop did not result in a yield penalty.  相似文献   

17.
The root-knot nematode Meloidogyne incognita was controlled more effectively and yields of host plants were greater when Paecilomyces lilacinus and Pasteuria penetrans were applied together in field microplots than when either was applied alone. Yields of winter vetch from microplots inoculated with the nematode and with both organisms were not statistically different from yields from uninoculated control plots.  相似文献   

18.
The effects of soil type and initial inoculum density (Pi) on the reproductive and damage potentials of Meloidogyne incognita and Rotylenchulus reniformis on cotton were evaluated in microplot experiments from 1991 to 1993. The equilibrium nematode population density for R. reniformis on cotton was much greater than that of M. incognita, indicating that cotton is a better host for R. reniformis than M. incognita. Reproduction of M. incognita was greater in coarse-textured soils than in fine-textured soils, whereas R. reniformis reproduction was greatest in a Portsmouth loamy sand with intermediate percentages of clay plus silt. Population densities of M. incognita were inversely related to the percentage of silt and clay, but R. reniformis was favored by moderate levels of clay plus silt (ca. 28%). Both M. incognita races 3 and 4 and R. reniformis effected suppression of seed-cotton yield in all soil types evaluated. Cotton-yield suppression was greatest in response to R. reniformis at high Pi. Cotton maturity, measured as percentage of open bolls at different dates, was affected by the presence of nematodes in all 3 years.  相似文献   

19.
The effects of planting date, rye (Secale cereale cv. Wren Abruzzi) and wheat (Triticura aestivum cv. Coker 797), crop destruction, fallow, and soil temperature on managing Meloidogyne incognita race 1 were determined in a 2-year study. More M. incognita juveniles (J2) and egg-producing adults were found in roots of rye planted 1 October than in roots of rye planted 1 November and wheat planted 1 November and 1 December. Numbers of M. incognita adults with and without egg masses were near or below detectable levels in roots of rye planted 1 November and wheat planted 1 November and 1 December. Meloidogyne incognita survived the mild winters in southern Georgia as J2 and eggs. The destruction of rye and wheat as a trap crop 1 March suppressed numbers of J2 in the soil temporarily but did not provide long-term benefits for susceptible crops that followed. In warmer areas where rye and wheat are grown in winter, reproduction of M. incognita may be avoided by delaying planting dates until soil temperature declines below the nematode penetration threshold (18 C), but no long-term benefits should be expected. The temperature threshold may be an important consideration in managing M. incognita population densities in areas having lower winter soil temperatures than southern Georgia.  相似文献   

20.
Meloidogyne incognita and Meloidogyne arenaria are important parasitic nematodes of vegetable and ornamental crops. Microplot and greenhouse experiments were conducted to test commercial formulations of the biocontrol agent Pasteuria penetrans for control of M. incognita on tomato and cucumber and M. arenaria on snapdragon. Three methods of application for P. penetrans were assessed including seed, transplant, and post-plant treatments. Efficacy in controlling galling and reproduction of the two root-knot nematode species was evaluated. Seed treatment application was assessed only for M. incognita on cucumber. Pasteuria treatment rates of a granular transplant formulation ranged from 1.5 × 105 endospores/cm3 to 3 × 105 endospores/cm3 of transplant mix applied at seeding. Additional applications of 1.5 × 105 endospores/cm3 of soil were applied as a liquid formulation to soil post-transplant for both greenhouse and microplot trials. In greenhouse cucumber trials, all Pasteuria treatments were equivalent to steamed soil for reducing M. incognita populations in roots and soil, and reducing nematode reproduction and galling. In cucumber microplot trials there were no differences among treatments for M. incognita populations in roots or soil, eggs/g root, or root condition ratings. Nematode reproduction on cucumber was low with Telone II and with the seed treatment plus post-plant application of Pasteuria, which had the lowest nematode reproduction. However, galling for all Pasteuria treatments was higher than galling with Telone II. Root-knot nematode control with Pasteuria in greenhouse and microplot trials varied on tomato and snapdragon. Positive results were achieved for control of M. incognita with the seed treatment application on cucumber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号