首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistance to the southern root-knot nematode, Meloidogyne incognita races 1 and 3, has been identified, incorporated, and deployed into commercial cultivars of tobacco, Nicotiana tabacum. Cultivars with resistance to other economically important root-knot nematode species attacking tobacco, M. arenaria, M. hapla, M. javanica, and other host-specific races of M. incognita, are not available in the United States. Twenty-eight tobacco genotypes of diverse origin and two standard cultivars, NC 2326 (susceptible) and Speight G 28 (resistant to M. incognita races 1 and 3), were screened for resistance to eight root-knot nematode populations of North Carolina origin. Based on root gall indices at 8 to 12 weeks after inoculation, all genotypes except NC 2326 and Okinawa were resistant to M. arenaria race 1, and races 1 and 3 of M. incognita. Except for slight root galling, genotypes resistant to M. arenaria race 1 responded similarly to races 1 and 3 of M. incognita. All genotypes except NC 2326, Okinawa, and Speight G 28 showed resistance to M. javanica. Okinawa, while supporting lower reproduction of M. javanica than NC 2326, was rated as moderately susceptible. Tobacco breeding lines 81-R-617A, 81-RL- 2K, SA 1213, SA 1214, SA 1223, and SA 1224 were resistant to M. arenaria race 2, and thus may be used as sources of resistance to this pathogen. No resistance to M. hapla and only moderate resistance to races 2 and 4 of M. incognita were found in any of the tobacco genotypes. Under natural field infestations of M. arenaria race 2, nematode development on resistant tobacco breeding lines 81-RL-2K, SA 1214, and SA 1215 was similar to a susceptible cultivar with some nematicide treatments; however, quantity and quality of yield were inferior compared to K 326 plus nematicides.  相似文献   

2.
Free and esterified sterols of eggs of the root-knot nematodes Meloidogyne incognita races 2 and 3 and M. arenaria race 1 were isolated and identified by gas-liquid chromatography-mass spectrometry. The major sterols of eggs of each race were 24-ethylcholesterol (33.4-38.8% of total sterol), 24-ethylcholestanol (18.3-25.3%), 24-methylcholesterol (8.6-11.7%), 24-methylcholestanol (7.7-12.5%), and cholesterol (4.6-11.6%). Consequently, the major metabolic transformation performed by Meloidogyne females or eggs upon host sterols appeared to be saturation of the sterol nucleus. The free and esterified sterols of the same race did not differ appreciably, except for a slight enrichment of the steryl esters in cholesterol. Although the sterol composition of Meloidogyne eggs differed from that of other life stages of other genera of plant-parasitic nematodes, the three Meloidogyne races could not be distinguished from each other by their egg sterols. Ecdysteroids, compounds with hormonal function in insects, were not detected by radioimmunoassay in the Meloidogyne eggs either as free ecdysteroids or as polar conjugates.  相似文献   

3.
The yield response of Florunner peanut to different initial population (Pi) densities of Meloidogyne arenaria, M. javanica, and an undescribed Meloidogyne species (isolate 93-13a) was determined in microplots in 1995 and 1996. Seven Pi''s (0, 0.5, 1, 5, 10, 50, and 100 eggs and J2/500 cm³ soil) were used for each Meloidogyne species in both years. The three species reproduced abundantly on Florunner in both years. In 1995, mean reproduction differed among the three species; mean Rf values were 10,253 for isolate 93-13, 4,256 for M. arenaria, and 513 for M. javanica. In 1996, the reproduction of M. arenaria (mean Rf = 7,820) and isolate 93-13a (mean Rf = 7,506) were similar, and both had greater reproduction on peanut than did M. javanica (mean Rf = 2,325). All three nematode species caused root and pod galling, and a positive relationship was observed between Pi and the percentage of pods galled. Meloidogyne arenaria caused a higher percentage of pod galling than did M. javanica or isolate 93-13a. A negative linear relationship between log₁₀ (Pi + 1) and pod yield was observed for all three nematode species each year. The yield response slopes were similar except for that of M. javanica, which was less negative than that of isolate 93-13a in 1995, and less negative than that of M. arenaria and isolate 93-13a in 1996.  相似文献   

4.
Reproduction of Meloidogyne arenaria race 2 was excellent on Centennial, Govan, and Kirby soybeans, the latter two of which have tolerance to this species. The M. incognita race 1 isolate reproduced poorly on Centennial, especially at the higher of two temperature regimes. Numbers of galls and egg masses of M. arenaria plus M. incognita in simultaneous equivalent infestations on Centennial did not differ from sequential infestations in which M. arenaria was added first and M. incognita was added to the same pots, 1,2, or 3 weeks later. However, at both 25 and 30 C, suppression of galls and egg masses occurred when inoculation of M. incognita preceded that of M. arenaria by 2 weeks. Generally, M. arenaria reproduced well at 25 or 30 C, whereas M. incognita reproduced better at 30 C. Kirby was tolerant to either nematode species at 25 and 30 C, but in combined infestations of M. arenaria and M. incognita there was evidence of synergistic growth suppression. Govan was tolerant of M. arenaria at 25 C but not at 30 C. Moreover, general plant growth was less vigorous for Govan at the higher temperature, whereas Centennial was much more vigorous at this temperature. Kirby grew equally well at both temperatures.  相似文献   

5.
Meloidogyne incognita race 1, M. javanica, M. arenaria race 1, M. hapla, and an undescribed Meloidogyne sp. were analyzed by comparing isozyme phenotypes of esterase, malate dehydrogenase, phosphoglucomutase, isocitrate dehydrogenase, and α-glycerophosphate dehydrogenase. Isozyme phenotypes were obtained from single mature females by isoelectric focusing electrophoresis. Of these five isozymes, only esterase and phosphoglucomutase could be used to separate all five Meloidogyne spp.; however, the single esterase electromorphs were similar for M. incognita and M. hapla. Yet when both nematodes were run on the same gel, differences in their esterase phenotypes were detectable. Isozyme phenotypes from the other three isozymes revealed a great deal of similarity among M. incognita, M. javanica, M. arenaria, and the undescribed Meloidogyne sp.  相似文献   

6.
Use of resistant Phaseolus vulgaris germplasm has a potential role in limiting damaging effects of Meloidogyne spp. on bean production. Effects of two genetic resistance systems in common bean germptasm on penetration and development of Meloidogyne spp. were studied under growth room conditions at 22°C to 25°C. Nemasnap (gene system 1) and G1805 (gene system 2) were inoculated with second-stage juveniles (J2) of M. incognita race 2 and M. arenaria race 1, respectively; Black Valentine was used as the susceptible control. Up to 7 days after inoculation, there were no differences in numbers of M. incognita J2 penetrating roots of Black Valentine and Nemasnap; subsequently, more nematodes were present in Black Valentine roots (P < 0.05). More nematodes reached advanced stages of development in Black Valentine than in Nemasnap roots (P < 0.05). Total numbers of M. arenaria were greater in Black Valentine than in G 1805 roots from 14 days after inoculation (P < 0.05). Advanced stages of development occurred earlier and in greater numbers in Black Valentine plants than in G1805 plants. In these studies, resistance to M. incognita race 2 and M. arenaria race 1 in bean germplasm, which contain gene system 1 and gene system 2, respectively, was expressed by delayed nematode development rather than by differential penetration compared with susceptible plants.  相似文献   

7.
Meloidogyne mayaguensis is a damaging root-knot nematode able to reproduce on root-knot nematode-resistant tomato and other economically important crops. In a growth chamber experiment conducted at 22 and 33°C, isolate 1 of M. mayaguensis reproduced at both temperatures on the Mi-1-carrying tomato lines BHN 543 and BHN 585, whereas M. incognita race 4 failed to reproduce at 22°C, but reproduced well at 33°C. These results were confirmed in another experiment at 26 ± 1.8°C, where minimal or no reproduction of M. incognita race 4 was observed on the Mi-1-carrying tomato genotypes BHN 543, BHN 585, BHN 586 and ‘Sanibel’, whereas heavy infection and reproduction of M. mayaguensis isolate 1 occurred on these four genotypes. Seven additional Florida M. mayaguensis isolates also reproduced on resistant ‘Sanibel’ tomato at 26 ± 1.8°C. Isolate 3 was the most virulent, with reproduction factor (Rf) equal to 8.4, and isolate 8 was the least virulent (Rf = 2.1). At 24°C, isolate 1 of M. mayaguensis also reproduced well (Rf ≥ 1) and induced numerous small galls and large egg masses on the roots of root-knot nematode-resistant bell pepper ‘Charleston Belle’ carrying the N gene and on three root-knot nematode-resistant sweet pepper lines (9913/2, SAIS 97.9001 and SAIS 97.9008) carrying the Tabasco gene. In contrast, M. incognita race 4 failed to reproduce or reproduced poorly on these resistant pepper genotypes. The ability of M. mayaguensis isolates to overcome the resistance of tomato and pepper genotypes carrying the Mi-1, N and Tabasco genes limits the use of resistant cultivars to manage this nematode species in infested tomato and pepper fields in Florida.  相似文献   

8.
The cellular responses induced by Meloidogyne arenaria races 1 and 2 in three soybean genotypes, susceptible CNS, resistant Jackson, and resistant PI 200538, were examined by light microscopy 20 days after inoculation. Differences in giant-cell development were greater between races than among the soybean genotypes. M. arenaria race 1 stimulated small, poorly formed giant-cells in contrast with M. arenaria race 2, which induced well-developed, thick-walled, multinucleate giant-cells. The number of nuclei per giant-celt was variable, but fewer nuclei were usually present in giant-cells induced by race 1 (mean 16 nuclei) than in giant-cells induced by race 2 (mean 41 nuclei). Differences observed in giant-cell development were related to differences in growth and maturation of M. arenaria races 1 and 2 and host suitability of the soybean genotypes.  相似文献   

9.
In a rapeseed-squash cropping system, Meloidogyne incognita race 1 and M. javanica did not enter, feed, or reproduce in roots of seven rapeseed cultivars. Both nematode species reproduced at low levels on roots of the third crop of rapeseed. Reproduction of M. incognita and M. javanica was high on squash following rapeseed, hairy vetch, and fallow. The application of fenamiphos suppressed (P = 0.05) root-gall indices on squash following rapeseed, hairy vetch, and fallow; and on Dwarf Essex and Cascade rapeseed, but not Bridger and Humus rapeseed in 1987. The incorporation of 30-61 mt/ha green biomass of rapeseed into the soil 6 months after planting did not affect the population densities of Criconemella ornata, M. incognita, M. javanica, Pythium spp., Rhizoctonia solani AG-4; nor did it consistently increase yield of squash. Hairy vetch supported larger numbers of M. incognita and M. javanica than rapeseed cultivars or fallow. Meloidogyne incognita and M. javanica survived in fallow plots in the absence of a host from October to May each year at a level sufficient to warrant the use of a nematicide to manage nematodes on the following susceptible crop.  相似文献   

10.
Variability in penetration, development, and reproduction of two resistance-breaking field pathotypes (pt.) of Meloidogyne arenaria, M. incognita, and a population of mixed Meloidogyne spp. virulent to grape hosts were compared on two resistant Vitis rootstocks ''Freedom'' and ''Harmony'' in separate tests. ''Cabernet Sauvignon'' was included as a susceptible host to all four nematode populations. Secondstage juveniles (J2) of the mixed population failed to penetrate Freedom roots. By contrast, 6% of J2 in the M. incognita population penetrated Freedom roots but did not develop beyond the swollen J2 stage. The two resistance-breaking populations of M. arenaria differed in their virulence except on susceptible roots of Cabernet Sauvignon. More J2 of M. arenaria pt. Freedom penetrated Freedom roots and reached adult stage than did M. arenaria pt. Harmony. Later life stages of M. arenaria pt. Freedom occurred earlier and in greater numbers in Harmony roots than did M. arenaria pt. Harmony. Reproduction of M. arenaria pt. Freedom was greater in Freedom and Harmony roots than M. arenaria pt. Harmony. Thus, one population of M. arenaria is highly virulent and the other is moderately virulent.  相似文献   

11.
Root-knot nematode resistance of F₁ progeny of an intraspecific hybrid (Lycopersicon peruvianum var. glandulosum Acc. No. 126443 x L. peruvianum Acc. No. 270435), L. esculentum cv. Piersol (possessing resistance gene Mi), and L. esculentum cv. St. Pierre (susceptible) was compared. Resistance to 1) isolates of two Meloidogyne incognita populations artificially selected for parasitism on tomato plants possessing the Mi gene, 2) the wild type parent populations, 3) four naturally occurring resistance (Mi gene)-breaking populations of M. incognita, M. arenaria, and two undesignated Meloidogyne spp., and 4) a population of M. hapla was indexed by numbers of egg masses produced on root systems in a greenhouse experiment. Artificially selected M. incognita isolates reproduced abundantly on Piersol, but not (P = 0.01) on resistant F₁ hybrids. Thus, the gene(s) for resistance in the F₁ hybrid differs from the Mi gene in Piersol. Four naturally occurring resistance-breaking populations reproduced extensively on Piersol and on the F₁ hybrid, demonstrating ability to circumvent both types of resistance. Meloidogyne hapla reproduced on F₁ hybrid plants, but at significantly (P = 0.01) lower levels than on Piersol.  相似文献   

12.
Root invasion, root galling, and fecundity of Meloidogyne javanica, M. arenaria, and M. incognita on tobacco was compared in greenhouse and controlled environment experiments. Significantly more M. javanica than M. arenaria or M. incognita larvae were found in tobacco roots at 2, 4, and 6 d after inoculation. Eight days after inoculation there were significantly more M. arenaria and M. javanica than M. incognita larvae. Ten days after inoculation no significant differences were found among the three Meloidogyne species inside the roots. Galls induced by a single larva or several larvae of M. javanica were significantly larger than galls induced by M. incognita: M. arenaria galls were intermediate in size. Only slight differences in numbers of egg masses or numbers of eggs produced by the three Meloidogyne species were observed up to 35 d after inoculation.  相似文献   

13.
The host suitability of five zucchini and three cucumber genotypes to Meloidogyne incognita (MiPM26) and M. javanica (Mj05) was determined in pot experiments in a greenhouse. The number of egg masses (EM) did not differ among the genotypes of zucchini or cucumber, but the eggs/plant and reproduction factor (Rf) did slightly. M. incognita MiPM26 showed lower EM, eggs/plant, and Rf than M. javanica Mj05. Examination of the zucchini galls for nematode postinfection development revealed unsuitable conditions for M. incognita MiPM26 as only 22% of the females produced EM compared to 95% of the M. javanica females. As far as cucumber was concerned, 86% of the M. incognita and 99% of the M. javanica females produced EM, respectively. In a second type of experiments, several populations of M. arenaria, M. incognita, and M. javanica were tested on zucchini cv. Amalthee and cucumber cv. Dasher II to assess the parasitic variation among species and populations of Meloidogyne. A greater parasitic variation was observed in zucchini than cucumber. Zucchini responded as a poor host for M. incognita MiPM26, MiAL09, and MiAL48, but as a good host for MiAL10 and MiAL15. Intraspecific variation was not observed among the M. javanica or M. arenaria populations. Cucumber was a good host for all the tested populations. Overall, both cucurbits were suitable hosts for Meloidogyne but zucchini was a poorer host than the cucumber.  相似文献   

14.
The rates of soybean root penetration by freshly hatched second-stage juveniles (J2) of Meloidogyne arenaria, M. hapla, M. incognita, M. javanica, and Heterodera glycines races 1 and 5 were examined over a period of 1 to 240 hours. Heterodera glycines entered roots more quickly than Meloidogyne spp. Penetration by most nematodes was accomplished within 48 hours. The increases in penetration after 48 hours were insufficient to warrant further assessments. Penetration of J2 into roots of soybean seedfings in a styrofoam container was as good or better than in a clay pot. Thus, rapid and accurate root-penetration assessments can be made at 48 hours after inoculation.  相似文献   

15.
Males of five populations of Meloidogyne hapla were compared by scanning electron microscopy (SEM). Three populations of race A had haploid chromosome numbers of 15, 16, and 17 and reproduced by facultative parthenogenesis. Race B consisted of two mitotically parthenogenetic populations with somatic chromosome numbers of 45 and 48. Males of one population each of M. arenaria, M. incognita, and M. javanica were also examined to delineate species differences. The populations of M. arenaria, M. incognita, and M. javanica had 54, 41-43, and 44 chromosomes, respectively, and reproduction was by mitotic parthenogenesis. Observations were made on head structures, lateral field, excretory pore, and tail. The expression of labial and cephalic sensilla, shape and proportion of labial disc and lips, and markings on the head region were distinctly different for each species. The head morphology of the two cytological races of M. hapla was dissimilar. Populations of race A were different from each other and showed intrapopulation variation. Populations of race B were morphologically similar and stable in head morphology. The structure of the lateral field, excretory pore, and tail was of little value in distinguishing species or populations because of inter- and intrapopulation variation. The results are discussed in relation to earlier SEM observations of second-stage juveniles of the same populations.  相似文献   

16.
Second-stage juveniles (I2) of Meloidogyne arenaria consumed more oxygen (P ≤ 0.05) than M. incognita J2, which in turn consumed more than M. javanica J2 (4,820, 4,530, and 3,970 μl per hour per g nematode dryweight, respectively). Decrease in oxygen consumption depended on the nematicide used. Except for aldicarb, there was no differential sensitivity among the three nematode species. Meloidogyne javanica had a greater percentage decrease (P ≤ 0.05) in oxygen uptake when treated with aldicarb, relative to the untreated control, than either M. arenaria or M. incognita. Meloidogyne javanica J2 had a greater degree of recovery from fenamiphos or aldicarb intoxication, after subsequent transfer to water, than did M. incognita. This finding may relate to differential sensitivity among Meloidogyne spp. in the field. Degree of respiratory inhibition and loss of nematode motility for M. javanica after exposure to the nematicides were positively correlated (P ≤ 0.05).  相似文献   

17.
Sensitivity and host efficiency of susceptible (''Lee 68'', ''Coker 156'') and resistant (''Bragg'', ''Centennial'', ''Forrest'', ''Lee 74'') soybean (Glycine max (L.) Merr.) cultivars for races of Meloidogyne incognita (Mi) were determined in greenhouse experiments. Eight Mi populations collected from the southeastern United States were utilized. All Mi races reproduced readily on Lee 68 and Lee 74 and moderately on Forrest and Bragg. Coker 156 exhibited resistance to races 1 and 2, and some race 3 populations, but was very susceptible to certain race 3 and 4 populations. Reproduction of all races was lowest on Centennial. Forrest and Centennial shoot growth was not significantly suppressed by any race. There were no distinct differences in virulence between races except for a race 3 population which reproduced readily on all cultivars, stunting their growth. Considerable variation in reproduction existed within races 1 and 3.  相似文献   

18.
Most commercial tobacco cultivars possess the Rk1 resistance gene to races 1 and 3 of Meloidogyne incognita and race 1 of Meloidogyne arenaria, which has caused a shift in population prevalence in Virginia tobacco fields toward other species and races. A number of cultivars now also possess the Rk2 gene for root-knot resistance. Experiments were conducted in 2013 to 2014 to examine whether possessing both Rk1 and Rk2 increases resistance to a variant of M. incognita race 3 compared to either gene alone. Greenhouse trials were arranged in a completely randomized design with Coker 371-Gold (C371G; susceptible), NC 95 and SC 72 (Rk1Rk1), T-15-1-1 (Rk2Rk2), and STNCB-2-28 and NOD 8 (Rk1Rk1 and Rk2Rk2). Each plant was inoculated with 5,000 root-knot nematode eggs; data were collected 60 d postinoculation. Percent galling and numbers of egg masses and eggs were counted, the latter being used to calculate the reproductive index on each host. Despite variability, entries with both Rk1 and Rk2 conferred greater resistance to a variant of M. incognita race 3 than plants with Rk1 or Rk2 alone. Entries with Rk1 alone were successful in reducing root galling and nematode reproduction compared to the susceptible control. Entry T-15-1-1 did not reduce galling compared to the susceptible control but often suppressed reproduction.  相似文献   

19.
Host suitability of olive cultivars Arbequina and Picual to several plant-parasitic nematodes was studied under controlled conditions. Arbequina and Picual were not suitable hosts for the root-lesion nematodes Pratylenchus fallax, P. thornei, and Zygotylenchus guevarai. However, the ring nematode Mesocriconema xenoplax and the spiral nematodes Helicotylenchus digonicus and H. pseudorobustus reproduced on both olive cultivars. The potential of Meloidogyne arenaria race 2, M. incognita race 1, and M. javanica, as well as P. vulnus and P. penetrans to damage olive cultivars, was also assessed. Picual planting stocks infected by root-knot nematodes showed a distinct yellowing affecting the uppermost leaves, followed by a partial defoliation. Symptoms were more severe on M. arenaria and M. javanica-infected plants than on M. incognita-infected plants. Inoculation of plants with 15,000 eggs + second-stage juveniles/pot of these Meloidogyne spp. suppressed the main height of shoot and number of nodes of Arbequina, but not Picual. Infection by each of the two lesion nematodes (5,000 nematodes/pot) or by each of the three Meloidogyne spp. suppressed (P < 0.05) the main stem diameter of both cultivars. On Arbequina, the reproduction rate of Meloidogyne spp. was higher (P < 0.05) than that of Pratylenchus spp.; on Picual, Pratylenchus spp. reproduction was higher (P < 0.05) than that of Meloidogyne spp.  相似文献   

20.
Meloidogyne chitwoodi race 1 reproduced on Piper sudangrass (Sorghum bicolor (L.) Moench), 332 (sudangrass hybrid), and P855F and P877F (sorghum-sudangrass hybrids), but failed to reproduce efficiently on Trudan 8, Trudex 9 (sudangrass hybrids), and Sordan 79, SS-222, and Bravo II (sorghum-sudangrass hybrids). Meloidogyne chitwoodi race 2 behaved similarly and reproduced more efficiently on Piper, P855F, and P877F than on Trudan 8, Trudex 9, or Sordan 79. The mean reproductive factor for M. chitwoodi races on the poorer hosts ranged from <0.1 to 0.9 under greenhouse and field conditions. Meloidogyne hapla failed to reproduce on any of the cultivars tested. In the laboratory, leaves of each cultivar chopped and incorporated as green manure reduced the M. chitwoodi population in infested soil more than unamended or wheat green manure treatments. Trudan 8, although limited to the zone of incorporation, protected this zone from colonization of upward migrating second stage juveniles (J2) for up to 6 weeks. Leaves of Trudan 8 but not roots were effective against M. chitwoodi, and J2 appeared to be more sensitive than egg masses. Trudan 8 and Sordan 79 as green manure reduced M. chitwoodi in bucket microplots under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号