首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 661 毫秒
1.
2.
3.
4.
P13K-AKT—mTORCl信号途径在细胞生长增殖中起重要调控作用,P13K-Akt—mTORl信号途径能够调节细胞周期相关蛋白基因的表达来调控细胞的增殖;同时,P13K—Akt-mTORl信号途径也能够调控细胞的生长和大小;P13K-Akt-mTORCl信号途径的异常活化与肿瘤发生紧密相关。就P13K—AKT-mTORCl信号途径在细胞生长增殖中的作用作一综述。  相似文献   

5.
Gastrointestinal (GI) carcinoid cells secrete multiple neuroendocrine (NE) markers and hormones including 5-hydroxytryptamine and chromogranin A. We were interested in determining whether activation of the Notch1 signal transduction pathway in carcinoid cells could modulate production of NE markers and hormones. Human pancreatic carcinoid cells (BON cells) were stably transduced with an estrogen-inducible Notch1 construct, creating BON-NIER cells. In the present study, we found that Notch1 is not detectable in human GI carcinoid tumor cells. The induction of Notch1 in human BON carcinoid cells led to high levels of functional Notch1, as measured by CBF-1 binding studies, resulting in activation of the Notch1 pathway. Similar to its developmental role in the GI tract, Notch1 pathway activation led to an increase in hairy enhancer of split 1 (HES-1) protein and a concomitant silencing of human Notch1/HES-1/achaete-scute homolog 1. Furthermore, Notch1 activation led to a significant reduction in NE markers. Most interestingly, activation of the Notch1 pathway caused a significant reduction in 5-hydroxytryptamine, an important bioactive hormone in carcinoid syndrome. In addition, persistent activation of the Notch1 pathway in BON cells led to a notable reduction in cellular proliferation. These results demonstrate that the Notch1 pathway, which plays a critical role in the differentiation of enteroendocrine cells, is highly conserved in the gut. Therefore, manipulation of the Notch1 signaling pathway may be useful for expanding the targets for therapeutic and palliative treatment of patients with carcinoid tumors.  相似文献   

6.
Gillard  BK; Clement  RG; Marcus  DM 《Glycobiology》1998,8(9):885-890
There are several pathways for the incorporation of sugars into glycosphingolipids (GSL). Sugars can be added to ceramide that contains sphinganine (dihydrosphingosine) synthesized de novo (pathway 1), to ceramide synthesized from sphingoid bases produced by hydrolysis of sphingolipids (pathway 2), and into GSL recycling from the endosomal pathway through the Golgi (pathway 3). We reported previously the surprising observation that SW13 cells, a human adrenal carcinoma cell line, synthesize most of their GSL in pathway 2. We now present data on the synthesis of GSL in four additional cell lines. Approximately 90% of sugar incorporation took place in pathway 2, and 10% or less in pathway 1, in human foreskin fibroblasts and NB41A3 neuroblastoma cells. In contrast, approximately 50-90% of sugar incorporation took place in pathway 1 in C2C12 myoblasts. The C2C12 cells divide more rapidly and synthesize 10-14 times as much GSL as the other three cell lines. In C6 glioma cells, approximately 30% of sugar incorporation occurred in pathway 1 and 60% in pathway 2. There was no relation between the utilization of pathways for GSL and sphingomyelin synthesis in foreskin fibroblasts and C2C12 cells. In both cells pathways 1 and 2 each accounted for 50% of incorporation of choline into sphingomyelin. In five of the six cell lines that we have studied, most GSL synthesis takes place in pathway 2. We suggest that when the need for synthesis is relatively low, as in slowly dividing cells, GSL are synthesized predominantly from sphingoid bases salvaged from the hydrolytic pathway. When cells are dividing more rapidly, the need for increased synthesis is met by upregulating the de novo pathway.   相似文献   

7.
The human immunodeficiency virus type 1 (HIV-1) can interact with and exploit the host cellular machinery to replicate and propagate itself. Numerous studies have shown that the Mitogen-activated protein kinase (MAPK) signal pathway can positively regulate the replication of HIV-1, but exactly how each MAPK pathway affects HIV-1 infection and replication is not understood. In this study, we used the Extracellular signal-regulated kinase (ERK) pathway inhibitor, PD98059, the Jun N-terminal kinase (JNK) pathway inhibitor, SP600125, and the p38 pathway inhibitor, SB203580, to investigate the roles of these pathways in HIV-1 replication. We found that application of PD98059 results in a strong VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus and HIV-1NL4-3 virus inhibition activity. In addition, SB203580 and SP600125 also elicited marked VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus inhibition activity but no HIV-1NL4-3 virus inhibition activity. We also found that SB203580 and SP600125 can enhance the HIV-1 inhibition activity of PD98059 when cells were treated with all three MAPK pathway inhibitors in combination. Finally, we show that HIV-1 virus inhibition activity of the MAPK pathway inhibitors was the result of the negative regulation of HIV-1 LTR promoter activity.  相似文献   

8.
Forty nine molecular dynamics simulations of unfolding trajectories of the segment B1 of streptococcal protein G (GB1) provide a direct demonstration of the diversity of unfolding pathway and give a statistically utmost unfolding pathway under the physical property space. Twelve physical properties of the protein were chosen to construct a 12-dimensional property space. Then the 12-dimensional property space was reduced to a 3-dimensional principle component property space. Under the property space, the multiple unfolding trajectories look like "trees", which have some common characters. The "root of the tree" corresponds to the native state, the "bole" homologizes the partially unfolded conformations, and the "crown" is in correspondence to the unfolded state. These unfolding trajectories can be divided into three types. The first one has the characters of straight "bole" and "crown" corresponding to a fast two-state unfolding pathway of GB1. The second one has the character of "the standstill in the middle tree bole", which may correspond to a three-state unfolding pathway. The third one has the character of "the circuitous bole" corresponding to a slow two-state unfolding pathway. The fast two-state unfolding pathway is a statistically utmost unfolding pathway or preferred pathway of GB1, which occupies 53% of 49 unfolding trajectories. In the property space all the unfolding trajectories construct a thermal unfolding pathway ensemble of GB1. The unfolding pathway ensemble resembles a funnel that is gradually emanative from the native state ensemble to the unfolded state ensemble. In the property space, the thermal unfolded state distribution looks like electronic cloud in quantum mechanics. The unfolded states of the independent unfolding simulation trajectories have substantial overlaps, indicating that the thermal unfolded states are confined by the physical property values, and the number of protein unfolded state are much less than that was believed before.  相似文献   

9.
SIRT1 is a highly conserved type III acetyltransferase gene located on chromosome 10 in mammals that belong to the Sirtuins family. In order to explore the effects of the SIRT1 gene in the ATDC5 cell line, an RNAi SIRT1 target sequence was designed and synthesized, aimed to knockdown the expression of SIRT1 in ATDC5 by a lentivirus. Gene chip, qrt-PCR, and WES analyses were used to detect the expression of SIRT1 and changes to the Wnt signaling pathway, while detecting any changes in proliferation and differentiation factors. The results showed that the expressions of the SIRT1 gene, mRNA, and protein were lower after transfection of the RNAi SIRT1sequence into ATDC5 cells. The Wnt signaling pathway, especially the classical pathway, was inhibited by the knockdown of SIRT1. The cartilaginous proliferation and differentiation of ATDC5 cells were simultaneously inhibited, and apoptosis was accelerated. In summary, knocking down SIRT1 gene increased the degeneration of ATDC5 cells via inhibiting the Wnt signaling pathway. We also found some novel factors related to the Wnt signaling pathway after SIRT1 gene knockdown (BIRC3, IL1RAP, PPP3CA, PPP2R2A, PPP2R5E, GSN, PPP2R1B, etc), which might provide new clues in disease research related to chondrocyte degeneration.  相似文献   

10.
Activation and function of the mTORC1 pathway in mast cells   总被引:1,自引:0,他引:1  
Little is known about the signals downstream of PI3K which regulate mast cell homeostasis and function following FcepsilonRI aggregation and Kit ligation. In this study, we investigated the role of the mammalian target of rapamycin complex 1 (mTORC1) pathway in these responses. In human and mouse mast cells, stimulation via FcepsilonRI or Kit resulted in a marked PI3K-dependent activation of the mTORC1 pathway, as revealed by the wortmannin-sensitive sequential phosphorylation of tuberin, mTOR, p70S6 kinase (p70S6K), and 4E-BP1. In contrast, in human tumor mast cells, the mTORC1 pathway was constitutively activated and this was associated with markedly elevated levels of mTORC1 pathway components. Rapamycin, a specific inhibitor of mTORC1, selectively and completely blocked the FcepsilonRI- and Kit-induced mTORC1-dependent p70S6K phosphorylation and partially blocked the 4E-BP1 phosphorylation. In parallel, although rapamycin had no effect on FcepsilonRI-mediated degranulation or Kit-mediated cell adhesion, it inhibited cytokine production, and kit-mediated chemotaxis and cell survival. Furthermore, Rapamycin also blocked the constitutive activation of the mTORC1 pathway and inhibited cell survival of tumor mast cells. These data provide evidence that mTORC1 is a point of divergency for the PI3K-regulated downstream events of FcepsilonRI and Kit for the selective regulation of mast cell functions. Specifically, the mTORC1 pathway may play a critical role in normal and dysregulated control of mast cell homeostasis.  相似文献   

11.
In lactic acid bacteria, pentoses are metabolized via the phosphoketolase pathway, which catalyzes the cleavage of D-xylulose-5-phosphate to equimolar amounts of glyceraldehyde 3-phosphate and acetylphosphate. Hence the yield coefficient of lactate from pentose does not exceed 1.0 mol/mol, while that of Lactococcus lactis IO-1(JCM7638) at high D-xylose concentrations often exceeds the theoretical value. This suggests that, in addition to the phosphoketolase pathway, L. lactisIO-1 may possess another metabolic pathway that produces only lactic acid from xylose. In the present study, the metabolism of xylose in L. lactisIO-1 was deduced from the product formation and enzyme activities of L. lactisIO-1 in batch culture and continuous culture. During cultivation with xylose concentrations above ca. 50 g/l, the yield coefficient of L-lactate exceeded 1.0 mol/mol while those of acetate, formate and ethanol were very low. At xylose concentrations less than 5 g/l, acetate, formate and ethanol were produced with yield coefficients of about 1.0 mol/mol, while L-lactate was scarcely produced. In cells grown at high xylose concentrations, a marked decrease in the specific activities of phosphoketolase and pyruvate formate lyase (PFL), and an increase in those of transketolase and transaldolase were observed. These results indicate that in L. lactisIO-1 xylose may be catabolized by two different pathways, the phosphoketolase pathway yielding acetate, formate and ethanol, and the pentose phosphate (PP)/glycolytic pathway which converts xylose to L-lactate only. Furthermore, it was deduced that the change in the xylose concentration in the culture medium shifts xylulose 5-phosphate metabolism between the phosphoketolase pathway and the PP/glycolytic pathway in L. lactisIO-1, and pyruvate metabolism between cleavage to acetyl-CoA and formic acid by PFL and the reduction to L-lactate by lactate dehydrogenase.  相似文献   

12.
外源1 O2 和·OH处理继代培养 1 4d的烟草愈伤组织 2 4h后 ,愈伤组织内的交替途径的实际运行显著上升 ,但对交替途径容量影响不大 ;而经·OH处理后的愈伤组织交替途径容量和实际运行均明显地受到抑制 ,但交替途径的实际运行对·OH更加敏感。活性氧产生系统中加入相关清除剂进行实验 ,得到与此相对应的结果 :1 O2 的清除剂His处理能明显地降低或抑制1 O2 所增加的交替途径实际运行量 ,但对交替途径容量则几乎均无影响 ,而用·OH的清除剂DMSO和MAN分别处理愈伤组织后 ,DMSO和MAN均能解除·OH对交替途径容量和实际运行的抑制。这些结果表明 ,1 O2 诱导烟草愈伤组织交替途径的实际运行 ,但对其容量的作用不大 ,而·OH则明显地抑制交替途径容量和实际运行。推测1 O2 和·OH对抗氰途径的影响可能是通过对AOX活性的调节  相似文献   

13.
Reconstitution of eukaryotic Okazaki fragment processing implicates both one- and two-nuclease pathways for processing flap intermediates. In most cases, FEN1 (flap endonuclease 1) is able to efficiently cleave short flaps as they form. However, flaps escaping cleavage bind replication protein A (RPA) inhibiting FEN1. The flaps must then be cleaved by Dna2 nuclease/helicase before FEN1 can act. Pif1 helicase aids creation of long flaps. The pathways were considered connected only in that the products of Dna2 cleavage are substrates for FEN1. However, results presented here show that Dna2, Pif1, and RPA, the unique proteins of the two-nuclease pathway from Saccharomyces cerevisiae, all stimulate FEN1 acting in the one-nuclease pathway. Stimulation is observed on RNA flaps representing the initial displacement and on short DNA flaps, subsequently displaced. Neither the RNA nor the short DNA flaps can bind the two-nuclease pathway proteins. Instead, direct interactions between FEN1 and the two-nuclease pathway proteins have been detected. These results suggest that the proteins are either part of a complex or interact successively with FEN1 because the level of stimulation would be similar either way. Proteins bound to FEN1 could be tethered to the flap base by the interaction of FEN1 with PCNA, potentially improving their availability when flaps become long. These findings also support a model in which cleavage by FEN1 alone is the preferred pathway, with the first opportunity to complete cleavage, and is stimulated by components of the backup pathway.  相似文献   

14.
15.
In Arabidopsis thaliana, the flowering time is regulated through the circadian clock that measures day-length and modulates the photoperiodic CO-FT output pathway in accordance with the external coincidence model. Nevertheless, the genetic linkages between the major clock-associated TOC1, CCA1 and LHY genes and the canonical CO-FT flowering pathway are less clear. By employing a set of mutants including an extremely early flowering toc1 cca1 lhy triple mutant, here we showed that CCA1 and LHY act redundantly as negative regulators of the photoperiodic flowering pathway. The partly redundant CCA1/LHY functions are largely, but not absolutely, dependent on the upstream TOC1 gene that serves as an activator. The results of examination with reference to the expression profiles of CO and FT in the mutants indicated that this clock circuitry is indeed linked to the CO-FT output pathway, if not exclusively. For this linkage, the phase control of certain flowering-associated genes, GI, CDF1 and FKF1, appears to be crucial. Furthermore, the genetic linkage between TOC1 and CCA1/LHY is compatible with the negative and positive feedback loop, which is currently believed to be a core of the circadian clock. The results of this study suggested that the circadian clock might open an exit for a photoperiodic output pathway during the daytime. In the context of the current clock model, these results will be discussed in connection with the previous finding that the same clock might open an exit for the early photomorphogenic output pathway during the night-time.  相似文献   

16.
In many species, reducing nutrient intake without causing malnutrition extends lifespan. Like DR (dietary restriction), modulation of genes in the insulin-signaling pathway, known to alter nutrient sensing, has been shown to extend lifespan in various species. In Drosophila, the target of rapamycin (TOR) and the insulin pathways have emerged as major regulators of growth and size. Hence we examined the role of TOR pathway genes in regulating lifespan by using Drosophila. We show that inhibition of TOR signaling pathway by alteration of the expression of genes in this nutrient-sensing pathway, which is conserved from yeast to human, extends lifespan in a manner that may overlap with known effects of dietary restriction on longevity. In Drosophila, TSC1 and TSC2 (tuberous sclerosis complex genes 1 and 2) act together to inhibit TOR (target of rapamycin), which mediates a signaling pathway that couples amino acid availability to S6 kinase, translation initiation, and growth. We find that overexpression of dTsc1, dTsc2, or dominant-negative forms of dTOR or dS6K all cause lifespan extension. Modulation of expression in the fat is sufficient for the lifespan-extension effects. The lifespan extensions are dependent on nutritional condition, suggesting a possible link between the TOR pathway and dietary restriction.  相似文献   

17.
Zhang D  Zaugg K  Mak TW  Elledge SJ 《Cell》2006,126(3):529-542
The Chk2-p53-PUMA pathway is a major regulator of DNA-damage-induced apoptosis in response to double-strand breaks in vivo. Through analysis of 53BP1 complexes we have discovered a new ubiquitin protease, USP28, which regulates this pathway. Using a human cell line that faithfully recapitulated the Chk2-p53-PUMA pathway, we show that USP28 is required to stabilize Chk2 and 53BP1 in response to DNA damage. In this cell line, both USP28 and Chk2 are required for DNA-damage-induced apoptosis, and they accomplish this in part through regulation of the p53 induction of proapoptotic genes like PUMA. Our studies implicate DNA-damage-induced ubiquitination and deubiquitination as a major regulator of the DNA-damage response for Chk2, 53BP1, and a number of other proteins in the DNA-damage checkpoint pathway, including several mediators, such as Mdc1, Claspin, and TopBP1.  相似文献   

18.
Vertebrate Wnt proteins activate several distinct pathways. Intrinsic differences among Wnt ligands and Frizzled (Fzd) receptors, and the availability of pathway-specific coreceptors, LRP5/6, and Ror2, affect pathway selection. Here, we show that a secreted glycoprotein, Cthrc1, is involved in selective activation of the planar cell polarity (PCP) pathway by Wnt proteins. Although Cthrc1 null mutant mice appeared normal, the introduction of a heterozygous mutation of a PCP gene, Vangl2, resulted in abnormalities characteristic of PCP mutants. In HEK293T cells, Cthrc1 activated the PCP pathway but suppressed the canonical pathway. Cell-surface-anchored Cthrc1 bound to Wnt proteins, Fzd proteins, and Ror2 and enhanced the interaction of Wnt proteins and Fzd/Ror2 by forming the Cthrc1-Wnt-Fzd/Ror2 complex. Consistent with this, Ror2 mutant mice also showed PCP-related abnormalities in the inner ear. These results suggest that Cthrc1 is a Wnt cofactor protein that selectively activates the Wnt/PCP pathway by stabilizing ligand-receptor interaction.  相似文献   

19.
Complement is an important mediator of the injuries observed after skeletal muscle ischemia and subsequent reperfusion. Although the classical pathway had been assumed to be the major pathway of activation leading to injury, the mannose-binding lectin (MBL) pathway might also play a contributing role. In this study, we found that MBL-deficient mice had significant protection after skeletal muscle reperfusion injury compared with wild-type, classical pathway-specific C1q-deficient mice, or MBL-deficient mice reconstituted with recombinant human MBL. MBL-deficient mice, however, were not protected from permeability edema or secondary lung injury after ischemia-reperfusion. These data indicate that blockade of the classical pathway alone (C1q) is protective against permeability edema and remote pulmonary injury but not protective against histologic muscle injury. In contrast, blocking the MBL pathway alone protects against histological injury but is not protective against permeability edema or lung injury. Thus, the activation of both pathways is likely responsible for the full spectrum of injuries observed after skeletal muscle reperfusion injury.  相似文献   

20.
The biosynthesis of the C5 building block of isoprenoids, isopentenyl diphosphate (IPP), proceeds in higher plants via two basically different pathways; in the cytosolic compartment sterols are formed via mevalonate (MVA), whereas in the plastids the isoprenoids are formed via the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway (DOXP/MEP pathway). In the present investigation, we found for the Charophyceae, being close relatives to land plants, and in the original green flagellate Mesostignma virilde the same IPP biosynthesis pattern as in higher plants: sterols are formed via MVA, and the phytol-moiety of chlorophylls via the DOXP/MEP pathway. In contrast, representatives of four classes of the Chlorophyta (Chlorophyceae, Ulvophyceae, Trebouxiophyceae, Prasinophyceae) did not incorporate MVA into sterols or phytol. Instead, they incorporated [1-2H1]-1-deoxy-D-xylulose into phytol and sterols. The results indicate that the entire Chlorophyta lineage, which is well separated from the land plant/Charophyceae lineage, is devoid of the acetate/ MVA pathway and uses the DOXP/MEP pathway not only for plastidic, but also for cytosolic isoprenoid formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号