共查询到20条相似文献,搜索用时 0 毫秒
1.
Analysis of P transposable element functions in Drosophila 总被引:147,自引:0,他引:147
2.
3.
D Anxolabehere 《Comptes rendus des séances de la Société de biologie et de ses filiales》1992,186(6):641-655
The P transposable element family in Drosophila melanogaster is responsible for the syndrome of hybrid dysgenesis which includes chromosomal rearrangements, male recombination, high mutability and temperature sensitive agametic sterility (called gonadal dysgenesis sterility). P element activity is controlled by a complex regulation system, encoded by the elements themselves, which keeps their transposition rate low within the strain bearing P elements and limits copy number by genome. A second regulatory mechanism, which acts on the level of RNA processing, prevents P mobility to somatic cells. The oldest available strains, representing most major geographical regions of the world, exhibited no detectable hybridization to the P-element. In contrast, all recently collected natural populations that were tested carried P-element sequences. The available evidence is consistent with the hypothesis of a worldwide P-element invasion of D. melanogaster during the past 30 years. Timing and direction of the invasion are discussed. The lack of P-element in older strains of Drosophila melanogaster as well as in the species must closely related to Drosophila melanogaster, suggests that P entered the Drosophila melanogaster genome recently, probably by horizontal transfer from an other species. The analysis of P-element elsewhere in the genus Drosophila reveals that several more distantly related species carried transposable elements with sequences quite similar to P. The species with the best-matching P-element is D. willistoni. A P-element from this species was found to match all but one of the 2907 nucleotides of the Drosophila melanogaster P-element. The phylogenic distributions and the likely horizontal transfers of the two other Drosophila transposable elements are discussed. 相似文献
4.
Fifteen species belonging to the obscura group of the genus Drosophila were screened for sequences homologous to Drosophila melanogaster transposable elements (TEs) as an initial step in the examination of the possible occurrence of TEs at chromosomal inversion breakpoints. Blots of genomic DNAs from species of the obscura group were hybridized at three different stringencies with 14 probes representing the major families of TEs described in D. melanogaster. The probe DNAs included copia, gypsy, 412, 297, mdg1, mdg3, 3S18, F, G, I, jockey, P, hobo, and FB3. D. melanogaster TEs were not well represented in the species of the obscura group analyzed. The TEs that were observed generally exhibited heterogeneous distributions, with the exception of F, gypsy and 412 which were ubiquitous, and 297, G, Sancho 2, hobo and FB which were not detected.by A. Bird 相似文献
5.
6.
Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome 总被引:2,自引:0,他引:2
Background
The recent availability of genome sequences has provided unparalleled insights into the broad-scale patterns of transposable element (TE) sequences in eukaryotic genomes. Nevertheless, the difficulties that TEs pose for genome assembly and annotation have prevented detailed, quantitative inferences about the contribution of TEs to genomes sequences. 相似文献7.
Vivas MV García-Planells J Ruiz C Marfany G Paricio N Gonzàlez-Duarte R de Frutos R 《Gene》1999,229(1-2):47-57
GEM is a new family of repetitive sequences detected in the D. subobscura genome. Two of the four described GEM elements encompass a heterogeneous central module, with no detectable ORF, flanked by two long inverted repeats. These elements are composed of a set of repetitive modules, which are inverted repeat (IR), direct repeat (DR), palindromic sequence (PS), long sequence (LS) and short sequence (SS). These five modules can be found either clustered or dispersed as single modules in the D. subobscura genome, in euchromatic and heterochromatic regions. In addition to the 3' region of Adh retrosequences, single IR and LS blocks were found associated with the promoter region of different genes, in particular, LS-like blocks have also been found associated with functional genes in D. melanogaster and D. virilis. Conversely, the DR block is highly similar to satellite DNAs from some other species of the obscura group. In addition, GEM elements share some structural features with IS elements described in different Drosophila species. It is likely that both GEM and IS sequences would be vestiges of an ancestral transposable element. 相似文献
8.
9.
10.
The Penelope family of transposable elements (TEs) is broadly distributed in most species of the virilis species group of Drosophila. This element plays a pivotal role in hybrid dysgenesis in Drosophila virilis, in which at least four additional TE families are also activated. Here we present evidence that the Penelope family of elements has recently invaded D. virilis. This evidence includes: (1) a patchy geographical distribution, (2) genomic locations mainly restricted to euchromatic chromosome arms in various geographical strains, and (3) a high level of nucleotide similarity among members of the family. Two samples from a Tashkent (Middle Asia) population of D. virilis provide further support for the invasion hypothesis. The 1968 Tashkent strain is free of Penelope sequences, but all individuals collected from a 1997 population carry at least five Penelope copies. Furthermore, a second TE, Ulysses, has amplified and spread in this population. These results provide evidence for the Penelope invasion of a D. virilis natural population and the mobilization of unrelated resident transposons following the invasion. 相似文献
11.
Adaptation to a novel environment is expected to have a number of features. Among these is a temporal increase in fitness and some or all of its components. It is also expected that additive genetic variances for these fitness characters will fall. Finally, it is expected that at least some additive genetic correlations will decrease, from positive toward negative values. In a study of several life‐history variables in a Drosophila subobscura population sampled from the wild and then cultured in the laboratory, we did not find any such longitudinal trends over the first 29 generations. However, a temporal comparison (over 14 generations) of the later generations of this laboratory‐adapted population with a new population, derived from a more recent wild‐caught sample, indicated clearly that laboratory adaptation was nonetheless occurring. This study suggests the need for extensive replication and control in studies of the features of adaptation to a novel environment. 相似文献
12.
Galindo MI Bigot Y Sánchez MD Periquet G Pascual L 《Molecular biology and evolution》2001,18(8):1532-1539
Hobo is one of the three Drosophila melanogaster transposable elements, together with the P and I elements, that seem to have recently invaded the genome of this species. Surveys of the presence of hobo in strains from different geographical and temporal origins have shown that recently collected strains contain complete and deleted elements with high sequence similarity (H strains), but old strains lack hobo elements (E strains). Besides the canonical hobo sequences, both H and E strains show other poorly known hobo-related sequences. In the present work, we analyze the presence, cytogenetic location, and structure of some of these sequences in E strains of D. melanogaster. By in situ hybridization, we found that euchromatic hobo-related sequences were in fixed positions in all six E strains analyzed: 38C in the 2L arm; 42B and 55A in the 2R arm; 79E and 80B in the 3L arm; and 82C, 84C, and 84D in the 3R arm. Sequence comparison shows that some of the hobo-related sequences from Oregon-R and iso-1 strains are similar to the canonical hobo element, but their analysis reveals that they are substantially diverged and rearranged and cannot code for a functional transposase. Our results suggest that these ubiquitous hobo-homologous sequences are immobile and are distantly related to the modern hobo elements from D. melanogaster. 相似文献
13.
Natural populations often exist in spatially diverse environments and may experience variation in the strength and targets of natural selection across their ranges. Drosophila provides an excellent opportunity to study the effects of spatially varying selection in natural populations, as both Drosophila melanogaster and Drosophila simulans live across a wide range of environments in North America. Here, we characterize patterns of variation in transposable elements (TEs) from six populations of D. melanogaster and nine populations of D. simulans sampled from multiple latitudes across North America. We find a nearly twofold excess of TEs in D. melanogaster relative to D. simulans, with this difference largely driven by TEs segregating at the lowest and highest allele frequencies. We find no effect of latitude on either total TE abundance or average TE allele frequencies in either species. Moreover, we show that, as a class of mutations, the most common patterns of TE variation do not coincide with the sampled latitudinal gradient, nor are they consistent with local adaptation acting on environmental differences found in the most extreme latitudes. We also do not find a cline in ancestry for North American D. melanogaster—for either TEs or single nucleotide polymorphisms—suggesting a limited role for demography in shaping patterns of TE variation. Though we find little evidence for widespread clinality among TEs in Drosophila, this does not necessarily imply a limited role for TEs in adaptation. We discuss the need for improved models of adaptation to large‐scale environmental heterogeneity, and how these might be applied to TEs. 相似文献
14.
15.
Etsuko Takasu-Ishikawa Motojiro Yoshihara Yoshiki Hotta 《Molecular & general genetics : MGG》1992,232(1):17-23
Summary. We have previously established a transgenic Drosophila line with a highly transposable P element insertion. Using this strain we analyzed transposition and excision of the P element at the molecular level. We examined sequences flanking the new insertion sites and those of the remnants after excision. Our results on mobilization of the P element demonstrate that target-site duplication at the original insertion site does not play a role in forward excision and transposition. After P element excision an 8 by target-site duplication and part of the 31 by terminal inverted repeat (5–18 bp) remained in all the strains examined. Moreover, in 11 out of 28 strains, extra sequences were found between the two remaining inverted repeats. The double-strand gap repair model does not explain the origin of these extra sequences. The mechanism creating them may be similar to the hairpin model proposed for the transposon Tam in Antirrhinum majus. 相似文献
16.
17.
Transposition of the vertebrate Tol2 transposable element in Drosophila melanogaster 总被引:2,自引:0,他引:2
The Tol2 element is a transposon found from a genome of a vertebrate, a small teleost medaka fish. Tol2 encodes a gene for a transposase which is active in vertebrate animals so far tested; for instance, in fish, frog, chicken and mammals, and transgenesis methods using Tol2 have been developed in these model vertebrates. However, it has not been known whether Tol2 can transpose in animals other than vertebrates. Here we report transposition of Tol2 in an invertebrate Drosophila melanogaster. First, we injected a transposon donor plasmid containing a Tol2 construct and mRNA encoding the Tol2 transposase into Drosophila eggs, and found that the Tol2 construct could be excised from the plasmid. Second, we crossed the injected flies, raised the offspring, and found that the Tol2 construct was integrated into the genome of germ cells and transmitted to the next generation. Finally, we constructed a Tol2 construct containing the white gene and injected the transposon donor plasmid and the transposase mRNA into fertilized eggs from the white mutant. We analyzed their offspring, and found that G1 flies with wild type red eyes could be obtained from 35% of the injected fly. We cloned and sequenced 34 integration loci from these lines and showed that these insertions were indeed created through transposition and distributed throughout the genome. Our present study demonstrates that the medaka fish Tol2 transposable element does not require vertebrate-specific host factors for its transposition, and also provides a possibility that Tol2 may be used as a new genetic tool for transgenesis and genome analysis in Drosophila. 相似文献
18.
Understanding the function of each gene in the genome of a model organism such as Drosophila melanogaster is an important goal. The development of improved methods for uncovering the mutant phenotypes of specific genes can accelerate achievement of this goal. The P[wHy] hybrid transposable element can be used to generate nested sets of precisely mapped deletions in a given region of the Drosophila genome. Here we use the P[wHy] method to generate overlapping, molecularly defined deletions from a set of three P[wHy] insertions in the 54E-F region of chromosome 2. Deletions that span a total of 0.5 Mb were identified and molecularly mapped precisely. Using overlapping deletions, the mutant phenotypes of nine previously uncharacterized genes in a 101-kb region were determined, including identification of new loci required for viability and female fertility. In addition, the deletions were used to molecularly map previously isolated lethal mutations. Thus, the P[wHy] method provides an efficient method for systematically determining the phenotypes of genes in a given region of the fly genome. 相似文献
19.
Jittima Piriyapongsa Mark T Rutledge Sanil Patel Mark Borodovsky I King Jordan 《Biology direct》2007,2(1):31-24