首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
During the 1991 and 1992 soybean growing seasons, field plots were established in South Carolina to study the effect of planting date on at-planting nematode densities and subsequent yield losses caused by Hoplolaimus columbus. The susceptible and intolerant soybean cv. Braxton was planted on five dates from to May to 28 June in 1991 and from 12 May to 28 June in 1992. Nematodes were recovered from soil samples collected before nematicide treatment with 1,3-D (Pi), at 6 weeks after planting (Pm), and at harvest (Pf). Initial nematode population densities did not differ among the five dates of planting in either year. The increase in numbers of nematodes from planting to 6 weeks after planting (Pm/Pi) and from planting to harvest (Pf/Pi) were not different among the five planting dates in either year. Root samples also were collected at 6 weeks after planting and at harvest, but planting date did not affect the number of nematodes extracted from roots on any sample date in either year. Altering planting dates between early May and late June was not effective in preventing yield suppression due to H. columbus.  相似文献   

2.
The relationships between densities of all members of a plant-parasitic nematode community and yield of ''Davis'' soybean and between final and preplant population levels were examined in small plots on sandy soils in north-central Florida. Plant-parasitic nematodes present in the community included Belonolaimus longicaudatus, Criconemella sphaerocephala, Meloidogyne incognita, Paratrichodorus minor, Pratylenchus brachyurus, and Xiphinema sp. Plant growth, including stand count, soybean yield (kg/ha), and size of young plants, was occasionally inversely correlated (P ≤ 0.05) with densities of B. longicaudatus or P. brachyurus, but not with densities of other species or with a range of soil variables. The nature of this relationship varied with season, with more severe stand losses noted during 1987 than in 1988. Final population densities (Pf) of most nematode species showed significant (P ≤ 0.05) linear relationships to densities measured at planting or earlier (Pi). These relationships were stronger (higher r²) with the ectoparasite B. longicaudatus than with the endoparasites M. incognita and P. brachyurus. Criconemella sphaerocephala declined under soybean cultivation, reaching levels near zero after two seasons. A quadratic model showed an improvement (P ≤ 0.05) over the linear model in describing the relationship between Pf and Pi measured at planting for B. longicaudatus, and gave a better indication of the leveling off of Pf at high values of Pi.  相似文献   

3.
The reproductive and damage potential of Ditylenchus destructor on peanut, Arachis hypogaea cv. Sellie, was determined in greenhouse tests. Final nematode population densities (Pf) in roots, hulls, and seeds increased (P = 0.01) as a function of increasing initial population (Pi). Final population densities were higher in hulls than in seeds and roots. Final densities in hulls and seeds were positively (P = 0.01) correlated. Fresh root and hull weight and number of pods and seeds per plant were not affected by D. destructor. Second generation germination and pod and seed disease severity increased (P = 0.01), whereas fresh seed weight decreased (P = 0.01) as a function of increasing Pi, and Pf in seeds and Pf in hulls. At Pi 250 and higher, 10-25% of seeds germinated into second generation seedlings before harvest. At Pi 250 and higher, fresh weight of harvested seed was suppressed 20-50%. At Pi 50 or Pf greater than 20 per seed, pod disease severity was 3-7 (on a scale of 1 to 10) and 15-80% of seeds were blemished or unsound.  相似文献   

4.
Buildup of plant-parasitic nematode populations on corn (Zea mays), soybean (Glycine max), and sorghum (Sorghum bicolor) were compared in 1991 and 1992. Final population densities (Pf) of Meloidogyne incognita were lower following sorghum than after soybean in both seasons, and Pf after sorghum was lower than Pf after corn in 1992. In both seasons, Pf differed among the sorghum cultivars used. No differences in Pf on corn, sorghum, and soybean were observed for Criconemella spp. (a mixture of C. sphaerocephala and C. ornata) or Paratrichodorus minor in either season. Pf levels of Pratylenchus spp. (a mixture of P. brachyurus and P. scribneri) were greatest after corn in 1992, but no differences with crop treatments were observed in 1991. When data from field tests conducted with corn and sorghum during the past four seasons were pooled, negative linear relationships between ln(Pf/Pi) and ln(Pi) were observed for Criconemella spp. and P. minor on each crop, and for M. incognita on corn (Pi = initial population density). Although ln(Pf/Pi) and ln(Pi) were not related for M. incognita with pooled sorghum data, separate relationships were derived for various sorghum cultivars. Regression equations from pooled data were used to obtain estimates of equilibrium density and maximum reproductive rate, and these estimates were used to construct models expressing nematode Pf across a range of initial densities. Many of these models were robust, encompassing a range of sites, season, crop cultivars, and planting dates. Quadratic models derived from pooled field data provided an alternative method for expressing Pf as a function of Pi.  相似文献   

5.
Four populations of Pratylenchus penetrans did not differ (P > 0.05) in their virulence or reproductive capability on Lahontan alfalfa. There was a negative relationship (r = -0 .7 9 ) between plant survival and nematode inocula densities at 26 ± 3 C in the greenhouse. All plants survived at an inoculum level (Pi) of 1 nematode/cm³ soil, whereas survival rates were 50 to 55% at 20 nematodes/cm³ soil. Alfalfa shoot and root weights were negatively correlated (r = - 0.87; P < 0.05) with nematode inoculum densities. Plant shoot weight reductions ranged from 13 % at Pi 1 nematode/cm³ soil to 69% for Pi 20 nematodes/cm³ soil, whereas root weight reductions ranged from 17% for Pi 1 nematode/cm³ soil to 75% for Pi 20 nematodes/cm³ soil. Maximum and minimum nematode reproduction (Pf/Pi) for the P. penetrans populations were 26.7 and 6.2 for Pi 1 and 20 nematodes/cm³ soil, respectively. There were negative correlations between nematode inoculum densities and plant survival (r = 0.84), and soil temperature and plant survival (r = -0 .7 8 ). Nematode reproduction was positively correlated to root weight (r = 0.89).  相似文献   

6.
A direct relationship exists between soil temperature and Heterodera schachtii development. The average developmental period of two nematode populations from Lewiston, Utah, and Rupert, Idaho, from J2 to J3, J4, adult, and the next generation J2 at soil temperatures of 18-28 C were 100, 140,225, and 399 degree-days (base 8 C), respectively. There was a positive relationship (P < 0.05) between nematode Pi, nematode generations, and sugarbeet yields. The greatest sugarbeet growth inhibition (87%) occurred when sugarbeets were exposed to a Pi of 12 eggs/cm³ soil for five generations (1,995 degree-days), compared with a 47% inhibition when plants were exposed to the same Pi for two generations. There was a negative correlation (P < 0.05) between the Pi, Pf, and sugarbeet yield for each population threshold. The smaller the Pi, the greater the sugarbeet yields and the greater the Pf. Root yields were 80 and 29 t /ha and Pf were 8.4 and 3.6 eggs/cm³ soil when sugarbeet seeds were planted at Pi of 0.4 and 7.9 eggs/cm³. respectively, at a soil temperature of 8 C. The number of years rotation with a nonhost crop required to reduce the nematode population density below a damage threshold level of 2 eggs/cm³ depends on the Pi. A Pi of 33.8 eggs/cm³ soil required a 5-year crop rotation, whereas a Pi of 8.4 eggs/cm³ soil required a 2-year crop rotation.  相似文献   

7.
Correspondence analyses were used to explore the relationships between yield and populations of Pratylenchus zeae in an upland rice field and in a greenhouse experiment. Initial soil (Pi) and final root (Pf) population densities of P. zeae, and yield (Y) of rice cv. UPL Ri5 were determined at 490 spots in the field. Very low Y was linked to very high Pf. Low Y was linked to medium or high Pi and medium Pf. Medium to very high Y were clustered with undetectable Pi and very low or high Pf. All yield levels were independent of very high Pi. In the greenhouse experiment where seven nematode inoculum levels and three fertilizer levels were evaluated, low Y was associated with medium or high Pf and high Y with high or low Pf. The analyses indicated that nematode-yield interaction involved a complex, dynamic process, in which the root-carrying capacity probably was a determining factor. Correspondence analysis, which does not require assumptions on the shape of nematode population-yield relationships or on variable distributions, revealed meaningful associations in these complex data sets.  相似文献   

8.
The effects of aldicarb, oxamyl, 1,3-D, and plastic mulch (solarization) on soil population densities of the golden nematode (GN) Globodera rostochiensis was assessed in field and microplot experiments with different soil types. Oxamyl was evaluated in both soil and foliar treatments, whereas aldicarb, 1,3-D, and solarization were applied only to soil. Soil applications of aldicarb and oxamyl resulted in reduced nematode populations after GN-susceptible potatoes in plots with initial population densities (Pi) of > 20 and 7.5 eggs/cm³ soil, respectively, but nematode populations increased in treated soil when Pi were less than 20 and 7.5 eggs/cm³soil. In clay loam field plots with Pi of 19-76 eggs/cm³ soil, nematode densities increased even with repeated foliar applications of oxamyl, whereas nematode populations at Pi greater than 76 eggs/cm³ soil were reduced by foliar oxamyl. Treatment with 1,3-D or solarization, singly or in combination, reduced GN soil population densities regardless of soil type or Pi. Temperatures lethal to GN were achieved 5 cm deep under clear plastic but not 10 or 15 cm deep.  相似文献   

9.
A Pratylenchus neglectus population from lltah (UT3) was more virulent to Lahontan alfalfa than other P. neglectus populations from Utah (UT1, UT2) and Wyoming (WY). All alfalfa plants survived at 24 ± 3 C when inoculated with WY, UT1, or UT2 at initial populations (Pi) of 500, 1,000, and 5,000 nematodes per plant. At Pi 10,000 with WY, UT1, or UT2, plant mortality was 15, 15, and 20%, respectively; at Pi 5,000 and 10,000 with UT3, plant mortality was 10 and 40%. The WY, UT1, and UT2 populations reduced (P ≤ 0.05) root growth at Pi 10,000 only, and UT3 reduced (P ≤ 0.05) root growth at Pi 1,000, 5,000, and 10,000. At Pi 5,000, shoot dry weights were reduced by 10-23% by WY, 14-29% by UT1, 12-25% by UT2, and 20-48% by UT3 at 15-30 C. The UT3 population reduced (P ≤ 0.05) root dry weight at 20-30 C at Pi 1,000 and 5,000. The WY, UT1, and UT-2 populations did not reduce (P ≥ 0.05) root growth at any temperature or Pi. The UT3 nematode reproductive indices were greater than those of the other nematode populations at all Pi and increased with temperature.  相似文献   

10.
The effect of various edaphic factors on Meloidogyne incognita population densities and cotton yield were evaluated from 2001 to 2003 in a commercial cotton field in southeastern Arkansas. The 6.07-ha field was subdivided into 512 plots (30.5 m × 3.9 m), and each plot was sampled for M. incognita prior to fumigation (Ppre), at planting (Pi), at peak bloom (Pm) and at harvest (Pf) each year. Soil texture (percent sand fraction) and the pre-plant soil fertility levels each year were determined from each plot. To ensure that a range of nematode population densities was available for study, 1,3-dichloropropene was applied in strips (3.9-m wide) at rates of 14.1, 29.2 and 42.2 liter/ha (128 plots each) each year 2 wk prior to planting. Data were evaluated using both stepwise and multiple regression analyses to determine relationships among edaphic factors, nematode population densities and yield. Although Pi and the percent sand fraction of the soil were the most important factors in explaining the variation in cotton yield, regression models only accounted for <26% of the variation in yield. When the same data were evaluated on a more homogeneous large-scale platform based on similar geographic locations, soil types and nematicide treatments, regression models that included both Pi and sand content explained 65%, 86% and 83% of the variability in yield for 2001, 2002 and 2003, respectively. Prediction profiles of the combined effects also demonstrated that damage potential for M. incognita on cotton in this study varied by soil texture.  相似文献   

11.
The level of resistance to root-knot nematode, Meloidogyne incognita, in NemX, a new cultivar of the Acala-type upland cotton, was evaluated in relation to four resistant breeding lines (N6072, N8577, N901, and N903) and four susceptible cultivars (Maxxa, SJ2, Royale, and Prema). In growth pouch tests, an average of only 4 nematode egg masses was produced on roots of NemX or the resistant lines, compared to a significantly higher average of 21 on the susceptible cultivars. In pot tests, the nematode reproduction factor (RF = Pf/Pi) in NemX and the resistant lines averaged 0.7, compared to a significantly higher average of 10 on the susceptible cultivars. Root galling in NemX or other resistant cotton averaged 15%, compared to 74% on the susceptible cultivars, in either pot or field tests. In plots with low levels of nematode infestation (Pi ≤ 150 second-stage juveniles [J2]/500 g soil), lint yield of NemX averaged 1,370 kg/ha and was less than the yield of susceptible Maxxa (1,450 k g /h a ). However, in plots with medium or high levels of nematode infestation (Pi = 151-300 or >300 J2/500 g soil, respectively), yields of NemX decreased only slightly and averaged 1,300 or 1,050 kg/ha, respectively, whereas yields of Maxxa were severely reduced to 590 or 503 kg/ha, respectively. Fusarium wih symptoms were observed on both NemX and Maxxa, and percent occurrence increased with increasing preplant nematode density. In plots with the highest nematode densities, 22% of NemX and 65% of Maxxa plants were wilted. NemX was highly effective against five M. incognita isolates and moderately effective against a sixth isolate that had been exposed to resistant cotton over several seasons. These results showed that NemX is as resistant to M. incognita as the four breeding lines, and much more resistant than the tested susceptible cultivars of cotton.  相似文献   

12.
Cropping systems in which resistant potato cultivars were grown at different frequencies in rotation with susceptible cultivars and a nonhost (oats) were evaluated at four initial nematode population densities (Pi) for their ability to maintain Globodera rostochiensis at a target level of <0.2 egg/cm³ of soil. At a Pi of 0.1 to 1 egg/cm³ of soil, cropping systems with 2 successive years of a resistant cultivar every 3 years of potato production reduced and maintained G. rostochiensis at <0.2 egg/cm³ of soil. At a Pi of 1 to 4 eggs/cm³ of soil, 2 successive years of a resistant cultivar followed by 1 year of oats for every 4 years of production were necessary to reduce and maintain G. rostochiensis populations at <0.2 egg/cm³ of soil. At a Pi greater than 4 eggs/cm³ of soil, 2 successive years of a resistant cultivar plus 1 year of oats reduced G. rostochiensis densities to <0.2 egg/cm³ of soil, but the population increased above that density after cropping 1 year to a susceptible cultivar. The numbers of cysts and eggs per cyst in the final population (Pf) of G. rostochiensis were influenced by initial density and the frequency of growing a susceptible cultivar in a cropping system. The lowest number of cysts and eggs per cyst in the final G. rostochiensis population occurred with a cropping system consisting of 2 successive years of a resistant cultivar followed by oats with a susceptible cultivar grown the fourth year of production.  相似文献   

13.
Lettuce was seeded in pots in the greenhouse and in field microplots in 1991 and 1992. Pots and microplots were filled with untreated or fumigated organic soil infested with Meloidogyne hapla at seven initial population densities (Pi) (0 to 32 eggs/cm³ soil). Lettuce weight, severity of root galling, and number of eggs per root system (Pf) were determined after 8 weeks. At the highest Pi, M. hapla caused yield losses up to 64% in the microplots and plant death in the greenhouse tests. The Seinhorst equation was used to describe the relation between lettuce weight and Pi (r² = 0.73 - 0.98) and to calculate the damage threshold density (T). Values of T were 7 and 8 eggs/cm³ soil in the greenhouse tests of 1991 and 1992, respectively. In the microplot tests, T was 1 egg/cm³ soil in 1991 and 2 eggs/cm³ soil in 1992. The damage threshold was the same in untreated and fumigated soils. At low Pi, root galling was more severe in the pots than in the microplots. Pf increased with increasing Pi of M. hapla in both tests, but declined at Pi > T in the greenhouse tests. The reproduction rate (Pf/Pi) of M. hapla was highest at the lowest Pi.  相似文献   

14.
The response of two soybean plant introductions, PI 96354 and PI 417444, highly resistant to Meloidogyne incognita, to increasing initial soil population densities (Pi) (0, 31, 125, and 500 eggs/100 cm³ soil) of M. incognita was studied in field microplots for 2 years. The plant introductions were compared to the cultivars Forrest, moderately resistant, and Bossier, susceptible to M. incognita. Averaged across years, the yield suppressions of Bossier, Forrest, PI 417444, and PI 96354 were 97, 12, 18, and < 1%, respectively, at the highest Pi when compared with uninfested control plots. Penetration of roots by second-stage juveniles (J2) increased linearly with increasing Pi at 14 days after planting. At the highest Pi, 62% fewer J2 were present in roots of PI 96354 than in roots of the other resistant genotypes. Soil population densities of M. incognita were lower on both plant introductions than on Forrest. At 75 and 140 days after planting, PI 96354 had the lowest number of J2 in the soil, with 49% and 56% fewer than Forrest at the highest Pi. The resistance genes in PI 96354 should be useful in a breeding program to improve the level of resistance to M. incognita in soybean cultivars.  相似文献   

15.
Resistant plant introductions, PI 230977 and PI 200538, and partially resistant Jackson and susceptible CNS were evaluated for seed yield in response to races 1 and 2 of Meloidogyne arenaria. Initial soil population densities (Pi) of the nematode were 0, 31, 125, and 500 eggs/100 cm³ soil. At the highest Pi, yield suppressions of CNS, Jackson, PI 230977, and PI 200538 were 55, 28, 31, and 29%, and 99, 86, 66, and 58% for races 1 and 2 compared with uninfested controls. Numbers of second-stage juveniles (J2) present in roots 14 days after planting increased as Pi increased, but did not differ between the two races. At the highest Pi, fewer race 1 (40-57%) and race 2 (53-68%) J2 were present in roots of the plant introductions than in roots of Jackson. Soil population densities of race 1 J2 at 135 days after planting were 83-89% lower on the resistant genotypes than on CNS. These numbers did not differ for race 2. Reproductive factors were considerably higher for race 2 compared to race 1 for all genotype by Pi combinations, except for CNS at the highest Pi.  相似文献   

16.
Although the soybean cyst nematode (SCN), Heterodera glycines, has been known to exist in Wisconsin for at least 14 years, relatively few growers sample for SCN or use host resistance as a means to manage this nematode. The benefit of planting the SCN-resistant cultivar Bell on a sandy soil in Wisconsin was evaluated in 1992 and 1993. A range of SCN population densities was achieved by planting 11 crops with varying degrees of susceptibility for 1 or 2 years before the evaluation. Averaged over nematode population densities, yield of ''Bell'' was 30 to 43% greater than that of the susceptible cultivars, ''Corsoy 79'' and ''BSR 101''. Counts of cysts collected the fall preceding soybean were more predictive of yield than counts taken at planting. Yields of all three cultivars were negatively related (P < 0.001) to cyst populations. Fewer (P < 0.01) eggs were produced on ''Bell'' than on the susceptible cultivars. The annual (fall to fall) change in cyst population densities was dependent on initial nematode density for all cultivars in 1992 and for the susceptible cultivars in 1993. Yield reductions induced by the SCN under the conditions of this study indicate that planting a SCN-resistant cultivar in Wisconsin can be beneficial if any cysts are detected.  相似文献   

17.
Meloidogyne chitwoodi populations from Tulelake, California; Ft. Hall, Idaho; Beryl, Utah; and Prosser, Washington, significantly (P < 0.05) reduced dry shoot weights of crested wheatgrass (Agropyron cristatum L., Gaertn. and A. desertorum, Fisch. ex Link, Schult.) cultivars Hycrest, Fairway, and Nordan in experiments conducted in a greenhouse and growth chamber. Shoot growth depression, root galling, and nematode reproduction indices were greatest (P < 0.05) on plants inoculated with 5,000 eggs/plant. Nematode populations from Tulelake, Ft. Hall, and Beryl significantly (P < 0.05) reduced the growth of the three grass cultivars at 15, 20, 25, and 30 C; the greatest reductions occurred at 20 and 25 C. There were significant differences in the virulence of the nematode populations at high (30 C) and low (15 C) soil temperatures. At 15 C, plant growth was reduced more by the Beryl and Tulelake than by the Ft. Hall population; whereas at 30 C, the Ft. Hall population was more virulent than the Beryl and Tulelake populations. Root galling and nematode reproduction were greater on plants inoculated with Beryl and Tulelake populations at 15 C than on plants inoculated with the Ft. Hall population, while the Ft. Hall population had the most pronounced effects at 30 C.  相似文献   

18.
Cotton seedlings were inoculated with a range of initial populations (Pi) of Meloidogyne incognita in greenhouse experiments to test the relationship between nematode population densities and egg viability. In two of three experiments, a significant (P < 0.05) negative linear relationship was detected between percentage of hatch of first generation eggs and log Pi. A similar relationship between hatch and root-gall index was observed. In two experiments numbers of eggs judged to be nonviable based on appearance were significantly greater (P < 0.05) in the highest Pi (60,000 eggs/seedling) treatments than in treatments with lower Pi (600-6,000 eggs/seedling). It was concluded that Pi affects egg viability measured as percentage of hatch and that this relationship may play a role in the density-dependent winter survival rates of Meloidogyne species.  相似文献   

19.
Plants of potato (Solanum tuberosum) cultivars Katahdin and Superior were inoculated with 0, 1,500, or 15,000 Pratylenchus penetrans. Transpiration, measured in the greenhouse with a porometer after 56 days of growth, was not significantly different among nematode inoculum levels or between cultivars. The rate of xylem exudation from decapitated root systems of Katahdin plants inoculated with 1,500 or 15,000 P. penetrans and Superior plants inoculated with 15,000 P. penetrans was lower than from noninoculated plants. Root weight of Katahdin and Superior was not affected by P. penetrans inoculum level. Transpiration of plants inoculated with 0, 500, 5,000 or 50,000 P. penetrans was recorded weekly from 14 to 56 days after planting. No consistent effects of nematode inoculum density on transpiration rate were observed. Root hydraulic conductivity was lower in Katahdin plants inoculated with 266 P. penetrans per plant and in Chippewa with 5,081 per plant than in noninoculated plants. Nematodes reduced leaf area of Superior, Chippewa, and Katahdin and root dry weight of Chippewa but had no effect on growth of Hudson, Onaway, or Russet Burbank plants. Assessing nematode effects on root hydraulic conductivity may provide a measure of the tolerance of potato cultivars to nematodes.  相似文献   

20.
A digitizer-microcomputer combination was utilized to determine soybean seedling response to population densities of M. incognita (Mi) under varied environmental conditions. Plant age, temperature, soil texture, and initial Mi inoculum (Pi) influenced the pattern of shoot and root growth. Effects of Mi on plant top growth were evident on plants inoculated 2 days after seeding, but generally were not noticeable on those receiving Mi after 4, 6, or 8 days (observations limited to 6 days after inoculation). The greatest Pi of Mi (16,700 juveniles/plant) suppressed root growth on plants inoculated at 2 or 4 days after seeding. Mi had no impact on root growth at 22 C on plants inoculated 6 or 8 days after seeding at any temperature used (22, 26, 30 C). New root initiation was inhibited on soybeans inoculated 2 days after seeding at the highest Pi at all three temperatures, but only at 30 C for a Pi of 1,670 juveniles/plant. Growth of first order lateral roots and general root length were suppressed by Mi on the youngest (2-day) plants. However, a low Pi (167 juveniles/ plant) resulted in root proliferation on 4-day-old plants at 26 C. Mi was most damaging in a low clay-content soil mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号